
Chapter 9

Classification: Advanced
Methods

9.1 Bibliographic Notes

For an introduction to Bayesian belief networks, see Darwiche [Dar10] and Heck-
erman [Hec96]. For a thorough presentation of probabilistic networks, see Pearl
[Pea88], and Koller and Friedman [KF09]. Solutions for learning the belief net-
work structure from training data given observable variables are proposed in
[CH92, Bun94, HGC95]. Algorithms for inference on belief networks can be
found in Russell and Norvig [RN95] and Jensen [Jen96]. The method of gra-
dient descent, described in Section ?? for training Bayesian belief networks, is
given in Russell, Binder, Koller, and Kanazawa [RBKK95]. The example given
in Figure ?? is adapted from Russell et al. [RBKK95]. Alternative strategies for
learning belief networks with hidden variables include application of Dempster,
Laird, and Rubin’s [DLR77] EM (Expectation Maximization) algorithm (Lau-
ritzen [Lau95]) and methods based on the minimum description length principle
(Lam [Lam98]). Cooper [Coo90] showed that the general problem of inference
in unconstrained belief networks is NP-hard. Limitations of belief networks,
such as their large computational complexity (Laskey and Mahoney [LM97]),
have prompted the exploration of hierarchical and composable Bayesian mod-
els (Pfeffer, Koller, Milch, and Takusagawa [PKMT99] and Xiang, Olesen, and
Jensen [XOJ00]). These follow an object-oriented approach to knowledge repre-
sentation. Fishelson and Geiger [FG02] present a Bayesian network for genetic
linkage analysis.

The perceptron is a simple neural network, proposed in 1958 by Rosenblatt
[Ros58], which became a landmark in early machine learning history. Its in-
put units are randomly connected to a single layer of output linear threshold
units. In 1969, Minsky and Papert [MP69] showed that perceptrons are inca-
pable of learning concepts that are linearly inseparable. This limitation, as well
as limitations on hardware at the time, dampened enthusiasm for research in
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computational neuronal modeling for nearly 20 years. Renewed interest was
sparked following presentation of the backpropagation algorithm in 1986 by
Rumelhart, Hinton, andWilliams [RHW86], as this algorithm can learn concepts
that are linearly inseparable. Since then, many variations for backpropagation
have been proposed, involving, for example, alternative error functions (Han-
son and Burr [? ]), dynamic adjustment of the network topology (Mézard and
Nadal [MN89], Fahlman and Lebiere [FL90], Le Cun, Denker, and Solla [LDS90],
and Harp, Samad, and Guha [HSG90]), and dynamic adjustment of the learn-
ing rate and momentum parameters (Jacobs [Jac88]). Other variations are
discussed in Chauvin and Rumelhart [CR95]. Books on neural networks include
[RM86, HN90, HKP91, CR95, Bis95, Rip96, Hay99]. Many books on machine
learning, such as [Mit97, RN95], also contain good explanations of the back-
propagation algorithm. There are several techniques for extracting rules from
neural networks, such as [SN88, Gal93, TS93, Avn95, LSL95, CS96, LGT97].
The method of rule extraction described in Section ?? is based on Lu, Setiono,
and Liu [LSL95]. Critiques of techniques for rule extraction from neural net-
works can be found in Craven and Shavlik [CS97]. Roy [Roy00] proposes that
the theoretical foundations of neural networks are flawed with respect to as-
sumptions made regarding how connectionist learning models the brain. An
extensive survey of applications of neural networks in industry, business, and
science is provided in Widrow, Rumelhart, and Lehr [WRL94].

Support Vector Machines (SVMs) grew out of early work by Vapnik and
Chervonenkis on statistical learning theory [VC71]. The first paper on SVMs
was presented by Boser, Guyon, and Vapnik [BGV92]. More detailed accounts
can be found in books by Vapnik [Vap95, Vap98]. Good starting points in-
clude the tutorial on SVMs by Burges [Bur98], as well as textbook coverage by
Haykin [Hay08], Kecman [Kec01], and Cristianini and Shawe-Taylor [CST00].
For methods for solving optimization problems, see Fletcher [Fle87] and Nocedal
andWright [NW99]. These references give additional details alluded to as “fancy
math tricks” in our text, such as transformation of the problem to a Lagrangian
formulation and subsequent solving using Karush-Kuhn-Tucker (KKT) condi-
tions. For the application of SVMs to regression, see Schlkopf, Bartlett, Smola,
and Williamson [SBSW99], and Drucker, Burges, Kaufman, Smola, and Vapnik
[DBK+97]. Approaches to SVM for large data include the sequential minimal
optimization algorithm by Platt [Pla98], decomposition approaches such as in
Osuna, Freund, and Girosi [OFG97], and CB-SVM, a microclustering-based
SVM algorithm for large data sets, by Yu, Yang, and Han [YYH03]. A li-
brary of software for support vector machines is provided by Chang and Lin at
www.csie.ntu.edu.tw/∼cjlin/libsvm/, which supports multiclass classification.

