
DataparkSearch Engine 4.50

Reference manual

DataparkSearch Engine 4.50: Reference manual
Copyright © 2003-2008 by OOO DataPark
Copyright © 2001-2003 by Lavtech.com corp.

This project is dedicated to Noémie.

Table of Contents
1. Introduction..1

1.1. DataparkSearch Features...1
1.2. Where to get DataparkSearch. ..2
1.3. Disclaimer ...2
1.4. Authors..2

1.4.1. Contributors ..3

2. Installation..4
2.1. SQL database requirements ..4
2.2. Supported operating systems ..4
2.3. Tools required for installation ...5
2.4. Installing DataparkSearch ...5
2.5. Possible installation problems...8
2.6. Installation registration..8

3. Indexing ..10
3.1. Indexing in general..10

3.1.1. Configuration..10
3.1.2. Running indexer ..10
3.1.3. How to create SQL table structure ...10
3.1.4. How to drop SQL table structure..10
3.1.5. Subsection control ..11
3.1.6. How to clear database...11
3.1.7. Database Statistics ..11
3.1.8. Link validation..12
3.1.9. Parallel indexing ...12

3.2. Supported HTTP response codes ..12
3.3. Content-Encoding support ..14
3.4. Stopwords..14

3.4.1. StopwordFile command ..14
3.5. Clones..14

3.5.1. DetectClones command...15
3.6. Specifying WEB space to be indexed ...15

3.6.1. Server command ..18
3.6.2. Realm command ..18
3.6.3. Subnet command ...18
3.6.4. Using different parameter for server and it’s subsections ..19
3.6.5. Default indexer behavior ...19
3.6.6. Using indexer -f <filename> ...20
3.6.7. ServerDB, RealmDB, SubnetDB and URLDB commands20
3.6.8. URL command...20

3.7. Aliases ...20
3.7.1. Alias indexer.conf command..20
3.7.2. Different aliases for server parts...21
3.7.3. Using aliases in Server commands ..21
3.7.4. Using aliases in Realm commands ..22
3.7.5. AliasProg command...22

iv

3.7.6. ReverseAlias command ...23
3.7.7. Alias command in search.htm search template ..24

3.8. Servers Table ...24
3.8.1. Loading servers table..24
3.8.2. Servers table structure ..25
3.8.3. Flushing Servers Table ...25

3.9. External parsers...25
3.9.1. Supported parser types ...25
3.9.2. Setting up parsers ...25
3.9.3. Avoid indexer hang on parser execution...26
3.9.4. Pipes in parser’s command line ..27
3.9.5. Charsets and parsers ...27
3.9.6. DPS_URL environment variable ..27
3.9.7. Some third-party parsers...27

3.10. Other commands uses in indexer.conf ..30
3.10.1. Include command ..30
3.10.2. DBAddr command...30
3.10.3. VarDir command ...32
3.10.4. NewsExtensions command..32
3.10.5. SyslogFacility command..32
3.10.6. Word length commands ..32
3.10.7. MaxDocSize command ..32
3.10.8. MinDocSize command...33
3.10.9. IndexDocSizeLimit command ..33
3.10.10. URLSelectCacheSize command ...33
3.10.11. URLDumpCacheSize command...33
3.10.12. UseCRC32URLId command ..33
3.10.13. HTTPHeader command..33
3.10.14. Allow command ...34
3.10.15. Disallow command...34
3.10.16. CheckOnly command ..35
3.10.17. HrefOnly command...35
3.10.18. CheckMp3 command ..35
3.10.19. CheckMp3Only command ..36
3.10.20. IndexIf command...36
3.10.21. NoIndexIf command..36
3.10.22. HoldBadHrefs command...37
3.10.23. DeleteOlder command...37
3.10.24. UseRemoteContentType command..37
3.10.25. AddType command..37
3.10.26. Period command ..38
3.10.27. PeriodByHops command...38
3.10.28. ExpireAt command..38
3.10.29. UseDateHeader command ..39
3.10.30. MaxHops command...39
3.10.31. TrackHops command ..39
3.10.32. MaxDepth command ...39
3.10.33. MaxDocsPerServer command ..39

v

3.10.34. MaxNetErrors command ..40
3.10.35. ReadTimeOut command...40
3.10.36. DocTimeOut command ...40
3.10.37. NetErrorDelayTime command...41
3.10.38. Cookies command..41
3.10.39. Robots command ...41
3.10.40. RobotsPeriod command ..41
3.10.41. CrawlDelay command...42
3.10.42. Section command...42
3.10.43. HrefSection command...42
3.10.44. Index command..43
3.10.45. ProxyAuthBasic command..43
3.10.46. Proxy command ...43
3.10.47. AuthBasic command..43
3.10.48. ServerWeight command..44
3.10.49. OptimizeAtUpdate command...44
3.10.50. SkipUnreferred command ..44
3.10.51. Bind command ...44
3.10.52. ProvideReferer command ...44
3.10.53. LongestTextItems command...45

3.11. Extended indexing features ...45
3.11.1. Indexing SQL database tables (htdb: virtual URL scheme)45

3.11.1.1. HTDB indexer.conf commands..45
3.11.1.2. HTDB variables ...46
3.11.1.3. Creating full text index ..47
3.11.1.4. Indexing SQL database driven web server...48

3.11.2. Indexing binaries output (exec: and cgi: virtual URL schemes)49
3.11.2.1. Passing parameters to cgi: virtual scheme ...49
3.11.2.2. Passing parameters to exec: virtual scheme...50
3.11.2.3. Using exec: virtual scheme as an external retrieval system50

3.11.3. Mirroring ..51
3.12. Using syslog..52
3.13. Storing compressed document copies ...53

3.13.1. Configure stored ...54
3.13.2. How stored works ...55
3.13.3. Using stored during search ...55

4. DataparkSearch HTML parser..56
4.1. Tag parser ..56
4.2. Special characters..56
4.3. META tags ..56
4.4. Links..56
4.5. Comments ...57
4.6. Body patterns ..57

vi

5. Storing data ..58
5.1. SQL storage types ...58

5.1.1. General storage information ...58
5.1.2. Various modes of words storage...58
5.1.3. Storage mode - single ...58
5.1.4. Storage mode - multi ..58
5.1.5. Storage mode - crc..58
5.1.6. Storage mode - crc-multi ..59
5.1.7. SQL structure notes ..59
5.1.8. Additional features of non-CRC storage modes...59

5.2. Cache mode storage ..59
5.2.1. Introduction ..59
5.2.2. Cache mode word indexes structure ...59
5.2.3. Cache mode tools ...60
5.2.4. Starting cache mode ...60
5.2.5. Optional usage of several splitters..61
5.2.6. Using run-splitter script ..61
5.2.7. Doing search...62
5.2.8. Using search limits ...62

5.3. DataparkSearch performance issues ...63
5.3.1. searchd usage recommendation...63
5.3.2. Memory based filesystem (mfs) usage recommendation ...63
5.3.3. URLInfoSQL command..63
5.3.4. MarkForIndex command..63
5.3.5. CheckInsertSQL command ..64
5.3.6. MySQL performance..64
5.3.7. Post-indexing optimization...64
5.3.8. Asynchronous resolver library..65

5.4. SearchD support ..65
5.4.1. Why using searchd ...65
5.4.2. Starting searchd ..65

5.5. Oracle notes...66
5.5.1. ..67

5.5.1.1. Why Oracle? ..67
5.5.1.2. DataparkSearch+Oracle8 Installation Requirements.......................................67
5.5.1.3. Currently supported/tested platforms...67

5.5.2. Compilation, Installation and Configuration ..67
5.5.2.1. Compilation ...68
5.5.2.2. Installation and Configuration..68

6. Subsections ...71
6.1. Tags ...71

6.1.1. Tag command ...71
6.1.2. TagIf command ..71
6.1.3. Tags in SQL version ...71

6.2. Categories..72
6.2.1. Category command..73
6.2.2. CategoryIf command...73

vii

7. Languages support...74
7.1. Character sets ..74

7.1.1. Supported character sets ...74
7.1.2. Character sets aliases..75
7.1.3. Recoding...78
7.1.4. Recoding at search time..78
7.1.5. Document charset detection ...78
7.1.6. Automatic charset guesser ..78

7.1.6.1. LangMapFile command ...78
7.1.6.2. Build your own language maps..79

7.1.7. Default charset..79
7.1.8. Default Language ...80
7.1.9. LocalCharset command ..80
7.1.10. ForceIISCharset1251 command...80
7.1.11. RemoteCharset command...80
7.1.12. URLCharset command ...81
7.1.13. CharsToEscape command...81

7.2. Making multi-language search pages..81
7.2.1. How does it work?..82
7.2.2. Possible troubles...83

7.3. Segmenters for Chinese, Japanese, Korean and Thai languages...83
7.3.1. Japanese language phrase segmenter..84
7.3.2. Chinese language phrase segmenter ...84
7.3.3. Thai language phrase segmenter...84
7.3.4. Korean language phrase segmenter ..85

7.4. Multilingual servers support ...85

8. Searching documents...86
8.1. Using search front-ends ..86

8.1.1. Performing search...86
8.1.2. Search parameters...86
8.1.3. Changing different document parts weights at search time..89
8.1.4. Using front-end with an shtml page ...90
8.1.5. Using several templates ..90
8.1.6. Advanced boolean search ...91
8.1.7. The Verity Query Language, VQL ...91
8.1.8. How search handles expired documents...92

