Chapter 12

Outlier Detection

12.1 Bibliographic Notes

Hawkins [Haw80] defined outliers from a statistics angle. For surveys or tu-
torials on the subject of outlier and anomaly detection, see [CBK09, HA04,
ABA06, MS03a, MS03b, PP07, BC83, BG05, BMADO6]. Song, Wu, Jermaine,
et al. [SWJRO07] proposed the notion of conditional anomaly and contextual
outlier detection.

Fujimaki, Yairi, and Machida [FYMO05] presented an example of semi-supervised
outlier detection using a set of labeled “normal objects”. For an example of
semi-supervised outlier detection using labeled outliers, see [DMO02].

Shewhart [She31] assumed that most objects follow a Gaussian distribution
and used 3o as the threshold for identifying outliers, where o is the standard de-
viation. Boxplots are used to detect and visualize outliers in various applications
such as medical data [HFLPO1]. Grubb’s test was described by Grubbs [Gru69],
Stefansky [Ste72], and Anscombe and Guttman [AG60]. Laurikkala, Juhola, and
Kentala [LJK00] and Aggarwal and Yu [AY01] extended the Grubb’s test to de-
tect multivariate outliers. Use of the x2-statistic to detect multivariate outliers
was conducted by Ye and Chen [YCO01].

Agarwal [Aga06] used Gaussian mixture models to capture “normal data”.
Abraham and Box [AB79] assumed that outliers are generated by a normal
distribution with a substantially larger variance. Eskin [Esk00] used the EM
algorithm to learn mixture models for “normal data” and outliers.

Histogram-based outlier detection methods are popular in the application
domain of intrusion detection [Esk00, EAPT02] and fault detection [FP97].

The notion of distance-based outliers was developed by Knorr and Ng [KN97].
The index-based, nested-loop based, and grid-based approaches were explored [KN98,
KNTO00] to speed up distance-based outlier detection. Bay and Schwabacher [BS03]
pointed out that the CPU runtime of the nested-loop method is often scalable
with respect to the database size. Tao, Xiao, and Zhou [TXZ06] presented an
algorithm that finds all distance-based outliers by scanning the database three
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times with fixed main memory. When the memory size is larger, they proposed
a method that uses only one or two scans.

The notion of density-based outliers was firstly developed by Breunig, Kriegel,
Ng, and Sander [BKNS00]. Various methods proposed under the theme of
density-based outlier detection include [JTHO01, JTHW06, PKGF03]. The vari-
ations differ in how they estimate density.

The bootstrap method discussed in Example 12.17 was developed by Bar-
bara, Li, and Couto et al. [BLCT03]. The FindCBOLF algorithm was given
by He, Xu, and Deng [HXD03]. For the use of fixed-width clustering in outlier
detection methods, see [EAPT02, MC03, HXDO03]. Barbara, Wu, and Jajo-
dia [BWJO01] used multi-class classification in network intrusion detection.

Song, Wu, Jermaine, et al. [SWJR07] and Fawcet and Provost [FP97] pre-
sented a method to reduce the problem of contextual outlier detection to con-
ventional outlier detection. Yi, Sidiropoulos, Johnson, Jagadish et al. [YSJT00]
used regression techniques to detect contextual outliers in co-evolving sequences.
The idea in Example 12.22 for collective outlier detection on graph data is based
on Noble and Cook [NCO03].

The HilOut algorithm was proposed by Angiulli and Pizzuti [AP05]. Ag-
garwal and Yu [AY01] developed the sparsity coefficient-based subspace outlier
detection method. Kriegel, Schubert, and Zimek [KSZ08] proposed angle-based
outlier detection.
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