Chapter 8

Classification: Basic
Concepts

8.1 Bibliographic Notes

Classification is fundamental topic in machine learning, statistics, and pattern
recognition. Many textbooks from these fields highlight classification meth-
ods, such as Mitchell [Mit97], Bishop [Bis06], Duda, Hart, and Stork [DHSO01],
Theodoridis and Koutroumbas [TKO08], Hastie, Tibshirani, and Friedman [HTF09],
Alpaydin [Alp11], and Marsland [Mar09).

For decision tree induction, the C4.5 algorithm is described in a book by
Quinlan [Qui93]. The CART system is detailed in Classification and Regression
Trees by Breiman, Friedman, Olshen, and Stone [BFOS84]. Both books give
an excellent presentation of many of the issues regarding decision tree induc-
tion. (C4.5 has a commercial successor, known as C5.0, which can be found at
www.rulequest.com. ID3, a predecessor of C4.5, is detailed in Quinlan [Qui86].
It expands on pioneering work on concept learning systems, described by Hunt,
Marin, and Stone [HMS66]. Other algorithms for decision tree induction in-
clude FACT (Loh and Vanichsetakul [LV88]), QUEST (Loh and Shih [LS97]),
PUBLIC (Rastogi and Shim [RS98]), and CHAID (Kass [Kas80] and Magidson
[Mag94]). INFERULE (Uthurusamy, Fayyad, and Spangler [UFS91]) learns de-
cision trees from inconclusive data, where probabilistic rather than categorical
classification rules are obtained. KATE (Manago and Kodratoft [MK91]) learns
decision trees from complex structured data. Incremental versions of ID3 in-
clude ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter
of which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremen-
tal version of CART is described in Crawford [Cra89]. BOAT (Gehrke, Ganti,
Ramakrishnan, and Loh [GGRL99]), a decision tree algorithm that addresses
the scalability issue in data mining, is also incremental. Other decision tree
algorithms that address scalability include SLIQ (Mehta, Agrawal, and Rissa-
nen [MAR96]), SPRINT (Shafer, Agrawal, and Mehta [SAM96]), RainForest
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(Gehrke, Ramakrishnan, and Ganti [GRG98]), and earlier approaches, such as
Catlet [Cat91] and Chan and Stolfo [CS93a, CS93b]. For a comprehensive sur-
vey of many salient issues relating to decision tree induction, such as attribute
selection and pruning, see Murthy [Mur98]. Perception Based Classification
(PBC), a visual and interactive approach to decision tree construction, is pre-
sented in Ankerst, Elsen, Ester, and Kriegel [AEEK99].

For a detailed discussion on attribute selection measures, see Kononenko and
Hong [KH97]. Information gain was proposed by Quinlan [Qui86] and is based
on pioneering work on information theory by Shannon and Weaver [SW49]. The
gain ratio, proposed as an extension to information gain, is described as part
of C4.5 [Qui93]. The Gini index was proposed for CART [BFOS84]. The G-
statistic, based on information theory, is given in Sokal and Rohlf [SR81]. Com-
parisons of attribute selection measures include Buntine and Niblett [BN92],
Fayyad and Irani [F192], Kononenko [Kon95], Loh and Shih [LS97], and Shih
[Shi99]. Fayyad and Irani [F192] show limitations of impurity-based measures
such as information gain and Gini index. They propose a class of attribute se-
lection measures called C-SEP (Class SEParation), which outperform impurity-
based measures in certain cases. Kononenko [Kon95] notes that attribute selec-
tion measures based on the minimum description length principle have the least
bias toward multi-valued attributes. Martin and Hirschberg [MH95] proved that
the time complexity of decision tree induction increases exponentially with re-
spect to tree height in the worst case, and under fairly general conditions in the
average case. Fayad and Irani [FI90] found that shallow decision trees tend to
have many leaves and higher error rates for a large variety of domains. Attribute
(or feature) construction is described in Liu and Motoda [LM98, Le98].

