
2007 JavaOneSM Conference | Session TS-1786 | 1

TS-1786

Writing Darkstar Apps

Mark Rizzo
VP Platform Engineering

Perpetual Entertainment, Inc.

Chris Melissinos
Chief Gaming Officer
Sun Microsystems

Jeffrey Kesselman
Chief Darkstar Architect

Sun Microsystems

YOUR LOGO
HERE

www.projectdarkstar.com

2007 JavaOneSM Conference | Session TS-1786 | 2

Perpetual Entertainment, Inc.

● Building games:
● MMORPG Gods and Heroes – Late summer 2007
● Star Trek Online – Late 2008

● Building platform technology
● Billing, CS tools, community, thick game to thin client

interface
● Enables and enhances connected gaming
● Enterprise Java framework, SOA architecture

2007 JavaOneSM Conference | Session TS-1786 | 3

Perpetual and Darkstar

● Huge demand in online game development
community to lower cost of game development

● Many new markets opening that Perpetual wants
to tap:
● Light MMORPGs, casual multi-player, free to pay (digital

object commerce), youth online
● Current heavy MMO development process too

expensive and difficult to iterate
● Make 15 $1M games vs. 1 $15M game

2007 JavaOneSM Conference | Session TS-1786 | 4

Perpetual and Darkstar

● Ease of integration between Perpetual platform
and Darkstar
● Java all around

● Rapid prototype on production scalable
framework

● Support for thick C++ and Java thin clients
● Gaming anywhere

● Open source model

2007 JavaOneSM Conference | Session TS-1786 | 5

Darkstar Applications

The hows and whys of writing
applications for the Sun Game Server
(SGS)

Business and technology

2007 JavaOneSM Conference | Session TS-1786 | 6

What will be covered

• The Business of Darkstar (10 min)
• Introduction to the SGS
• The SGS coding model in brief
• Real game implementation
• Where to go for more Information
• Q&A

2007 JavaOneSM Conference | Session TS-1786 | 7

What will be covered

• The Business of Darkstar (10 min)
• Chris Melissinos, Sun Chief Gaming Offficer

• Introduction to the SGS
• The SGS coding model in brief
• Real game implementation
• Where to go for more Information
• Q&A

2007 JavaOneSM Conference | Session TS-1786 | 8

Why Project Darkstar?

● Personal interest
● Sun Microsystems experience in online
● New approach to “old” problem
● Interest in growing the online game market

2007 JavaOneSM Conference | Session TS-1786 | 9

New Gameplay Opportunities

● MMOs today are not “massive” - but the potential
audience is

● Allows players to engage in content from a variety
of locations – “Live Anywhere” is a Sun concept,
not Microsoft's.

● Touch the player on mobile, set-top, PC
● Levels the playing field for all developers
● Explosion of niche content possible through

Darkstar

2007 JavaOneSM Conference | Session TS-1786 | 10

New Business Opportunities

● OpenSource can be free as in “free puppy”
● Services – Sun is best positioned to support
● We make systems and solutions – Darkstar brand

servers
● Online Services – the cable TV model for online

games
● Commercial licensing - innovate and expand, but

you own it

2007 JavaOneSM Conference | Session TS-1786 | 11

What will be covered

• The Business of Darkstar (10 min)
• Introduction to the SGS

• Jeff Kesselman, Chief Darkstar Architect
• Goals and Purpose of the SGS
• Architecture of the SGS (very high level)

• The SGS coding model in brief
• Real Game Implementation
• Where to go for more Information
• Q&A

2007 JavaOneSM Conference | Session TS-1786 | 12

Problem it is intended to solve
Purpose of the SGS

● Make practical massively scalable,5-9s on-line
game content in host-able model
● Enable better games with more, smaller developers

● Current state of the massively multi-player on-line
game industry
● $30M base budget for a massively multi-player on-line

game (MMO)
● Scale only by dividing users, primitive world-space

based load balancing (“zones” and “shards”)
● Limited persistence and no fault-tolerance
● Each game is a one-off

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 13

Design Goals
Purpose of the SGS

● Make distributed persistent,fault-tolerant game
servers easy and economical to write and
administer
● For the Developer

● Make server-side game code reliable, scalable, persistent, and
fault-tolerant in a transparent manner.

● Present a simple single-threaded event-driven programming
model to the developer. The developer should never have his
or her code fail due to interactions between code handling
different events.

