Chapter 10

Cluster Analysis: Basic
Concepts and Methods

10.1 Bibliographic Notes

Clustering has been extensively studied for over 40 years and across many dis-
ciplines due to its broad applications. Most books on pattern classification and
machine learning contains chapters on cluster analysis or unsupervised learning.
Several textbooks are dedicated to the methods of cluster analysis, including
Hartigan [Har75], Jain and Dubes [JD88], Kaufman and Rousseeuw [KR90],
and Arabie, Hubert, and De Sorte [AHS96]. There are also many survey arti-
cles on different aspects of clustering methods. Recent ones include Jain, Murty,
and Flynn [JMF99], Parsons, Haque, and Liu [PHLO04], and Jain [Jail0].

For partitioning methods, the k-means algorithm was first introduced by
Lloyd [L1o57], and then by MacQueen [Mac67]. Arthur and Vassilvitskii [AV07]
presented the k-means++ algorithm. A filtering algorithm, which uses a spatial
hierarchical data index to speed up the computation of cluster means, is given
in Kanungo, Mount, Netanyahu, Piatko, Silverman, and Wu [KMN*02].

The k-medoids algorithms of PAM and CLARA were proposed by Kaufman
and Rousseeuw [KR90]. The k-modes (for clustering nominal data) and k-
prototypes (for clustering hybrid data) algorithms were proposed by Huang
[Hua98]. The k-modes clustering algorithm was also proposed independently by
Chaturvedi, Green, and Carroll [CGC94, CGC01]. The CLARANS algorithm
was proposed by Ng and Han [NH94]. Ester, Kriegel, and Xu [EKX95] proposed
techniques for further improvement of the performance of CLARANS using
efficient spatial access methods, such as R*-tree and focusing techniques. A
k-means-based scalable clustering algorithm was proposed by Bradley, Fayyad,
and Reina [BFR98].

An early survey of agglomerative hierarchical clustering algorithms was con-
ducted by Day and Edelsbrunner [? ]. Agglomerative hierarchical clustering,
such as AGNES, and divisive hierarchical clustering, such as DIANA, were in-
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troduced by Kaufman and Rousseeuw [KR90]. An interesting direction for
improving the clustering quality of hierarchical clustering methods is to inte-
grate hierarchical clustering with distance-based iterative relocation or other
non-hierarchical clustering methods. For example, BIRCH, by Zhang, Ramakr-
ishnan, and Livny [ZRL96], first performs hierarchical clustering with a CF-tree
before applying other techniques. Hierarchical clustering can also be performed
by sophisticated linkage analysis, transformation, or nearest neighbor analysis,
such as CURE by Guha, Rastogi, and Shim [GRS98], ROCK (for clustering
nominal attributes) by Guha, Rastogi, and Shim [GRS99], and Chameleon by
Karypis, Han, and Kumar [KHK99].

A probabilistic hierarchical clustering framework following normal linkage
algorithms and using probabilistic models to define cluster similarity was devel-
oped by Friedman [Fri03], and Heller and Ghahramani [HGO5].

For density-based clustering methods, DBSCAN was proposed by Es-
ter, Kriegel, Sander, and Xu [EKSX96]. Ankerst, Breunig, Kriegel, and
Sander [ABKS99] developed OPTICS, a cluster ordering method that facili-
tates density-based clustering without worrying about parameter specification.
The DENCLUE algorithm, based on a set of density distribution functions, was
proposed by Hinneburg and Keim [HK98]. Hinneburg and Gabriel [HG07] devel-
oped DENCLUE 2.0 which includes a new hill climbing procedure for Gaussian
kernels adjusting the step size automatically.

STING, a grid-based multiresolution approach that collects statistical in-
formation in grid cells, was proposed by Wang, Yang, and Muntz [WYM97].
WaveCluster, developed by Sheikholeslami, Chatterjee, and Zhang [SCZ98], is
a multiresolution clustering approach that transforms the original feature space
by wavelet transform.

Scalable methods for clustering nominal data were studied by Gibson, Klein-
berg, and Raghavan [GKR98], by Guha, Rastogi, and Shim [GRS99], and by
Ganti, Gehrke, and Ramakrishnan [GGR99]. There are also many other cluster-
ing paradigms. For example, fuzzy clustering methods are discussed in Kaufman
and Rousseeuw [KR90], in Bezdek [Bez81], and in Bezdek and Pal [BP92].

For high-dimensional clustering, an Apriori-based dimension-growth sub-
space clustering algorithm called CLIQUE was proposed by Agrawal, Gehrke,
Gunopulos, and Raghavan [AGGR9S8|. It integrates density-based and grid-
based clustering methods.

Recent studies have proceeded to clustering stream data [BBD102]. A k-
median based data stream clustering algorithm was proposed by Guha, Mishra,
Motwani, and O’Callaghan [GMMOO00], and by O’Callaghan et al. [OMM™*02].
A method for clustering evolving data streams was proposed by Aggarwal,
Han, Wang, and Yu [AHWYO03]. A framework for projected clustering of
high-dimensional data streams was proposed by Aggarwal, Han, Wang, and
Yu [AHWY04].

Clustering evaluation is discussed in a few monographs and survey articles,
such as [JD88, HBVO01]. The extrinsic methods for clustering quality eval-
uation are extensively explored. Some recent studies include [Mei03, Mei05,
AGAV09]. The four essential criteria introduced in this chapter are formulated
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in [AGAV09], while some individual criteria are also mentioned earlier, for ex-
ample, in [Mei03, RH07]. Bagga and Baldwin [BB98] introduced the BCubed
metrics. The silhouette coefficient is described in [KR90].
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