8.2. mod_dpsearch module for Apache httpd..92
8.2.1. Why using mod_dpsearch..92
8.2.2. Configuring mod_dpsearch ..92

8.3. How to write search result templates ..93
8.3.1. Template sections ...94

8.3.1.1. TOP section..94
8.3.1.2. BOTTOM section ...98
8.3.1.3. RESTOP section...98
8.3.1.4. RES section ..99
8.3.1.5. CLONE section ..100
8.3.1.6. RESBOT section...100

viii

8.3.1.7. navleft, navleft_nop section ...101
8.3.1.8. navbar0 section..101
8.3.1.9. navright, navright_nop section ..101
8.3.1.10. navbar1 section..102
8.3.1.11. notfound section...102
8.3.1.12. noquery section ..102
8.3.1.13. error section...102

8.3.2. Variables section...103
8.3.3. Includes in templates ..104
8.3.4. Conditional template operators...105
8.3.5. Security issues ..105

8.4. Designing search.html...105
8.4.1. How the results page is created ..105
8.4.2. Your HTML..106
8.4.3. Forms considerations..108
8.4.4. Relative links in search.htm..109
8.4.5. Adding Search form to other pages ..110

8.5. Relevance ..110
8.5.1. Ordering documents ...110
8.5.2. Relevance calculation ...110

8.5.2.1. A full method of relevance calculation. ...112
8.5.2.2. A fast method of relevance calculation. ...112

8.5.3. Popularity rank ...112
8.5.3.1. "Goo" popularity rank calculation method ..112
8.5.3.2. "Neo" popularity rank calculation method ..113

8.5.4. Boolean search..113
8.5.5. Crosswords ...113
8.5.6. The Summary Extraction Algorithm (SEA)...114

8.6. Search queries tracking ...114
8.7. Search results cache ..115
8.8. Fuzzy search..115

8.8.1. Ispell ...116
8.8.1.1. Two types of ispell files ...116
8.8.1.2. Using Ispell ..116
8.8.1.3. Customizing dictionary..117
8.8.1.4. Where to get Ispell files ...117

8.8.2. Aspell..118
8.8.3. Synonyms ...118
8.8.4. Accent insensitive search..119
8.8.5. Acronyms and abbreviations ..119

9. Miscellaneous ...120
9.1. Reporting bugs ..120

9.1.1. Core dump reports ..120
9.2. Using libdpsearch library...120

9.2.1. dps-config script...121
9.2.2. DataparkSearch API ...121

9.3. Database schema ...121

ix

A. Donations ..124

Index..126

x

List of Tables
3-1. Verbose levels ...52
5-1. Cache limit types ..62
7-1. Language groups ..74
7-2. Charsets aliases...75
8-1. Available search parameters ...86
8-2. VQL operators supported by DataparkSearch..92
8-3. Configure-time parameters to tune relevance calculation (switches for configure)111
9-1. server table schema ...122
9-2. Several server’s parameters values in srvinfo table ..122

xi

Chapter 1. Introduction
DataparkSearch is a full-featured web search engine. DataparkSearch consists of two parts. The first part
is an indexing mechanism (the indexer). The indexer walks over hypertext references and stores found
words and new references into the database. The second part is a CGI front-end to provide the search
service using the data collected by the indexer.

DataparkSearch was cloned from the 3.2.16 CVS version of mnoGoSearch at 27 November 2003 as
DataparkSearch 4.16. The mnoGoSearch’s first release took place in November 1998. The search engine
had the name of UDMSearch until October 2000 when the project was acquired by Lavtech.Com Corp.
and changed its name to mnoGoSearch.

The latest change log of DataparkSearch can be found on our website
(http://www.dataparksearch.org/ChangeLog).

1.1. DataparkSearch Features
Main DataparkSearch features are as follows:

• MySQL (libz library required), PostgreSQL, iODBC, unixODBC, EasySoft ODBC-ODBC bridge,
InterBase, Oracle (see Section 5.5), MS SQL back-ends support.

• HTTP support.

• HTTP proxy support.

• HTTPS support.

• FTP support.

• NNTP support (both news:// and nntp:// URL schemes).

• HTDB virtual URL scheme support. One may build index and search through the big text fields/blobs
of SQL database.

• Mirroring features.

• text/html, text/xml, text/plain, audio/mpeg (MP3) and image/gif built-in support.

• External parsers support for other document types.

• Ability to index multilingual sites using content negotiation.

• Searching all of the word forms using ispell affixes and dictionaries

• Basic authorization support. One may index password protected intranet HTTP servers.

• Proxy authorization support.

• Reentry capability. One may use several indexing and searching processes at the same time even on
the same database. Multi-threaded indexing support.

• Stop-list support.

• <META NAME="robots" content="..."> and robots.txt support.

• C language CGI web front-end.

1

Chapter 1. Introduction

• Boolean query language support.

• Results sorting by relevancy, popularity rank, last modified date and by importance (a multiplication of
relevancy and popularity rank).

• Fuzzy search: different word forms, spelling corrections, synonyms, acronyms and abbreviations.

• Various character sets support.

• HTML templates to easily customize search results.

• Advanced search options like time limits, category and tags limits etc.

• Phrases segmenting for Chinese, Japanese, Korean and Thai languages.

• Accent insensitive search.

• mod_dpsearch - search module for Apache (http://httpd.apache.org/) web server.

• Internationalized Domain Names support.

• The Summary Extraction Algorithm (SEA).

1.2. Where to get DataparkSearch.
Check for the latest version of DataparkSearch at: http://www.dataparksearch.org/, as well at Google
Code: http://code.google.com/p/dataparksearch/.

A mirror in Moscow, Russia: http://dataparksearch.newsa.ru/.

DataparkSearch is also available in FreeBSD ports collection, see www.freshports.org/www/dpsearch
(http://www.freshports.org/www/dpsearch) and in the T2 Linux SDE
(http://www.t2-project.org/packages/dpsearch.html).

DataparkSearch’s source is available via SVN at Google Code:

svn checkout http://dataparksearch.googlecode.com/svn/trunk/ dataparksearch-read-only

1.3. Disclaimer
This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version. See COPYING file for details.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

2

Chapter 1. Introduction

1.4. Authors
Maxim Zakharov <maxime@maxime.net.ru>, homepage (http://www.maxime.net.ru/)

1.4.1. Contributors
Michael Kynast <kynast@newslookup.com>: First DataparkSearch user. Testing on Linux Red Hat.

Jean-Gerard Pailloncy: Testing on OpenBSD.

Amit Joshi: Testing on CentOS, packaging for Debian, some ideas to improve the scalability for several
PC and using several DBAddr.

mnoGoSearch developers and contributors <devel@mnogosearch.org>: Development and
contributions for mnoGoSearch versions up to 3.2.15.

3

Chapter 2. Installation

2.1. SQL database requirements
Note that if you want to compile DataparkSearch with one of supported SQL database you must have
this database already installed before installing DataparkSearch.

It is possible to use DataparkSearch with several SQL databases.

You also should have enough permission to create new database or to write into already existing one.

MySQL notes: If you want to build DataparkSearch with MySQL, 4.1 or later release required. libz
library must be installed from zlib-devel RPM to successfully compile DataparkSearch with MySQL.

PostgreSQL notes: If you want to build DataparkSearch with PostgreSQL, 7.3.x or later release required.
PostgreSQL 8.1 is recommended for better performance.

iODBC notes: iodbc-2.50.22a is known to work.

unixODBC notes: unixODBC-1.7 is known to work.

InterBase notes:

• Interbase 4.0 is known to work.

• InterBase CS 6.0 is known to work.

• FirebirdCS-0.9-4 is known to work.

FreeTDS notes: 0.52 version is known to work with MS SQL 7.0.

Oracle8 notes: 8.0.5.X is known to work.

Oracle8i notes: 8.1.6 R2 EE is known to work.

2.2. Supported operating systems
We use GNU Autoconf so it is possible to compile and use DataparkSearch on almost every modern
UNIX system with a C compiler without any modifications. We develop the software on FreeBSD 5.x
using PostgreSQL 8.1.

Currently known systems where DataparkSearch has been successfully compiled and tested on are:

• CentOS 3.1, CentOS 3.3

• Debian GNU/Linux (i386)

• FreeBSD 2.2.5, 3.x, 4.x, 5.x, 6.x

• Linux Fedora Core-1, Kernel 2.4.22-1.2174

• Linux Mandrake 10.2

• Linux Red Hat 8.0, 9.0

4

Chapter 2. Installation

• Solaris 9

• Solaris 10 x86, gcc

• Ubuntu Linux 6.10

• Gentoo Linux 2007.0 amd64

We hope DataparkSearch will work on other Unix platforms as well. Please report successful platforms
to maxime@maxime.net.ru (mailto:maxime@maxime.net.ru).

NFS notes: There are some problems reported running DataparkSearch over NFS v4 on Linux 2.6.17.
Although, everything is OK on this system when NFS v3 is used.

2.3. Tools required for installation
You need the following tools to build and install DataparkSearch from source:

• GNU zip (http://www.gnu.org/software/gzip/gzip.html) to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar (http://www.gnu.org/software/tar/tar.html) is
known to work.

• A working ANSI C compiler. GNU gcc (http://gcc.gnu.org/) is known to work.

• A good make program. GNU make (http://www.gnu.org/software/make/make.html) is recommended
and sometimes required.

• A sed - stream editor.

• A perl interpreter, if install.pl will be used for installation.

