
Chapter 11

Advanced Cluster Analysis

11.1 Bibliographic Notes

Höppner et al. [HKKR99] provide a thorough discussion on fuzzy clustering.
The fuzzy c-means algorithm (on which Example 11.7 is based) was proposed
by Bezdek [Bez81]. Fraley and Raftery [FR02] give a comprehensive overview
of model-based cluster analysis and probabilistic models. McLachlan and Bkas-
ford [MB88] present a systematic introduction to mixture models and applica-
tions in cluster analysis.

Dempster, Laird, and Rubin [DLR77] are recognized as the first to introduce
the EM algorithm and give it its name. However, the idea of the EM algorithm
had been “proposed many times in special circumstances” before, as admitted
in [DLR77]. Wu [Wu83] gives the correct analysis of the EM algorithm.

Mixture models and EM algorithms are used extensively in many data min-
ing applications. Introductions to model-based clustering, mixture models, and
EM algorithms can be found in recent textbooks on machine learning and sta-
tistical learning, such as [Bis06, Mar09, Alp11].

The increase of dimensionality has severe effects on distance functions, as
indicated by Beyer et al. [BGRS99]. It also has had a dramatic impact on various
techniques for classification, clustering, and semi-supervised learning [RNI09].

Kriegel, Kröger, and Zimek [KKZ09] present a comprehensive survey on
methods for clustering high-dimensional data. The CLIQUE algorithm was de-
veloped by Agrawal, Gehrke, Gunopulos, and Raghavan [AGGR98]. The PRO-
CLUS algorithm was proposed by Aggawal, Procopiuc, Wolf et al. [APW+99].

The technique of bi-clustering was initially proposed by Hartigan [Har72].
The term of bi-clustering was coined by Mirkin [Mir98]. Cheng and
Church [CC00] introduced bi-clustering into gene expression data analysis.
There are many studies on bi-clustering models and methods. The notion of
δ-pCluster was introduced by Wang, Wang, Yang, and Yu [WWYY02]. For
informative surveys, see Madeira and Oliveira [MO04] and Tanay, Sharan, and
Shamir [TSS04] In this chapter, we introduced the δ-cluster algorithm by Cheng
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and Church [CC00] and MaPle by Pei, Zhang, Cho, et al. [PZC+03] as exam-
ples of optimization-based methods and enumeration methods for bi-clustering,
respectively.

Donath and Hoffman [DH73] and Fiedler [Fie73] pioneered spectral clus-
tering. In this chapter, we use an algorithm proposed by Ng, Jordan, and
Weiss [NJW01] as an example. For a thorough tutorial on spectral clustering,
see Luxburg [Lux07].

Clustering graph and network data is an important and fast growing topic.
Schaeffer [Sch07] provides a survey. The SimRank measure of similarity was
developed by Jeh and Widom [JW02]. Xu et al. [XYFS07] proposed the SCAN
algorithm. Arora, Rao, and Vazirani [ARV09] discuss the sparsest cuts and
approximation algorithms.

Clustering with constraints has been extensively studied. Davidson,
Wagstaff, and Basu [DWB06] proposed the measures of informativeness and
coherence. The COP-k-means algorithm is given by Wagstaff et al. [WCRS01].
The CVQE algorithm was proposed by Davidson and Ravi [DR05]. Tung,
Han, Lakshmanan, and Ng [THLN01] presented a framework for constraint-
based clustering based on user-specified constraints. An efficient method for
constraint-based spatial clustering in the existence of physical obstacle con-
straints was proposed by Tung, Hou and Han [THH01].
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