● For the Operator
● Single point of administration
● Load balance across entire data center

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 14

Simplified and very brief
Architecture of the SGS

● In design much like a 3-tier enterprise system
● Tier 1: Communications Layer

● Publish/subscribe channels and direct client/server packets
● Analgous to the “edge tier”

● Tier 2: Execution Kernel
● Executes “tasks” in response to “events”
● Analagous to a J2EE app server

● Tier 3: Object Store
● Lightening fast, highly scalabe access to persistant objects
● Abalgous to the DB tier.

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 15

Simplified and very brief
Architecture of the SGS

● In execution very different
● Tier 1: Communication

● Reliable/unreliable ordered/unordered byte packet transport
● Pluggable transports
● Optimized for lowest worst case latency

● Tier 2: Execution
● Persistence of objects is ubiquitous and transparent (mostly)
● Tasks are apparently mono-threaded
● Objects are very simple, mostly normal J2SE
● Stateless
● Optimized for lowest worst case latency

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 16

Simplified and very brief
Architecture of the SGS

● In execution very different
● Tier 3: Object Store

● All application state lives here
● Custom in-memory data-store w/ secondary storage backup
● Transactional and fault-tolerant but not relational
● Deadlock detection for tier 2
● Built to scale massively
● Optimized for lowest worst case latencies

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 17

What will be covered

• The Business of Darkstar (10 min)
• Introduction to the SGS
• The SGS coding model in brief

• Events and Tasks
• ManagedObjects and ManagedReferences
• AppContext and Managers
• Communication

• Real game implementation
• Where to go for more Information
• Q&A

2007 JavaOneSM Conference | Session TS-1786 | 18

Events
Events and Tasks

● Events are occurrences to which application code
responds.

● There are two kinds of events
● System events

● Generated by the SGS infrastructure
● Manager events

● Generated by SGS managers

● Events result in a Task being queued for
execution

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 19

Tasks
Events and Tasks

● A task is a thread of execution
● Task execution appears to be mono-threaded

● Task is transactional (ACID properties)
● Appears to all happen at once to rest of system

● Tasks take read and write locks on ManagedObjects
● Locks freed at end of task.

● Tasks abort and reschedule if a conflict arises.
● Tasks scale out horizontally over the back-end

● Not a detail you need to think about
● Just remember: fewer object access conflicts == greater

scalability
Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 20

Task Ordering
Events and Tasks

● Task execution is mostly unordered and parallel
● However relative task ordering for a single user's

input is assured.
● Actions get executed in the order they arrive at the

server.
● An event generated by a user will not start processing

until all processing of earlier events have successfully
completed

● And parent-child task ordering is assured.
● A task may use the TaskManager to queue child tasks.
● A child task will not start processing until its parent task

has successfully completed.Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 21

Event listener interfaces
Events and Tasks

● All events have a listener interface associated
with them.

● ManagedObjects that wish to handle the event
must implmement the appropriate interface.

● When a task for an event starts processing, it
looks up and calls the handler for that event.

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 22

Persistant SGS objects
ManagedObjects

● An SGS app is made of ManagedObjects
● MangedObjects..

● Live in the object store
● Are fetched by events
● Are written back at successful termination of event
● Are apparently mono-threaded in execution
● Are referenced through ManagedReferences
● Are normal Java objects that

● Are Serializable
● Implement the ManagedObject marker interface

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 23

References to ManagedObjects
ManagedReference

● All SGS ManagedObjects must store references
to other ManagedObjects in ManagedReferences.

● MangedReferences
● Are Java reference types (like WeakReference etc)

● Have the usual get() method
● Also have getForUpdate()

● Mark the persistance boundaries between
ManagedObjects

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-1786 | 24

Example of ManagedObject fields
public class Foo implements Serializable, ManagedObject {

// bytes is part of the persisted state of foo
byte[] bytes;

// junkString is a transient and is not persisted
transient String junkString;

// barRef is a reference to a ManagedObject that has its
// own state

ManagedReference barRef;

...

So where do you get a ManagedReference
from?

2007 JavaOneSM Conference | Session TS-1786 | 25

Communication

● Two kinds of Darkstar communciation
● Client/Server

● Directly btw one client and the server
● Used to send commands to server and get responses

● Supported by the kernel
● Accessed through ClientSession.send(...) on Server
● Accessed through ServerSession.send(...) on Client

● Public/Subscribe Channels
● Between clients but controlled by server
● Supported by ChannelManager

● Controlled through ChannelManager on server
● Accessed through ClientChannel/ClientChannelListener on client

● More efficient: Does not involve persistence and task systems

2007 JavaOneSM Conference | Session TS-1786 | 26

What will be covered

• The Business of Darkstar (10 min)
• Introduction to the SGS
• The SGS coding model in brief
• Real game implementation
• Where to go for more Information
• Q&A

2007 JavaOneSM Conference | Session TS-1786 | 27

Real game implementation

● BHO: Bunny Hunter Online
● A real,little SGS game written just for this talk

● 2D multiplayer action game
● Kill innocent small furry animals!
● “Accidentally” kill other hunters!