• To build documentation from XML sources, you need jade or openjade installed.

You need also jadetex installed to build documentation in PDF. Use make book.pdf command
in doc/ subdirectory to make that documentation.

2.4. Installing DataparkSearch

1. Unpack the distribution and change directory into the top-level directory of the unpacked
distribution.

tar -zxf dpsearch-x.x.tar.gz

2. To simplify configuration process we included a configuration script with the package -
install.pl. Run install.pl and select DataparkSearch configuration options in a
question-and-answer manner. After you specify all the configuration options, the script will run
./configure with the options you chose. It will also create install.options file containing your

5

Chapter 2. Installation

configuration preferences that you can use to run the script later bypassing questions. After
configuration is finished, build and install the package as described in section 3.

In case you would like to configure DataparkSearch manually without using the configuration script,
do the following:

If you would like to configure the package with SQL database support:

sh$./configure --with-mysql

or

sh$./configure --with-pgsql

or with another depending on what database you prefer,

or with multiple databases:

sh$./configure --with-mysql --with-pgsql --with-msql
--with-freetds

By default, DataparkSearch is installed in /usr/local/dpsearch in the following subdirectories:

Directory Contents

bin search.cgi, storedoc.cgi, dps-config

lib libdpsearch.a(so),
libdpcharset.a(so)

sbin indexer, cached, run-splitter, searchd,
splitter, stored

etc indexer.conf-dist, search.htm-dist,
langmap.conf-dist, searchd.conf-dist,
stopwords.conf-dist,
stored.conf-dist, storedoc.htm-dist

share various documentation and sql scripts

If you have no permission to write to that directory or just want to install DataparkSearch to another
location, please use configure with --prefix option, e.g.

./configure --prefix=/user/home/data --with-mysql

To install DataparkSearch with HTTPS support use configure with the following option:

./configure --with-openssl

or in case the OpenSSL library is installed in a non-standard location:

./configure --with-openssl=/path/to/library

Note: Please note that OpenSSL library installed on your system is required for HTTPS support.

You can see all available options with ./configure --help

If you want to provide some specific flags to C compiler (for example, ’-O7 -mpentium’ to build
highly optimized binary for Pentium™ processor if you use egcs/pgcc), you can do so using
command

6

Chapter 2. Installation

sh$ CFLAGS="-O7 -mpentium"

before running configure.

To compile DataparkSearch on FreeBSD with Solid in old aout format use

sh$ CFLAGS="-aout"

before running configure.

To compile DataparkSearch on FreeBSD with aout InterBase use

sh$ CFLAGS="-aout -static"

before running configure.

You may also specify --enable-freebsd-pthreads or --enable-linux-pthreads to
compile multi-threaded indexer on FreeBSD and Linux machines.

To enable DMALLOC memory debugger (http://sourceforge.net/projects/dmalloc/) support use
--enable-dmalloc.

The euc-kr, big5, gb2312, tscii, gujarati and shift-jis character sets are not supported by default. To
built DataparkSearch with these charsets support use configure with --with-extra-charsets

command line argument.

To build DataparkSearch with all additional charsets support use:

./configure --with-extra-charsets=all

To build DataparkSearch with only one specified charset support use:

./configure --with-extra-charsets=tscii

To build DataparkSearch with support for Chinese or Japanese charsets, use:

./configure --with-extra-charsets=japanese or ./configure
--with-extra-charsets=chinese

To build DataparkSearch with support for several specified charsets, use a comma separated list of
charsets you want:

./configure --with-extra-charset=japanese,tscii

If you run into problems with configure, please see Section 2.5.

3. Build and install the package.

sh$ make

sh$ make install

If you run into problems with configure, please see Section 2.5.

4. Create database search (for SQL database only).

You can use existing database, skip this step in this case.

MySQL:

sh$ mysqladmin create search

7

Chapter 2. Installation

PostgreSQL:

sh$ createdb search

See database specific information if you use another database.

5. Create sql-tables

Edit indexer.conf config file and specify DBAddr command according SQL-database used and
dbmode selected. Then run:

sh$ indexer -Ecreate

indexer will create all tables automatically.

6. Installing search scripts

Copy search.cgi to your web-server cgi-bin directory or make Apache alias to DataparkSearch
bin directory.

2.5. Possible installation problems

• Every time you run configure, you must run make again to recompile.

To prevent old configuration information or object files from being used, run these commands before
re-running configure:

sh$ rm config.cache

sh$ make clean

• If your compile fails with make errors, this can be because you are using the wrong version of make.
The behavior of Solaris, FreeBSD, OpenBSD make is slightly different from GNU make
(http://www.gnu.org/software/make/make.html). If you have make-related problems, you should use
GNU make (http://www.gnu.org/software/make/make.html) instead, often installed as gmake.

GNU make version 3.77 is known to work.

• If starting Apache with mod_dpsearch module, you’re getting the following error: Undefined
symbol "pthread_join" (or something similar related to pthreads), try to add the following
commmand into httpd.conf file before loading mod_dpsearch.so:

LoadFile /usr/lib/libpthread.so

If above information doesn’t help you, please feel free to contact DataparkSearch mailing list
<dataparksearch@yahoogroups.com>.

8

Chapter 2. Installation

2.6. Installation registration
If you use DataparkSearch to build search on public accessible web site, you may register this site on our
users page (http://www.dataparksearch.org/usersmap).

9

Chapter 3. Indexing

3.1. Indexing in general

3.1.1. Configuration
First, you should configure DataparkSearch. Indexer configuration is covered mostly by
indexer.conf-dist file. You can find it in etc directory of DataparkSearch distribution. You may
take a look at other *.conf samples in doc/samples directory.

To set up indexer.conf file, change directory to DataparkSearch installation /etc directory, copy
indexer.conf-dist to indexer.conf and edit it.

To configure search front-ends (search.cgi and/or search.php3, or other), you should copy
search.htm-dist file in /etc directory of DataparkSearch installation to search.htm and edit it. See
Section 8.3 for detailed description.

3.1.2. Running indexer
Just run indexer once a week (a day, an hour ...) to find the latest modifications in your web sites. You
may also insert indexer into your crontab job.

By default, indexer being called without any command line arguments reindex only expired documents.
You can change expiration period with Period indexer.conf command. If you want to reindex all
documents irrelevant if those are expired or not, use -a option. indexer will mark all documents as
expired at startup.

Retrieving documents, indexer sends If-Modified-Since HTTP header for documents that are
already stored in database. When indexer gets next document it calculates document’s checksum. If
checksum is the same with old checksum stored in database, it will not parse document again. indexer -m
command line option prevents indexer from sending If-Modified-Since headers and make it parse
document even if checksum is the same. It is useful for example when you have changed your
Allow/Disallow rules in indexer.conf and it is required to add new pages that was disallowed earlier.

If DataparkSearch retrieves URL with redirect HTTP 301,302,303 status it will index URL given in
Location: field of HTTP-header instead.

3.1.3. How to create SQL table structure
To create SQL tables required for DataparkSearch functionality, use indexer -Ecreate. Executed
with this argument, indexer looks up a file containing SQL statements necessary for creating all SQL
tables for the database type and storage mode given in DBAddr indexer.conf command. Files are
looking up at /share directory of DataparkSearch installation, which is usually
/usr/local/dpsearch/share/.

10

Chapter 3. Indexing

3.1.4. How to drop SQL table structure
To drop all SQL tables created by DataparkSearch, use indexer -Edrop. A file with SQL statements
required to drop tables are looking up at /share directory of DataparkSearch installation.

3.1.5. Subsection control
indexer has -t, -u, -s options to limit action to only a part of the database. -t corresponds ’Tag’ limitation,
-u is a URL substring limitation (SQL LIKE wildcards). -s limits URLs with given HTTP status. All
limit options in the same group are ORed and in the different groups are ANDed.

3.1.6. How to clear database
To clear the whole database, use ’indexer -C’. You may also delete only the part of database by using
-t,-u,-s subsection control options.

3.1.7. Database Statistics
If you run indexer -S, it will show database statistics, including count of total and expired documents
of each status. -t, -u, -s filters are usable in this mode too.

The meaning of status is:

• 0 - new (not indexed yet) URL

If status is not 0, then it is HTTP response code, some of the HTTP codes are:

• 200 - "OK" (url is successfully indexed)

• 206 - "Partial OK" (a part of url is successfully indexed)

• 301 - "Moved Permanently" (redirect to another URL)

• 302 - "Moved Temporarily" (redirect to another URL)

• 303 - "See Other" (redirect to another URL)

• 304 - "Not modified" (url has not been modified since last indexing)

• 401 - "Authorization required" (use login/password for given URL)

• 403 - "Forbidden" (you have no access to this URL(s))

• 404 - "Not found" (there were references to URLs that do not exist)

• 500 - "Internal Server Error" (error in cgi, etc)

• 503 - "Service Unavailable" (host is down, connection timed out)

• 504 - "Gateway Timeout" (read timeout when retrieving document)

HTTP 401 means that this URL is password protected. You can use AuthBasic command in
indexer.conf to set login:password for this URL(s).

11

Chapter 3. Indexing

HTTP 404 means that you have incorrect reference in one of your document (reference to resource that
does not exist).

Take a look on HTTP specific documentation (http://www.w3.org/Protocols/) for further explanation of
different HTTP status codes.

Status codes 2xxx are not in HTTP specification and they correspond to the documents marked as
clones, where xxx - one of status codes described above.