There are numerous algorithms for decision tree pruning, including cost com-
plexity pruning (Breiman, Friedman, Olshen, and Stone [BFOS84]), reduced
error pruning (Quinlan [Qui87]), and pessimistic pruning (Quinlan [Quig6]).
PUBLIC (Rastogi and Shim [RS98]) integrates decision tree construction with
tree pruning. MDL-based pruning methods can be found in Quinlan and Rivest
[QR89], Mehta, Agrawal, and Rissanen [MRA95], and Rastogi and Shim [RS98].
Other methods include Niblett and Bratko [NB86], and Hosking, Pednault, and
Sudan [HPS97]. For an empirical comparison of pruning methods, see Mingers
[Min89] and Malerba, Floriana, and Semeraro [MFS95]. For a survey on sim-
plifying decision trees, see Breslow and Aha [BA97].

Thorough presentations of Bayesian classification can be found in Duda,
Hart, and Stork [DHSO01], Weiss and Kulikowski [WK91], and Mitchell [Mit97].
For an analysis of the predictive power of naive Bayesian classifiers when the
class conditional independence assumption is violated, see Domingos and Paz-
zani [DP96]. Experiments with kernel density estimation for continuous-valued
attributes, rather than Gaussian estimation, have been reported for naive Bayesian
classifiers in John [Joh97].

There are several examples of rule-based classifiers. These include AQ15
(Hong, Mozetic, and Michalski [HMMS86]), CN2 (Clark and Niblett [CN89)),
ITRULE (Smyth and Goodman [SG92]), RISE (Domingos [Dom94]), IREP
(Furnkranz and Widmer [FW94]), RIPPER (Cohen [Coh95]), FOIL (Quin-
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lan and Cameron-Jones [Qui90, QCJ93]), and Swap-1 (Weiss and Indurkhya
[WI98]). Rule-based classifiers that are based on frequent-pattern mining are
described in Chapter 9. For the extraction of rules from decision trees, see
Quinlan [Qui87, Qui93]. Rule refinement strategies that identify the most in-
teresting rules among a given rule set can be found in Major and Mangano
[MMO5].

Issues involved in estimating classifier accuracy are described in Weiss and
Kulikowski [WK91] and Witten and Frank [WF05]. Sensitivity, specificity, and
precision are discussed in most information retrieval text books. For the F
and Fj measures, see van Rijsbergen [vR90]. The use of stratified 10-fold cross-
validation for estimating classifier accuracy is recommended over the holdout,
cross-validation, leave-one-out (Stone [Sto74]) and bootstrapping (Efron and
Tibshirani [ET93]) methods, based on a theoretical and empirical study by Ko-
havi [Koh95]. See Freedman, Pisani, and Purves [FPP07] for the confidence
limits and statistical tests of significance. For ROC analysis, see Egan [Ega75],
Swets [Swe88], and Vuk and Curk [VC06]. Bagging is proposed in Breiman
[Bre96]. Freund and Schapire [FS97] proposed AdaBoost. The boosting tech-
nique of has been applied to several different classifiers, including decision tree
induction (Quinlan [Qui96]) and naive Bayesian classification (Elkan [E1k97]).
Friedman [Fri01] proposed the gradient boosting machine for regression. The en-
semble technique of random forests is described by Breiman [Bre01]. Seni and
Elder [SE10] proposed the Importance Sampling Learning Ensembles (ISLE)
framework, which views bagging, Adaboost, random forests, and gradient boost-
ing as special cases of a generic ensemble generation procedure. Friedman and
Popescu [FB08, FP05] present Rule Ensembles, an ISLE-based model where the
classifiers combined are composed of simple readable rules. Such ensembles were
observed to have comparable or greater accuracy and greater interpretability.
There are many online software packages for ensemble routines, including bag-
ging, Adaboost, gradient boosting, and random forests. Studies on the class
imbalance problem and/or cost-sensitive learning include Weiss [Wei04], Zhou
and Liu [ZL06], Zapkowicz and Stephen [ZS02], Elkan [Elk01], and Domingos
[Dom99].

The University of California at Irvine (UCI) maintains a Machine Learn-
ing Repository of data sets for the development and testing of classification
algorithms. It also maintains a Knowledge Discovery in Databases (KDD)
Archive, an online repository of large data sets that encompasses a wide va-
riety of data types, analysis tasks, and application areas. For information on
these two repositories, see www.ics.uci.edu/~mlearn/MLRepository.html and
http://kdd.ics.uci.edu.

No classification method is superior over all others for all data types and do-
mains. Empirical comparisons of classification methods include [Qui88, SMT91,
BCP93, CM94, MST94, BU95], and [LLS00].
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