● Rules of Game
● Killing a bunny gets you a point
● Killing a hunter costs you a point
● Last hunter alive is the only one to get ANY points

2007 JavaOneSM Conference | Session TS-1786 | 28

What we'll cover

● Basic intro to design
● A look at the hardest problem
● Demo of result

2007 JavaOneSM Conference | Session TS-1786 | 29

What we'll cover

● Basic intro to design
● A look at the hardest problem
● Demo of result

2007 JavaOneSM Conference | Session TS-1786 | 30

First step: Consider technical
challenges

● Consider your latency issues early
● Set design limits

● BHO designed for approximately 1000msec worst case
● Consider results of latency spikes

● Real time game
● 2D provides too much information for “fudging”
● Don't want sum of worst cases
● Game input is too high frequency to guess/correct

● Use Age of Empires solution
● Runs on 1000msec tick
● Lagging user stalls while game continues for others
● Consequences – might be unplayable for a user on really bad

connection

2007 JavaOneSM Conference | Session TS-1786 | 31

First step: Consider technical
challenges

● Consider your scaling issues early
● Set design limits

● BHO is a small group game.
● Natural design lends itself to 4 players per board

● Nice low N for N-squared
● Means a LOT of boards

● Boards don't have to inter-communicate!
● Boards can process in parallel!
● Boards can interleave processing!

● Lobby is potential bottle neck
● Only talk to lobby at start and end of game!
● Might have to scale out lobbies if we ever add lobby

chat.

2007 JavaOneSM Conference | Session TS-1786 | 32

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies
● Carrots
● Hedges
● Game Board
● MCP

2007 JavaOneSM Conference | Session TS-1786 | 33

Second step: Define your
ManagedObjects

● Entities
● Hunters

● Represent players
● Can move on board
● Can shoot bunnies
● Can shoot each other
● Can plant carrots
● Can die

● Bunnies
● Carrots
● Hedges
● Game Board
● MCP

2007 JavaOneSM Conference | Session TS-1786 | 34

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies

● Robots
● Spawned by system periodically
● Attracted to carrots
● Afraid of gunshots
● Can be killed

● Carrots
● Hedges
● Game Board
● MCP

2007 JavaOneSM Conference | Session TS-1786 | 35

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies
● Carrots

● Can be planted by players
● Limited (cost points to plant?)
● Consumed by bunnies

● Hedges
● Game Board
● MCP

2007 JavaOneSM Conference | Session TS-1786 | 36

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies
● Carrots
● Hedges

● Block movement
● Block shots

● Game Board
● MCP

2007 JavaOneSM Conference | Session TS-1786 | 37

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies
● Carrots
● Hedges
● Game Board

● Play space for all of the entities above
● Rectangular grid
● All entities exist in one square at a time
● Game play is 1/10sec per turn real-time
● 4 hunters per game board

Drawn on the
fly be combining
background with
other in-game
objects.

2007 JavaOneSM Conference | Session TS-1786 | 38

Second step: Define your
ManagedObjects

● Entities
● Hunters
● Bunnies
● Carrots
● Hedges
● Game Board
● MCP (with apologies to TRON)

● Collects users
● Creates game board
● Keeps high score board
● A simple “lobby' mechanism

Logic Object
(No in game
representation)

2007 JavaOneSM Conference | Session TS-1786 | 39

Second step: Define your
ManagedObjects

● Mapping of Entities to SGS Events/Interfaces
● Hunters

● Handle user packets: ManagedObject, ClientSessionListener
● Bunnies and Carrots

● Just game world constructs: ManagedObject
● Hedges

● Terrain: nothing (just part of state of Game Board)
● Game Board

● Gets a .5 sec tick: ManagedObject, Task
● MCP

● Handles logon/logoff: ManagedObject, AppListener

Logic Object
(No in game
representation)

2007 JavaOneSM Conference | Session TS-1786 | 40

What we'll cover

● Basic intro to design
● A look at the hardest problem
● Demo of result

2007 JavaOneSM Conference | Session TS-1786 | 41

Third step: Solve Client/Server
connectivity

● Do the hardest part first
● Hardest thing is smooth and “good feeling” game-play

across varying latency conditions
● “Walking” is generally your worst case.