3.1.8. Link validation
Being started with -I command line argument, indexer displays URL and it’s referrer pairs. It is very
useful to find bad links on your site. Don’t use HoldBadHrefs 0 command in indexer.conf for this
mode. You may use subsection control options -t,-u,-s in this mode. For example, indexer -I -s 404

will display all ’Not found’ URLs with referrers where links to those bad documents are found. Setting
relevant indexer.conf commands and command line options you may use DataparkSearch special for
site validation purposes.

3.1.9. Parallel indexing
MySQL and PostgreSQL users may run several indexers simultaneously with the same indexer.conf file.
We have successfully tested 30 simultaneous indexers with MySQL database. Indexer uses MySQL and
PostgreSQL locking mechanism to avoid double indexing of the same URL by different indexer. Parallel
indexing in the same database is not implemented for other back-ends yet. You may use multi-threaded
version of indexer with any SQL back-end though which does support several simultaneous connections.
Multi-threaded indexer version uses own locking mechanism.

It is not recommended to use the same database with different indexer.conf files! First process could
add something but second could delete it, and it may never stop.

On the other hand, you may run several indexer processes with different databases with ANY supported
SQL back-end.

3.2. Supported HTTP response codes
It is described here the way DataparkSearch processes different HTTP codes. Pseudo-language is used
here for explanation.

• 200 OK

1. If -m command line argument ("force reindex") specified, GOTO 4.

2. Comparing new checksum with old one stored in database

3. If checksum are the same, next_index_time=Now()+Period, GOTO 7

4. Parsing the document, creating word list and adding in "url" table all of the found HREFs

5. Comparing created word list with old one stored in "dict" table

12

Chapter 3. Indexing

6. Doing UPDATEs, DELETEs or INSERTs in table "dict" if something is different in word lists.

7. Done

• 304 Not Modified

1. next_index_time=now()+Period

2. Done

•

301 Moved Permanently
302 Moved Temporarily
303 See Other

1. Deleting all words in table "dict" for current URL

2. next_index_time=Now()+Period

3. Adding an URL given in Location: header

4. Done

•

300 Multiple Choices
305 Use Proxy (proxy redirect)
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
505 Protocol Version Not Supported

1. Deleting all words in table "dict" for current URL

2. next_index_time=Now()+Period

3. Done

13

Chapter 3. Indexing

•

503 Service Unavailable
504 Gateway Timeout

1. next_index_time=Now()+Period

2. Done

3.3. Content-Encoding support
DataparkSearch engine supports HTTP compression (Content encoding). Compression can have a major
impact on the performance of HTTP transactions. The only way to obtain higher performance is to
reduce the number of bytes transmitted.

Using content encoding to receive a server’s response you can reduce the traffic by twice or more.

The HTTP 1.1 (RFC 2616) specification (ftp://ftp.isi.edu/in-notes/rfc2616.txt) contains four content
encoding methods: gzip, deflate, compress, and identity.

When Content-encoding is enabled, DataparkSearch’s indexer sends to a server Accept-Encoding:
gzip,deflate,compress string in HTTP headers.

If the server supports any of gzip, deflate or compress encoding, it sends gziped, deflated or compressed
response.

To compile DataparkSearch with HTTP Content encoding support, the zlib library is required.

To enable HTTP Content encoding support, configure DataparkSearch with the following option:

./configure --with-zlib

Use this option along with all the other necessary ones.

3.4. Stopwords
Stopwords -- are most frequently used words, i.e. words which appear in almost every document
searched. Stopwords are filtered out prior to index construction, what is allow to reduce the total size of
the index without any significant loss in quality of search.

3.4.1. StopwordFile command
Load stop words from the given text file. You may specify either absolute file name or a name relative to
DataparkSearch /etc directory. You may use several StopwordFile commands.

StopwordFile stopwords/en.sl

14

Chapter 3. Indexing

3.5. Clones
Clones -- are documents having equal values of Hash32 on all document sections. Indentical copies of
the same document always have equal values of Hash32. This allow to eliminate duplicate documents in
a collection. However, if only title section is defined in sections.conf, all documents with different
bodies but with identical titles will be considered as clones.

3.5.1. DetectClones command
DetectClones yes/no

Allow/disallow clone detection and eliminating. If allowed, indexer will detect the same documents
under different location, such as mirrors, and will index only one document from the group of such equal
documents. "DetectClones yes" also allows to reduce space usage. Default value is "yes".

DetectClones no

3.6. Specifying WEB space to be indexed
When indexer tries to insert a new URL into database or is trying to index an existing one, it first of all
checks whether this URL has corresponding Server, Realm or Subnet command given in
indexer.conf. URLs without corresponding Server, Realm or Subnet command are not indexed. By
default those URLs which are already in database and have no Server/Realm/Subnet commands will be
deleted from database. It may happen for example after removing some Server/Realm/Subnet commands
from indexer.conf.

These commands have following format:

[Server | Realm | Subnet] [method] [subsection] [CaseType] [MatchType] [CmpType] pattern [alias]

Mandatory parameter pattern specify an URL, or it part, or pattern to compare.

Optional parameter method specify an document action for this command. May take values: Allow,
Disallow, HrefOnly, CheckOnly, Skip, CheckMP3, CheckMP3Only. By default, the value Allow is
used.

1. Allow

Value Allow specify that all corresponding documents will be indexed and scanned for new links.
Depends on Content-Type appropriate external parser is executed if need.

2. Disallow

15

Chapter 3. Indexing

Value Disallow specify that all corresponding documents will be ignored and deleted from
database, if its was placed into before.

3. HrefOnly

Value HrefOnly specify that all corresponding documents will be only scanned for new links (not
indexed). This is useful, for example, for mail archives indexing, when index pages is only scanned
to detect new messages for indexing.

Server HrefOnly Page http://www.mail-archive.com/general%40mnogosearch.org/
Server Allow Path http://www.mail-archive.com/general%40mnogosearch.org/

4. CheckOnly

Value CheckOnly specify that all corresponding documents will be requested by HTTP HEAD
request, not HTTP GET, i.e. inly brief info about documents (size, last modified, content type) will
be fetched. This allow, for example, check links on your site:

Server HrefOnly http://www.mnogosearch.org/
Realm CheckOnly *

These commands instruct indexer to scan all documents on www.mnogosearch.org site and
collect all links. Brief info about every document found will be requested by HEAD method. After
indexing done, indexer -S command will show status for all documents from this site.

5. Skip

Value Skip specify that all corresponding documents will be skipped while indexing. This is useful
when need temporally disable reindexing several sites, but able search on. These documents will
marked as expired.

6. CheckMP3

Value CheckMP3 specify that corresponding documents will be checked for MP3 tags along if its
Content-Type is equal to audio/mpeg. This is useful, for example, if remote server supply
application/octet-stream as Content-Type for MP3 files. If this tag is present, these files
will indexed as MP3 file, otherwise its will be processed according to Content-Type.

7. CheckMP3Only

This value is equal to CheckMP3, but if MP3 tag is not present, processing on Content-Type will
not be taken.

16

Chapter 3. Indexing

Use optional subsection parameter to specify server’s checking behavior. Subsection value must be
one of the following: nofollow, page, path, site, world and has "path" value by default.

1. path subsection

When indexer seeks for a "Server" command corresponding to an URL it checks that the discovered
URL starts with URL given in Server command argument but without trailing file name. For
example, if Server path http://localhost/path/to/index.html is given, all URLs
which have http://localhost/path/to/ at the beginning correspond to this Server command.

The following commands have the same effect except that they insert different URLs into database:

Server path http://localhost/path/to/index.html
Server path http://localhost/path/to/index
Server path http://localhost/path/to/index.cgi?q=bla
Server path http://localhost/path/to/index?q=bla

2. site subsection

indexer checks that the discovered URL have the same hostname with URL given in Server
command. For example, Server site http://localhost/path/to/a.html will allow to
index whole http://localhost/ server.

3. world subsection

If world subsection is specified in Server command, it has the same effect that URL is considered to
match this Server command. See explanation below.

4. page subsection

This subsection describes the only one URL given in Server argument.

5. nofollow subsection

Skip links following for URL that match the pattern.

6. subsection in news:// schema

Subsection is always considered as "site" for news:// URL schema. This is because news:// schema
has no nested paths like ftp:// or http:// Use Server news://news.server.com/ to index whole
news server or for example Server news://news.server.com/udm to index all messages from
"udm" hierarchy.

Optional parameter CaseType is specify the case sensivity for string comparison, it can take one of
follow value: case - case insensitive comparison, or nocase - case sensitive comparison.

17

Chapter 3. Indexing

Optional parameter CmpType is specify the type of comparison and can take two value: Regex and
String. String wildcards is default match type. You can use ? and * signs in URLMask parameters,
they means "one character" and "any number of characters" respectively. For example, if you want to
index all HTTP sites in .ru domain, use this command:

Realm http://*.ru/*

Regex comparison type takes a regular expression as it’s argument. Activate regex comparison type using
Regex keyword. For example, you can describe everything in .ru domain using regex comparison type:

Realm Regex ^http://.*\.ru/

Optional parameter MatchType means match type. There are Match and NoMatch possible values with
Match as default. Realm NoMatch has reverse effect. It means that URL that does not match given
pattern will correspond to this Realm command. For example, use this command to index everything
without .com domain:

Realm NoMatch http://*.com/*

Optional alias argument allows providing very complicated URL rewrite more powerful than other
aliasing mechanism. Take a look Section 3.7 for alias argument usage explanation. Alias works only
with Regex comparison type and has no effect with String type.