Many algorithms have been proposed that adapt frequent pattern mining
to the task of classification. Early studies on associative classification include
the CBA algorithm, proposed in Liu, Hsu, and Ma [LHM98]. A classifier that
uses emerging patterns (itemsets whose support varies significantly from one
dataset to another) is proposed in Dong and Li [DL99] and Li, Dong, and
Ramamohanarao [LDR00]. CMAR (Classification based on Multiple Associa-
tion Rules) is presented in Li, Han, and Pei [LHP01]. CPAR (Classification
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based on Predictive Association Rules) is presented in Yin and Han [YH03].
Cong, Tan, Tung, and Xu describe RCBT, a method for mining top-k cover-
ing rule groups for classifying high-dimensional gene expression data with high
accuracy [CTTX05]. Wang and Karypis [WK05] present HARMONY (Highest
confidence classificAtion Rule Mining fOr iNstance-centric classifYing), which
directly mines the final classification rule set with the aid of pruning strategies.
Lent, Swami, and Widom [LSW97] propose the ARCS system regarding mining
multidimensional association rules. It combines ideas from association rule min-
ing, clustering, and image processing, and applies them to classification. Mere-
takis and Wüthrich [MW99] propose constructing a näıve Bayesian classifier by
mining long itemsets. Veloso, Meira, and Zaki [VMZ06] propose an association
rule-based classification method based on a lazy (non-eager) learning approach,
in which the computation is performed on a demand-driven basis. Studies on
discriminative frequent pattern-based classification were conducted by Cheng,
Yan, Han, and Hsu [CYHH07] and Cheng, Yan, Han, and Yu [CYHY08]. The
former work establishes a theoretical upper bound on the discriminative power
of frequent patterns (based on either information gain [Qui86] or Fisher score
[DHS01]), which can be used as a strategy for setting minimum support. The
latter work describes the DDPMine algorithm, which is a direct approach to
mining discriminative frequent patterns for classification in that it avoids gen-
erating the complete frequent pattern set. H. Kim, S. Kim, T. Weninger, et
al. proposed an NDPMine algorithm that performs frequent and discrimina-
tive pattern-based classification by taking repetitive features into consideration
[KKW+10].

Nearest-neighbor classifiers were introduced in 1951 by Fix and Hodges
[FH51]. A comprehensive collection of articles on nearest-neighbor classifica-
tion can be found in Dasarathy [Das91]. Additional references can be found
in many texts on classification, such as Duda, Hart and Stork [DHS01] and
James [Jam85], as well as articles by Cover and Hart [CH67] and Fukunaga and
Hummels [FH87]. Their integration with attribute-weighting and the pruning
of noisy instances is described in Aha [Aha92]. The use of search trees to im-
prove nearest-neighbor classification time is detailed in Friedman, Bentley, and
Finkel [FBF77]. The partial distance method was proposed by researchers in
vector quantization and compression. It is outlined in Gersho and Gray [GG92].
The editing method for removing “useless” training tuples was first proposed
by Hart [Har68]. The computational complexity of nearest-neighbor classi-
fiers is described in Preparata and Shamos [PS85]. References on case-based
reasoning (CBR) include the texts by Riesbeck and Schank [RS89], Kolodner
[Kol93], as well as Leake [Lea96] and Aamodt and Plazas [AP94]. For a list
of business applications, see [All94]. Examples in medicine include CASEY
by Koton [Kot88] and PROTOS by Bareiss, Porter, and Weir [BPW88], while
Rissland and Ashley [RA87] is an example of CBR for law. CBR is avail-
able in several commercial software products. For texts on genetic algorithms,
see Goldberg [Gol89], Michalewicz [Mic92], and Mitchell [Mit96]. Rough sets
were introduced in Pawlak [Paw91]. Concise summaries of rough set theory in
data mining include Ziarko [Zia91], and Cios, Pedrycz, and Swiniarski [CPS98].
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Rough sets have been used for feature reduction and expert system design in
many applications, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and
Swiniarski [Swi98]. Algorithms to reduce the computation intensity in finding
reducts have been proposed in [SR92]. Fuzzy set theory was proposed by Zadeh
in [Zad65, Zad83]. Additional descriptions can be found in [YZ94, Kec01].

Work on multiclass classification is described in Hastie and Tibshirani [HT98],
Tax and Duin [TD02], and Allwein, Shapire, and Singer [ASS00]. Zhu [Zhu05]
presents a comprehensive survey on semi-supervised classification. For addi-
tional references, see the book edited by Chapelle, Schölkopf, and Zien [ClZ06].
Dietterich and Bakiri [DB95] propose the use of error-correcting codes for multi-
class classification. For a survey on active learning, see Settles [Set10]. Pan and
Yang present a survey on transfer learning in [PY10]. The TrAdaBoost boosting
algorithm for transfer learning is given in Dai, Yang, Xue and Yu [DYXY07].
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