● If you can navigate comfortably, the rest is usually easy

● Recall:
● Our game runs on a game-tick of .5 sec
● Challenge is to make that feel smooth to player
● Secondary challenge is to make it perform well on

server
● Key to server performance is avoiding object contention

2007 JavaOneSM Conference | Session TS-1786 | 42

First Movement Algorithm:

● Client sends move packet to hunter
● Hunter queues packet in a list

●

Client
Hunter

Lock taken on hunter to update queue

2007 JavaOneSM Conference | Session TS-1786 | 43

First Movement Algorithm:

● On game board tick (1 “move”)
● GameBoard reads each Hunter's queue
● GameBoard updates Hunter's state (position)

●

Hunter

Lock taken on hunters to update queue and state

Hunter Hunter

Game Board

2007 JavaOneSM Conference | Session TS-1786 | 44

First Movement Algorithm:

● Problems
● Massive contention on hunters

● Burdens CPU
● Stalls out game with more then 1 hunter

● No frame synchronization
● Latency spikes can cause synch to fail between client and

server
●

2007 JavaOneSM Conference | Session TS-1786 | 45

Second Movement Algorithm:

● Refactor into non competing chunks of data
● Keep player move on Hunter object
● Move state to seperate Managed Object

● Non locking movement read
● Only hold one move at a time
● Move has incrementing “move count”
● Store last move count number in state

2007 JavaOneSM Conference | Session TS-1786 | 46

First Movement Algorithm:

● Client sends move packet to hunter
● Hunter over-writes any previous move with this one

●

Client
Hunter

Lock taken on hunter to write move

2007 JavaOneSM Conference | Session TS-1786 | 47

Second Movement Algorithm:

● On game board tick (1 “move”)
● GameBoard gets state from Hunters.
● GameBoard locks Hunter's state object

●

Only state is locked

Hunter

Game Board

State

2007 JavaOneSM Conference | Session TS-1786 | 48

Second Movement Algorithm:

● Game Board reads Move from hunter
● GameBoard reads last move number from stae
● If last move< this move's move number

● Take move and update last move number

Only state is locked

Hunter

Game Board

State

2007 JavaOneSM Conference | Session TS-1786 | 49

Second Movement Algorithm

● Advantages
● No contention
● Game-play goes on in-step no matter what

● Player with latency spike is just skipped
● Moves don't back up on latency spike

● Actually good we throw away those that the player hasn't had
feedback for.

● Problems
● Have to wait for each frame to tick to get feedback
● Feels “laggy”

2007 JavaOneSM Conference | Session TS-1786 | 50

Third Movement Algorithm

● Almost the same as second
● Start local move immediately

● Use animation time to cover frame tick
● Block further movement until frame tick

● Avoid getting ahead of server in a latency spike
● Preserves game synch

● Advantages
● Same as second but without the lag

● Disadvantages
● Player synch approximate (but good enough)

2007 JavaOneSM Conference | Session TS-1786 | 51

Other actions

● Treated as “moves”
● Only one move per tick
● Ordered move resolution

● First: shoot,plant,eat
● Second: walk
● Shoot before walk assures fairness of shoot hit/miss

determination.
● In such a simple game, with the connectivity

solved the rest is just coding.

2007 JavaOneSM Conference | SessionTS-1786 | 52

DEMO
Bunny Hunters Online!

Character and Object Art and Animation created by Va Lee
and Kevin O'Neill courtesy of Mind Control Software, INC.

Special thanks to Andrew Leker and Eduardo Baraf

2007 JavaOneSM Conference | Session TS-1786 | 53

Summary

● Darkstar vastly simplifies writing scalable, fault
tolerant on-line games
● BHO written in approx. 1 man week for client and

server.
● Opportunity for small and big developers

● Get in without $30M
● SGS SDK is Open Source
● Playground program provides free beta hosting
● Hosting providers can revenue share

● Do games you could never afford before
● Do games across platforms!

2007 JavaOneSM Conference | Session TS-1786 | 54

For More Information

See...
● Lab 7210: Hands-on with Project Darkstar: The

JavaOne Conference MUD
● www.projectdarkstar.com
● For client coding resources in Java:

● Slick
● 2D API used for BHO!

● http://slick.cokeandcode.com
● Jmonkey Engine

● 3D game engine being used commeercially
● http://www.jmonkeyengine.com

● Java game developer community
● www.javagaming.org

http://slick.cokeandcode.com/
http://www.jmonkeyengine.com/

2007 JavaOneSM Conference | SessionTS-1786 | 55

Q&A
Jeff Kesselman
Chris Melissinos