3.6.1. Server command
This is the main command of the indexer.conf file. It is used to add servers or their parts to be
indexed. This command also says indexer to insert given URL into database at startup.

E.g. command Server http://localhost/ allows to index whole http://localhost/ server. It
also makes indexer insert given URL into database at startup. You can also specify some path to index
server subsection: Server http://localhost/subsection/. It also says indexer to insert given
URL at startup.

Note: You can suppress indexer behavior to add URL given in Server command by using -q indexer
command line argument. It is useful when you have hundreds or thousands Server commands and
their URLs are already in database. This allows having more quick indexer startup.

3.6.2. Realm command
Realm command is a more powerful means of describing web area to be indexed. It works almost like
Server command but takes a regular expression or string wildcards as it’s pattern parameter and do not
insert any URL into database for indexing.

18

Chapter 3. Indexing

3.6.3. Subnet command
Subnet command is another way to describe web area to be indexed. It works almost like Server
command but takes a string wildcards or network specified in CIDR presentation format as it’s pattern
argument which is compared against IP address instead of URL. In case of string wilcards formant,
argument may have * and ? signs, they means "one character" and "any number of characters"
respectively. For example, if you want to index all HTTP sites in your local subnet, use this command:

Subnet 192.168.*.*

In case of network specified in CIDR presentation format, you may specify subnet in forms: a.b.c.d/m,
a.b.c, a.b, a

Subnet 1291.168.10.0/24

You may use "NoMatch" optional argument. For example, if you want to index everything without
195.x.x.x subnet, use:

Subnet NoMatch 195.*.*.*

3.6.4. Using different parameter for server and it’s subsections
Indexer seeks for "Server" and "Realm" commands in order of their appearance. Thus if you want to give
different parameters to e.g. whole server and its subsection you should add subsection line before whole
server’s. Imagine that you have server subdirectory which contains news articles. Surely those articles
are to be reindexed more often than the rest of the server. The following combination may be useful in
such cases:

Add subsection
Period 200000
Server http://servername/news/

Add server
Period 600000
Server http://servername/

These commands give different reindexing period for /news/ subdirectory comparing with the period of
server as a whole. indexer will choose the first "Server" record for the
http://servername/news/page1.html as far as it matches and was given first.

3.6.5. Default indexer behavior
The default behavior of indexer is to follow through links having correspondent Server/Realm command
in the indexer.conf file. It also jumps between servers if both of them are present in indexer.conf

19

Chapter 3. Indexing

either directly in Server command or indirectly in Realm command. For example, there are two Server
commands:

Server http://www/
Server http://web/

When indexing http://www/page1.html indexer WILL follow the link http://web/page2.html

if the last one has been found. Note that these pages are on different servers, but BOTH of them have
correspondent Server record.

If one of the Server command is deleted, indexer will remove all expired URLs from this server during
next reindexing.

3.6.6. Using indexer -f <filename>

The third scheme is very useful for indexer -i -f url.txt running. You may maintain required
servers in the url.txt. When new URL is added into url.txt indexer will index the server of this
URL during next startup.

3.6.7. ServerDB, RealmDB, SubnetDB and URLDB commands
URLDB pgsql://foo:bar@localhost/portal/links?field=url

These commands are equal to Server, Realm, Subnet and URL commands respectively, but takes
arguments from field of SQL-table specified. In example above, URLs are takes from database portal,
SQL-table links and filed url.

3.6.8. URL command
URL http://localhost/path/to/page.html

This command inserts given URL into database. This is usefull to add several entry points to one server.
Has no effect if an URL is already in the database.

3.7. Aliases
DataparkSearch has an alias support making it possible to index sites taking information from another
location. For example, if you index local web server, it is possible to take pages directly from disk
without involving your web server in indexing process. Another example is building of search engine for
primary site and using its mirror while indexing. There are several ways of using aliases.

20

Chapter 3. Indexing

3.7.1. Alias indexer.conf command
Format of "Alias" indexer.conf command:

Alias <masterURL> <mirrorURL>

E.g. you wish to index http://search.mnogo.ru/ using nearest German mirror
http://www.gstammw.de/mirrors/mnoGoSearch/. Add these lines in your indexer.conf:

Server http://search.mnogo.ru/
Alias http://search.mnogo.ru/ http://www.gstammw.de/mirrors/mnoGoSearch/

search.cgi will display URLs from master site http://search.mnogo.ru/ but indexer will take
corresponding page from mirror site http://www.gstammw.de/mirrors/mnoGoSearch/.

Another example. If you want to index everything in udm.net domain and one of servers, for example
http://home.udm.net/ is stored on local machine in /home/httpd/htdocs/ directory. These
commands will be useful:

Realm http://*.udm.net/
Alias http://home.udm.net/ file:/home/httpd/htdocs/

Indexer will take home.udm.net from local disk and index other sites using HTTP.

3.7.2. Different aliases for server parts
Aliases are searched in the order of their appearance in indexer.conf. So, you can create different
aliases for server and its parts:

First, create alias for example for /stat/ directory which
is not under common location:
Alias http://home.udm.net/stat/ file:/usr/local/stat/htdocs/

Then create alias for the rest of the server:
Alias http://home.udm.net/ file:/usr/local/apache/htdocs/

Note: if you change the order of these commands, alias for /stat/ directory will never be found.

3.7.3. Using aliases in Server commands

21

Chapter 3. Indexing

You may specify location used by indexer as an optional argument for Server command:

Server http://home.udm.net/ file:/home/httpd/htdocs/

3.7.4. Using aliases in Realm commands
Aliases in Realm command is a very powerful feature based on regular expressions. The idea of aliases
in Realm command implementation is similar to how PHP preg_replace() function works. Aliases in
Realm command work only if "regex" match type is used and does not work with "string" match type.

Use this syntax for Realm aliases:

Realm regex <URL_pattern> <alias_pattern>

Indexer searches URL for matches to URL_pattern and builds an URL alias using alias_pattern.
alias_pattern may contain references of the form $n. Where n is a number in the range of 0-9. Every such
reference will be replaced by text captured by the n’th parenthesized pattern. $0 refers to text matched by
the whole pattern. Opening parentheses are counted from left to right (starting from 1) to obtain the
number of the capturing subpattern.

Example: your company hosts several hundreds users with their domains in the form of
www.username.yourname.com. Every user’s site is stored on disk in "htdocs" under user’s home
directory: /home/username/htdocs/.

You may write this command into indexer.conf (note that dot ’.’ character has a special meaning in
regular expressions and must be escaped with ’\’ sign when dot is used in usual meaning):

Realm regex (http://www\.)(.*)(\.yourname\.com/)(.*) file:/home/$2/htdocs/$4

Imagine indexer process http://www.john.yourname.com/news/index.html page. It will build
patterns from $0 to $4:

$0 = ’http://www.john.yourname.com/news/index.htm’ (whole patter match)
$1 = ’http://www.’ subpattern matches ’(http://www\.)’
$2 = ’john’ subpattern matches ’(.*)’
$3 = ’.yourname.com/’ subpattern matches ’(\.yourname\.com/)’
$4 = ’/news/index.html’ subpattern matches ’(.*)’

Then indexer will compose alias using $2 and $4 patterns:

file:/home/john/htdocs/news/index.html

and will use the result as document location to fetch it.

22

Chapter 3. Indexing

3.7.5. AliasProg command
You may also specify "AliasProg" command for aliasing purposes. AliasProg is useful for major web
hosting companies which want to index their web space taking documents directly from a disk without
having to involve web server in indexing process. Documents layout may be very complex to describe it
using alias in Realm command. AliasProg is an external program that can be called, that takes a URL
and returns one string with the appropriate alias to stdout. Use $1 to pass URL to command line.

For example this AliasProg command uses ’replace’ command from MySQL distribution and replaces
URL substring http://www.apache.org/ to file:/usr/local/apache/htdocs/:

AliasProg "echo $1 | /usr/local/mysql/bin/mysql/replace http://www.apache.org/ file:/usr/local/apache/htdocs/"

You may also write your own very complex program to process URLs.

3.7.6. ReverseAlias command
The ReverseAlias indexer.conf command allows URL mapping before URL is inserted into database.
Unlike Alias command, that triggers mapping right before a document is downloaded, ReverseAlias
command triggers mapping after the link is found.

ReverseAlias http://name2/ http://name2.yourname.com/
Server http://name2.yourname.com/

All links with short server name will be mapped to links with full server name before they are inserted
into database.

One of the possible use is cutting various unnecessary strings like PHPSESSION=XXXX

E.g. cutting from URL like http://www/a.php?PHPSESSION=XXX, when PHPSESSION is the only
parameter. The question sign is deleted as well:

ReverseAlias regex (http://[^?]*)[?]PHPSESSION=[^&]*$ $1$2

Cutting from URL like w/a.php?PHPSESSION=xxx&.., i.e. when PHPSESSION is the first parameter,
but there are other parameters following it. The ’&’ sign after PHPSESSION is deleted as well. Question
mark is not deleted:

ReverseAlias regex (http://[^?]*[?])PHPSESSION=[^&]*&(.*) $1$2

Cutting from URL like http://www/a.php?a=b&PHPSESSION=xxx or
http://www/a.php?a=b&PHPSESSION=xxx&c=d, where PHPSESSION is not the first parameter.
The ’&’ sign before PHPSESSION is deleted:

ReverseAlias regex (http://.*)&PHPSESSION=[^&]*(.*) $1$2

23

Chapter 3. Indexing

3.7.7. Alias command in search.htm search template
It is also possible to define aliases in search template (search.htm). The Alias command in
search.htm is identical to the one in indexer.conf, however it is active during searching, not
indexing.

