
Game Developers Conference 2008

Concurrency, Distribution, 
and Server Scaling

Jim Waldo
Distinguished Engineer
Sun Microsystems Labs



Game Developers Conference 2008

Chips are Changing
 Clocks aren't getting faster

 Design complexity constraints
 Energy efficiency worries
 Thermal problems

 More cores, more threads
 Cuts design effort and cost
 Saves energy
 More heat efficient

 Not faster, but more
 Any task takes longer
 Multiple tasks run in parallel 



Game Developers Conference 2008

Games are Changing
 From single player to multi-player

 More network traffic
 More opportunities to cheat
 More player interactions

 It's not just the game anymore
 Social interactions keep players around
 Coordinating guilds adds complexity

 Isolation is not possible
 Players want to interact
 Loads, failures make them interact unintentionally



Game Developers Conference 2008

New Requirements
 Scale

 Millions of players
 Bursts of load
 Need to balance

 Sharing
 Players want to interact
 Interaction patterns are unpredictable

 Reliability and security
 Players want to play, not call customer service
 You are a game company, not a service provider



Game Developers Conference 2008

Project Darkstar Goals
 Support Server Scale 

 Games are embarrassingly parallel
 Multiple threads
 Multiple machines

 Simple Programming Model
 Multi-threaded, distributed programming is hard
 Single thread
 Single machine

 In the general case, this is impossible



Game Developers Conference 2008

The Special Case
 Event-driven Programs

 Client communication generates a task
 Tasks are independent

 Tasks must
 Be short-lived
 Access data through Darkstar

 Communication is through
 Client sessions (client to server)
 Channels (publish/subscribe client/server-to-client)



Game Developers Conference 2008

Project Darkstar Architecture



Game Developers Conference 2008

Dealing with Concurrency
 All tasks are transactional

 Either everything is done, or nothing is
 Commit or abort determined by data access and 

contention

 Data access
 Data store detects conflicts, changes
 If two tasks conflict

 One will abort and be re-scheduled
 One will complete

 Transactional communication
 Actual communication only happens on commit



Game Developers Conference 2008

Project Darkstar Data Store
 Not a full (relational) database

 No SQL
 Assumes 50% read/50% write

 Keeps all game state
 Stores everything persisting longer than a single 

task
 Shared by all copies of the stack

 No explicit locking protocols
 Detects changes automatically
 Programmer can provide hints for optimizations



Game Developers Conference 2008

Project Darkstar Communication
 Listeners hear client communication

 Simple client protocol
 Listeners established on connection

 Client-to-client through the server
 Allows server to listen if needed
 Very fast data path

 Mediation virtualizes end points
 Indirection abstracts actual channels



Game Developers Conference 2008

Dealing with Distribution
 Darkstar tasks can run anywhere

 Data comes from the data store
 Communications is mediated
 Where a task runs doesn't matter

 Tasks can be allocated on different 
machines
 Players on different machines can interact
 The programmer doesn't need to chose

 Tasks can be moved
 Meta-services can track loads and move tasks
 New stacks can be added at runtime



Game Developers Conference 2008

The End Result
 Simple and familiar programming model

 A single thread 
 A single machine

 Multiple threads 
 Task scheduling part of the infrastructure
 Concurrency control through the data store, 

transactions

 Multiple machines
 Darkstar manages data and communication 

references 
 Computation can occur on any machine
 Machines can be added (or subtracted) at any time



Game Developers Conference 2008

Current Status
 Single node version available

 http://ProjectDarkstar.com
 GPLv2 license
 If you don't like GPL, talk to us...

 Supports
 Multiple threads
 Transactional data storage
 Same API as multi-node (mostly)

 Multiple machines
 Working in our lab
 Currently measuring, optimizing
 Should be available soon



Game Developers Conference 2008

Why Sun?
 We make multi-core machines

 We don't know how to program them either
 This is a way to find out

 We do distributed systems
 Lots of experience in the enterprise case
 Games have a different set of requirements

 Darkstar is a lab project
 High risk, high reward
 Research ideas, product quality software
 Any company large enough to fund a research lab...



Game Developers Conference 2008

Why Games?
 Games are

 Embarrassingly parallel (we don't embarrass easily)
 Unencumbered by legacy code

 We avoid
 Expectations from current customer base
 Corporate antibodies

 Fun
 Willing to take risks
 A different programming culture
 Who would you rather hang out with?



Game Developers Conference 2008

Why GDC?
 We can't do this alone

 We don't have game expertise
 We don't ship games

 You can't do it alone
 Distributed computing is hard
 Concurrent computing is harder

 We can do it together
 A Darkstar developer community
 We learn from each other
 We each do what we can do well
 We let the others do what we can't do so well



Game Developers Conference 2008

The Darkstar Community
 Network Community

 Articles
 Forums
 Projects

 More to do than we can do
 Tools
 Integration

 Community and open source
 Core is not (currently) community development
 Other projects are



Game Developers Conference 2008

How You Can Join
 Visit the website

 http://ProjectDarkstar.com
 Join the discussion
 Tell us what we are doing wrong
 Tell us what we aren't doing

 Maybe do it yourself...
 Find us here

 If the badge says “Sun”, it’s a Darkstar person
 Join us tonight (Thirsty Bear, 7 p.m.)

 The first drink is on us



Game Developers Conference 2008

How You Can Contribute
 Contribute to the community

 Try the core code
 Scratch your own itches
 Contribute ideas

 What else is needed?
 What isn’t done right?

 Contribute code
 Tools
 Utilities
 Benchmarks

 Everyone wins
 Software is better



Game Developers Conference 2008

Concurrency, Distribution
and Server Scale

Jim Waldo
jim.waldo@sun.com


