
Austin Game Conference - 2007

Project Darkstar
Architecture

Jim Waldo
Distinguished Engineer
Sun Microsystems Labs



Austin Game Conference - 2007

Project Darkstar Goals
● Support Server Scale 

● Games are embarrassingly parallel
● Multiple threads
● Multiple machines

● Simple Programming Model
● Multi-threaded, distributed programming is hard
● Single thread
● Single machine

● In the general case, this is impossible



Austin Game Conference - 2007

The Special Case
● Event-driven Programs

● Client communication generates a task
● Tasks are independent

● Tasks must
● Be short-lived
● Access data through Darkstar

● Communication is through
● Client sessions (client to server)
● Channels (publish/subscribe client/server-to-client)



Austin Game Conference - 2007

Project Darkstar Architecture

Everyone and Everything Participating on the Network



Austin Game Conference - 2007

Dealing with Concurrency
● All tasks are transactional

● Either everything is done, or nothing is
● Commit or abort determined by data access and 

contention

● Data access
● Data store detects conflicts, changes
● If two tasks conflict

● One will abort and be re-scheduled
● One will complete

● Transactional communication
● Actual communication only happens on commit



Austin Game Conference - 2007

Project Darkstar Data Store
● Not a full (relational) database

● No SQL
● Optimized for 50% read/50% write

● Keeps all game state
● Stores everything persisting longer than a single 

task
● Shared by all copies of the stack

● No explicit locking protocols
● Detects changes automatically
● Programmer can provide hints for optimizations



Austin Game Conference - 2007

Project Darkstar Communication
● Listeners hear client communication

● Simple client protocol
● Listeners established on connection

● Client-to-client through the server
● Allows server to listen if needed
● Very fast data path

● Mediation virtualizes end points
● Indirection abstracts actual channels



Austin Game Conference - 2007

Dealing with Distribution
● Darkstar tasks can run anywhere

● Data comes from the data store
● Communications is mediated
● Where a task runs doesn't matter

● Tasks can be allocated on different 
machines
● Players on different machines can interact
● The programmer doesn't need to chose

● Tasks can be moved
● Meta-services can track loads and move tasks
● New stacks can be added at runtime



Austin Game Conference - 2007

The End Result
● Simple and familiar programming model

● A single thread 
● A single machine

● Multiple threads 
● Task scheduling part of the infrastructure
● Concurrency control through the data store, 

transactions

● Multiple machines
● Darkstar manages data and communication 

references 
● Computation can occur on any machine
● Machines can be added (or subtracted) at any time



Austin Game Conference - 2007

Project Darkstar
Architecture

Jim Waldo
jim.waldo@sun.com