The syntax of the search.htm Alias command is the same as in indexer.conf:

Alias <find-prefix> <replace-prefix>

For example, there is the following command in search.htm:

Alias http://localhost/ http://www.mnogo.ru/

Search returned a page with the following URL:

http://localhost/news/article10.html

As a result, the $(DU) variable will be replace NOT with this URL:

http://localhost/news/article10.html

but with the following URL (that results in processing with Alias):

http://www.mnogo.ru/news/article10.html

3.8. Servers Table
DataparkSearch has ServerTable indexer.conf command. It allow load servers and filters
configuration from SQL table.

3.8.1. Loading servers table
When ServerTable mysql://user:pass@host/dbname/tablename[?srvinfo=infotablename] is
specified, indexer will load servers information from given tablename SQL table, and will load servers
parameters from given infotablename SQL table. If srvinfo parameter is not specified, parameters
will be loaded from srvinfo table. Check the structure for server and srvinfo tables in

24

Chapter 3. Indexing

create/mysql/create.txt file. If there is no structure example for your database, take it as an
example.

You may use several ServerTable command to load servers information from different tables.

3.8.2. Servers table structure
Servers table consists of all necessary fields which describe servers parameters. Field names have
correspondent indexer.conf commands. For example, "period" field corresponds "Period"
indexer.conf command. Default field values are the same with default indexer.conf parameters.

"gindex" field corresponds "Index" command. Name is slightly changed to avoid SQL reserved word
usage.

Description for several fields see in Section 9.3.

Note: Only those servers are read from the table where "active" field has 1 value and "parent" field
has 0 value. This is useful to allow users to submit new URLs into servers table and give
administrator a possibility to approve added URLs.

3.8.3. Flushing Servers Table
Flush server.enabled to inactive for all server table records. Use this command to deactivate all command
in servertable before load new from indexer.conf or from other servertable.

3.9. External parsers
DataparkSearch indexer can use external parsers to index various file types (mime types).

Parser is an executable program which converts one of the mime types to text/plain or text/html.
For example, if you have postscript files, you can use ps2ascii parser (filter), which reads postscript file
from stdin and produces ascii to stdout.

3.9.1. Supported parser types
Indexer supports four types of parsers that can:

• read data from stdin and send result to stdout

• read data from file and send result to stdout

• read data from file and send result to file

• read data from stdin and send result to file

25

Chapter 3. Indexing

3.9.2. Setting up parsers

1. Configure mime types

Configure your web server to send appropriate "Content-Type" header. For apache, have a look at
mime.types file, most mime types are already defined there.

If you want to index local files or via ftp use "AddType" command in indexer.conf to associate
file name extensions with their mime types. For example:

AddType text/html *.html

2. Add parsers

Add lines with parsers definitions. Lines have the following format with three arguments:

Mime <from_mime> <to_mime> <command line>

For example, the following line defines parser for man pages:

Use deroff for parsing man pages (*.man)
Mime application/x-troff-man text/plain deroff

This parser will take data from stdin and output result to stdout.

Many parsers can not operate on stdin and require a file to read from. In this case indexer creates a
temporary file in /tmp and will remove it when parser exits. Use $1 macro in parser command line to
substitute file name. For example, Mime command for "catdoc" MS Word to ASCII converters may
look like this:

Mime application/msword text/plain "/usr/bin/catdoc -a $1"

If your parser writes result into output file, use $2 macro. indexer will replace $2 by temporary file
name, start parser, read result from this temporary file then remove it. For example:

Mime application/msword text/plain "/usr/bin/catdoc -a $1 >$2"

The parser above will read data from first temporary file and write result to second one. Both
temporary files will be removed when parser exists. Note that result of usage of this parser will be
absolutely the same with the previous one, but they use different execution mode: file->stdout and
file->file correspondingly.

3.9.3. Avoid indexer hang on parser execution

26

Chapter 3. Indexing

To avoid a indexer hang on parser execution, you may specify the amount of time in seconds for parser
execution in your indexer.conf by ParserTimeOut command. For example:

ParserTimeOut 600

Default value is 300 seconds, i.e. 5 minutes.

3.9.4. Pipes in parser’s command line
You can use pipes in parser’s command line. For example, these lines will be useful to index gzipped
man pages from local disk:

AddType application/x-gzipped-man *.1.gz *.2.gz *.3.gz *.4.gz
Mime application/x-gzipped-man text/plain "zcat | deroff"

3.9.5. Charsets and parsers
Some parsers can produce output in other charset than given in LocalCharset command. Specify charset
to make indexer convert parser’s output to proper one. For example, if your catdoc is configured to
produce output in windows-1251 charset but LocalCharset is koi8-r, use this command for parsing MS
Word documents:

Mime application/msword "text/plain; charset=windows-1251" "catdoc -a $1"

3.9.6. DPS_URL environment variable
When executing a parser indexer creates DPS_URL environment variable with an URL being processed
as a value. You can use this variable in parser scripts.

3.9.7. Some third-party parsers

• RPM parser by Mario Lang <lang@zid.tu-graz.ac.at>

/usr/local/bin/rpminfo:

#!/bin/bash
/usr/bin/rpm -q --queryformat="<html><head><title>RPM: %{NAME} %{VERSION}-%{RELEASE}
(%{GROUP})</title><meta name=\"description\" content=\"%{SUMMARY}\"></head><body>
%{DESCRIPTION}\n</body></html>" -p $1

27

Chapter 3. Indexing

indexer.conf:

Mime application/x-rpm text/html "/usr/local/bin/rpminfo $1"

It renders to such nice RPM information:

3. RPM: mysql 3.20.32a-3 (Applications/Databases) [4]
Mysql is a SQL (Structured Query Language) database server.
Mysql was written by Michael (monty) Widenius. See the CREDITS
file in the distribution for more credits for mysql and related
things....
(application/x-rpm) 2088855 bytes

• catdoc MS Word to text converter

Home page (http://freshmeat.net/redir/catdoc/1055/url_homepage/), also listed on Freshmeat
(http://freshmeat.net/).

indexer.conf:

Mime application/msword text/plain "catdoc $1"

• xls2csv MS Excel to text converter

It is supplied with catdoc.

indexer.conf:

Mime application/vnd.ms-excel text/plain "xls2csv $1"

• pdftotext Adobe PDF converter

Supplied with xpdf project.

Homepage (http://freshmeat.net/redir/xpdf/12080/url_homepage/), also listed on Freshmeat
(http://freshmeat.net/).

indexer.conf:

Mime application/pdf text/plain "pdftotext $1 -"

• unrtf RTF to html converter

Homepage (ftp://ftp.gnu.org/pub/gnu/unrtf/)

28

Chapter 3. Indexing

indexer.conf:

Mime text/rtf* text/html "/usr/local/dpsearch/sbin/unrtf --html $1"
Mime application/rtf text/html "/usr/local/dpsearch/sbin/unrtf --html $1"

• xlhtml XLS to html converter

Homepage (http://chicago.sourceforge.net/xlhtml/)

indexer.conf:

Mime application/vnd.ms-excel text/html "/usr/local/dpsearch/sbin/xlhtml $1"

• ppthtml PowerPoint (PPT) to html converter. Part of xlhtml 0.5.

Homepage (http://chicago.sourceforge.net/xlhtml/)

indexer.conf:

Mime application/vnd.ms-powerpoint text/html "/usr/local/dpsearch/sbin/ppthtml $1"

• Using vwHtml (http://wvWare.sourceforge.net/) (DOC to html).

/usr/local/dpsearch/sbin/0vwHtml.pl:

#!/usr/bin/perl -w

$p = $ARGV[1];
$f = $ARGV[1];

$p =~ s/(.*)\/([^\/]*)/$1\//;
$f =~ s/(.*)\/([^\/]*)/$2/;

system("/usr/local/bin/wvHtml --targetdir=$p $ARGV[0] $f");

indexer.conf:

Mime application/msword text/html "/usr/local/dpsearch/sbin/0wvHtml.pl $1 $2"
Mime application/vnd.ms-word text/html "/usr/local/dpsearch/sbin/0wvHtml.pl $1 $2"

• swf2html from Flash Search Engine SDK
(http://www.macromedia.com/software/flash/download/search_engine/)

29

Chapter 3. Indexing

indexer.conf:

Mime application/x-shockwave-flash text/html "/usr/local/dpsearch/sbin/swf2html $1"

• djvutxt from djvuLibre (http://djvu.sourceforge.net/)

indexer.conf:

Mime image/djvu text/plain "/usr/local/bin/djvutxt $1 $2"
Mime image/x.djvu text/plain "/usr/local/bin/djvutxt $1 $2"
Mime image/x-djvu text/plain "/usr/local/bin/djvutxt $1 $2"
Mime image/vnd.djvu text/plain "/usr/local/bin/djvutxt $1 $2"

3.10. Other commands uses in indexer.conf

3.10.1. Include command
You may include another configuration file in any place of the indexer.conf using Include
<filename> command. Absolute path if <filename> starts with "/":

Include /usr/local/dpsearch/etc/inc1.conf

Relative path else:

Include inc1.conf

3.10.2. DBAddr command
DBAddr command is URL-style database description. It specify options (type, host, database name,
port, user and password) to connect to SQL database. Should be used before any other commands. You
may specify several DBAddr commands. In this case DataparkSearch will merge result from every
database specified. Command have global effect for whole config file. Format:

DBAddr <Type>:[//[User[:Pass]@]Host[:Port]]/DBName/[?[dbmode=mode]{&<parameter name>=<parameter value>}]

30

Chapter 3. Indexing

Note: ODBC related. Use DBName to specify ODBC data source name (DSN) Host does not
matter, use "localhost".

Note: Solid related. Use Host to specify Solid server DBName does not matter for Solid.

You may use CGI-like encoding for User and Pass if you need use special characters in user name or
password. For example, if you have ABC@DEF as password, you should write it as ABC%40DEF.

Currently supported Type values are mysql, pgsql, msql, solid, mssql, oracle, ibase, sqlite.
Actually, it does not matter for native libraries support. But ODBC users should specify one of supported
values. If your database type is not supported, you may use "unknown" instead.

MySQL and PostgreSQLusers can specify path to Unix socket when connecting to localhost:
mysql://foo:bar@localhost/dpsearch/?socket=/tmp/mysql.sock

If you are using PostgreSQL and do not specify hostname, e.g.
pgsql://user:password@/dbname/ then PostgreSQL will not work via TCP, but will use
default Unix socket.

dbmode parameter. You may also select database mode of words storage. When "single" is
specified, all words are stored in the same table (file). If "multi" is selected, words will be located in
different tables (files) depending of their lengths. "multi" mode is usually faster but requires more
tables (files). If "crc" mode is selected, DataparkSearch will store 32 bit integer word IDs calculated by
HASH32 algorithm instead of words. This mode requires less disk space and it is faster comparing with
"single" and "multi" modes, however it doesn’t support substring searches. "crc-multi" uses the same
storage structure with the "crc" mode, but also stores words in different tables (files) depending on words
lengths like "multi" mode. Default mode is "single".

stored parameter. Format: stored=StoredHost[:StoredPort]. This parameter is used to
specify host and port, if specified, where stored daemon is running, if you plan to use document excerpts
and cached copies.

cached parameter. Format: cached=CachedHost[:CachedPort]. Use cached at given host
and port if specified. It is required for cache storage mode only (see Section 5.2). Each indexer will
connect to cached on given address at startup.

charset parameter. Format: charset=DBCharacterSet. This parameter can be used to
specity database connection charset. The charset specified by DBCharacterSet should be equal to charset
specified by LocalCharset command.

label parameter. Format: label=DBAlabel. This parameter may be used to assign a label to
DBAddr command. So, if you pass label CGI-variable to the DataparkSearch, then only DBAddr
marked by label value will be used to performing search. Thus, you can use one searchd daemon to
answer queries for several search databases selectible by label variable.

Note: If no label is passed as CGI-parameter, then only DBAddr without a label will be used to
perform search query.

Example:

31

Chapter 3. Indexing

DBAddr mysql://foo:bar@localhost/dpsearch/?dbmode=single

3.10.3. VarDir command
You may choose alternative working directory for cache mode:

VarDir /usr/local/dpsearch/var

3.10.4. NewsExtensions command
Whether to enable news extensions. Default value is no.

NewsExtensions yes

3.10.5. SyslogFacility command
This is used if DataparkSearch was compiled with syslog support and if you don’t like the default value.
Argument is the same as used in syslog.conf file. For list of possible facilities see syslog.conf(5)

SyslogFacility local7

3.10.6. Word length commands
Word lengths. You may change default length range of words stored in database. By default, words with
the length in the range from 1 to 32 are stored.

MinWordLength 1
MaxWordLength 32

3.10.7. MaxDocSize command
This command is used for specify maximal document size. Default value 1048576 (1 Megabyte). Takes
global effect for whole config file.

MaxDocSize 1048576

32

Chapter 3. Indexing

3.10.8. MinDocSize command
This command is used to checkonly urls with content size less than value specified. Default value 0.
Takes global effect for whole config file.

MinDocSize 1024

3.10.9. IndexDocSizeLimit command
Use this command to specify the maximal amount of data stored in index per document. Default value 0.
This mean no limit. Takes effect till next IndexDocSizeLimit command.

IndexDocSizeLimit 65536

3.10.10. URLSelectCacheSize command
Select number of targets to index at once. Default value is 1024.

URLSelectCacheSize 10240

3.10.11. URLDumpCacheSize command
Select at once this number of urls to write cache mode indexes, to preload url data or to calculate the
Popularity Rank. Default value is 100000.

URLDumpCacheSize 10240

3.10.12. UseCRC32URLId command
Switch on or off the ID generation for URL using HASH32. Default value is "no".

UseCRC32URLId yes

Switching it on allow speed up indexing a bit, but some small number of collisions is possible.

33

Chapter 3. Indexing

3.10.13. HTTPHeader command
You may add desired headers to indexer’s HTTP request. You should not use "If-Modified-Since",
"Accept-Charset" headers, these headers are composed by indexer itself. "User-Agent:
DataparkSearch/version" header is sent too, but you may override it. Command has global effect for all
configuration file.

HTTPHeader "User-Agent: My_Own_Agent"
HTTPHeader "Accept-Language: ru, en"
HTTPHeader "From: webmaster@mysite.com"

3.10.14. Allow command
Allow [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

Use this command to allow URLs that match (doesn’t match) given argument. First three optional
parameters describe the type of comparison. Default values are Match, NoCase, String. Use NoCase or
Case values to choose case sensitive or case insensitive comparison. Use Regex to choose regular
expression comparison. Use String to choose string with wildcards comparison. Wildcards are ’*’ for
any number of characters and ’?’ for one character. Note that ’?’ and ’*’ have special meaning in String

match type. Please use Regex to describe documents with ’?’ and ’*’ signs in URL. String match is
much faster than Regex. Use String where it is possible. You may use several arguments for one Allow
command. You may use this command any times. Takes global effect for config file. Note that
DataparkSearch automatically adds one "Allow regex .*" command after reading config file. It means
that allowed everything that is not disallowed.

Examples

Allow everything:
Allow *
Allow everything but .php .cgi .pl extensions case insensitively using regex:
Allow NoMatch Regex \.php$|\.cgi$|\.pl$
Allow .HTM extension case sensitively:
Allow NoCase *.HTM

3.10.15. Disallow command
Disallow [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

Use this command to disallow URLs that match (doesn’t match) given argument. The meaning of first
three optional parameters is exactly the same with Allow command. You can use several arguments for
one Disallow command. Takes global effect for config file. Examples:

Disallow URLs that are not in udm.net domains using "string" match:
Disallow NoMatch *.udm.net/*

34

Chapter 3. Indexing

Disallow any except known extensions and directory index using "regex" match:
Disallow NoMatch Regex \/$|\.htm$|\.html$|\.shtml$|\.phtml$|\.php$|\.txt$
Exclude cgi-bin and non-parsed-headers using "string" match:
Disallow */cgi-bin/* *.cgi */nph-*
Exclude anything with ’?’ sign in URL. Note that ’?’ sign has a
special meaning in "string" match, so we have to use "regex" match here:
Disallow Regex \?

3.10.16. CheckOnly command
CheckOnly [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

The meaning of first three optional parameters is exactly the same with Allow command. Indexer will
use HEAD instead of GET HTTP method for URLs that match/do not match given regular expressions.
It means that the file will be checked only for being existing and will not be downloaded. Useful for
zip,exe,arj and other binary files. Note that you can disallow those files with commands given below. You
may use several arguments for one CheckOnly commands. Useful for example for searching through the
URL names rather than the contents (a la FTP-search). Takes global effect for config file. Examples:

Check some known non-text extensions using "string" match:
CheckOnly *.b *.sh *.md5
or check ANY except known text extensions using "regex" match:
CheckOnly NoMatch Regex \/$|\.html$|\.shtml$|\.phtml$|\.php$|\.txt$

3.10.17. HrefOnly command
HrefOnly [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

The meaning of first three optional parameters is exactly the same with Allow command. Use this to scan
a HTML page for "href" attribute of tags but not to index the contents of the page with an URLs that
match (doesn’t match) given argument. Commands have global effect for all configuration file. When
indexing large mail list archives for example, the index and thread index pages (like mail.10.html,
thread.21.html, etc.) should be scanned for links but shouldn’t be indexed:

HrefOnly */mail*.html */thread*.html

3.10.18. CheckMp3 command
CheckMp3 [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

35

Chapter 3. Indexing

The meaning of first three optional parameters is exactly the same with Allow command. If an URL
matches given rules, indexer will download only a little part of the document and try to find MP3 tags in
it. On success, indexer will parse MP3 tags, else it will download whole document then parse it as usual.
Notes: This works only with those servers which support HTTP/1.1 protocol. It is used "Range: bytes"
header to download mp3 tag.

CheckMp3 *.bin *.mp3

3.10.19. CheckMp3Only command
CheckMP3Only [Match|NoMatch] [NoCase|Case] [String|Regex] <arg> [<arg> ...]

The meaning of first three optional parameters is exactly the same with Allow command. If an URL
matches given rules, indexer, like in the case CheckMP3 command, will download only a little part of
the document and try to find MP3 tags. On success, indexer will parse MP3 tags, else it will NOT
download whole document.

CheckMP3Only *.bin *.mp3

3.10.20. IndexIf command
IndexIf [Match|NoMatch] [NoCase|Case] [String|Regex] <section> <arg> [<arg> ...]

Use this command to allow indexing, if the value of section match the arg pattern given. The meaning
of first three optional parameters is exactly the same as for the Allow command (see Section 3.10.14).

Example

IndexIf regex Title Manual
IndexIf body "*important detail*"

3.10.21. NoIndexIf command
NoIndexIf [Match|NoMatch] [NoCase|Case] [String|Regex] <section> <arg> [<arg> ...]

Use this command to disallow indexing, if the value of section match the arg pattern given. The
meaning of first three optional parameters is exactly the same as for the Allow command (see Section
3.10.14).

Example

NoIndexIf regex Title Sex
IndexIf body *xxx*

36

Chapter 3. Indexing

3.10.22. HoldBadHrefs command
HoldBadHrefs <time>

How much time to hold URLs with erroneous status before deleting them from the database. For
example, if host is down, indexer will not delete pages from this site immediately and search will use
previous content of these pages. However if site doesn’t respond for a month, probably it’s time to
remove these pages from the database. For <time> format see description of Period command in Section
3.10.26.

HoldBadHrefs 30d

3.10.23. DeleteOlder command
DeleteOlder <time>

How much time to hold URLs before deleting them from the database. For example, for news sites
indexing, you may delete automatically old news articles after specified period. For <time> format see
description of Period command in Section 3.10.26. Default value is 0. "0" value mean "do not check".
You may specify several DeleteOlder commands, for example, by one for every Server command.

DeleteOlder 7d

3.10.24. UseRemoteContentType command
UseRemoteContentType yes/no

This command specifies if the indexer should get content type from http server headers (yes) or from it’s
AddType settings (no). If set to ’no’ and the indexer could not determine content-type by using its
AddType settings, then it will use http header. Default: yes

UseRemoteContentType yes

3.10.25. AddType command
AddType [String|Regex] [Case|NoCase] <mime type> <arg> [<arg>...]

37

Chapter 3. Indexing

This command associates filename extensions (for services that don’t automatically include them) with
their mime types. Currently "file:" protocol uses these commands. Use optional first two parameter to
choose comparison type. Default type is "String" "Case" (case insensitive string match with ’?’ and ’*’
wildcards for one and several characters correspondently).

AddType image/x-xpixmap *.xpm

3.10.26. Period command
Period <time>

Set reindex period. <time> is in the form ’xxxA[yyyB[zzzC]]’ (Spaces are allowed between xxx and A
and yyy and so on) there xxx, yyy, zzz are numbers (can be negative!) A, B, C can be one of the
following: s - second M - minute h - hour d - day m - month y - year (these letters are the same as in
strptime/strftime functions). Examples:

15s - 15 seconds
4h30M - 4 hours and 30 minutes
1y6m-15d - 1 year and six month minus 15 days
1h-10M+1s - 1 hour minus 10 minutes plus 1 second

If you specify only number without any character, it is assumed that time is given in seconds. Can be set
many times before Server command and takes effect till the end of config file or till next Period
command.

Period 7d

3.10.27. PeriodByHops command
PeriodByHops <hops> [<time>]

Set reindex period per <hops> basis. The format for <time> is the same as for Period.

Can be set many times before Server command and takes effect till the end of config file or till next
PeriodByHops command with same <hops> value. If <time> parameter is omitted, this undefine the
previous defined value.

If for given <hops> value the appropriate PeriodByHops command is not specified, in this case the value
defined in Period command is used.

3.10.28. ExpireAt command
ExpireAt [A [B [C [D [E]]]]]

38

Chapter 3. Indexing

This command allow specify the exactly expiration time for documents. May be specified per
Server/Realm basis and takes effect till the end of config file or till next ExpireAt command. ExpireAt
specified without any arguments disable previously specified value. A - stand for minute, may be * or
0-59; B - stand for hour, may be * or 0-23; C - stand for day of month, may be * or 1-31; D - stand for
month, may be * or 1-12; E - stand for day of week, may be * or 0-6, 0 - is Sunday. ExpireAt command
have higher prioroty over Period or PeriodByHops command.

3.10.29. UseDateHeader command
UseDateHeader yes|no

Use Date header if no Last-Modified header is sent by remote web-server. Default value: no.

3.10.30. MaxHops command
MaxHops <number>

Maximum way in "mouse clicks" from start url. Default value is 256. Can be set multiple times before
"Server" command and takes effect till the end of config file or till next MaxHops command.

MaxHops 256

3.10.31. TrackHops command
TrackHops yes|no

This command enable or disable hops tracking in reindexing. Default value is no. If enabled, the value of
hops for url is recalculated when reindexing. Otherwise the value of hops is calculated only once at
insertion of url into database.

TrackHops yes

3.10.32. MaxDepth command
MaxDepth <number>

Maximum directory depth of url. Default value is 16. Can be set multiple times before "Server"
command and takes effect till the end of config file or till next MaxDepth command.

MaxDepth 2

39

Chapter 3. Indexing

3.10.33. MaxDocsPerServer command
MaxDocsPerServer <number>

Limits the number of documents retrieved from Server. Default value is -1, that means no limits. If set to
positive value, no more than given number of pages will be indexed from one server during this run of
index. Can be set multiple times before Server command and takes effect till the end of config file or till
next MaxDocsPerServer command.

MaxDocsPerServer 100

3.10.34. MaxNetErrors command
MaxNetErrors <number>

Maximum network errors for each server. Default value is 16. Use 0 for unlimited errors number. If there
too many network errors on some server (server is down, host unreachable, etc) indexer will try to do
not more then ’number’ attempts to connect to this server. Takes effect till the end of config file or till
next MaxNetErrors command.

MaxNetErrors 16

3.10.35. ReadTimeOut command
ReadTimeOut <time>

Connect timeout and stalled connections timeout. For <time> format see Section 3.10.26. Default value
is 30 seconds. Can be set any times before Server command and takes effect till the end of config file or
till next ReadTimeOut command.

ReadTimeOut 30s

3.10.36. DocTimeOut command
DocTimeOut <time>

Maximum amount of time indexer spends for one document downloading. For <time> format see
Section 3.10.26. Default value is 90 seconds. Can be set any times before Server command and takes
effect till the end of config file or till next DocTimeOut command.

DocTimeOut 1m30s

40

Chapter 3. Indexing

3.10.37. NetErrorDelayTime command
NetErrorDelayTime <time>

Specify document processing delay time if network error has occurred. For <time> format see Section
3.10.26. Default value is one day

NetErrorDelayTime 1d

3.10.38. Cookies command
Cookies yes/no

Enables/Disables the support for HTTP cookies. Command may be used several times before Server
command and takes effect till the end of config file or till next Cookies command. Default value is "no".

Cookies yes

3.10.39. Robots command
Robots yes/no

Allows/disallows using robots.txt and <META NAME="robots" ...> exclusions. Use no, for example
for link validation of your server(s). Command may be used several times before Server command and
takes effect till the end of config file or till next Robots command. Default value is "yes".

Robots yes

3.10.40. RobotsPeriod command
By defaults, robots.txt data holds in SQL-database for one week. You may change this period using
RobotsPeriod command:

RobotsPeriod <time>

For <time> format see description of Period command in Section 3.10.26.

RobotsPeriod 30d

41

Chapter 3. Indexing

3.10.41. CrawlDelay command
Use this command to specify default pause in seconds between consecutive fetches from same server.
This is similar to crawl-delay command in robots.txt file, but can specified in indexer.conf file on
per server basis. If no crawl-delay value is specified in robots.txt, the value of CrawlDelay is used. If
crawl-delay is specified in robots.txt, then the maximum of CrawlDelay and crawl-delay is used as
interval between consecutive fetches.

3.10.42. Section command
Section <string> <number> <maxlen> [strict] [<pattern> <replacement>]

where <string> is a section name and <number> is section ID between 0 and 255. Use 0 if you don’t
want to index some of these sections. It is better to use different IDs for different sections. In this case
during search time you’ll be able to give different weight to each section or even disallow some sections
at a search time. <maxlen> argument contains a maximum length of section which will be stored in
database. Use 0 for <maxlen>, if you don’t want to store this section. <pattern> and <replacement>

are a regex-like pattern and replacement to extract section value from document content.

You can specify strict option to set strict string tokenization for a section, which mean word break at
any non-character symbol despite the context. It’s useful, for example, in indexing of URL, where
hyphen, the character, uses as delimiter between words.

Standard HTML sections: body, title
Section body 1 256
Section title 2 128
strict tokenization for URL
Section url 3 0 strict
regex-pattern for a section
Section GoodName 4 128 "<h1>([^<]*)</h1>" "GoodName: $1"

3.10.43. HrefSection command
HrefSection <string> [<pattern> <replacement>]

where <string> is a section name, <pattern> and <replacement> are a regex-like pattern and
replacement to extract section value from document content. Use this command to extract links from
document content.

Standard HTML sections: body, title
HrefSection link
HrefSection NewLink "<newlink>([^<]*)</newlink>" "$1"

42

Chapter 3. Indexing

3.10.44. Index command
Index yes/no

Prevent indexer from storing words into database. Useful for example for link validation. Can be set
multiple times before Server command and takes effect till the end of config file or till next Index
command. Default value is "yes".

Index no

3.10.45. ProxyAuthBasic command
ProxyAuthBasic login:passwd

Use http proxy basic authorization. Can be used before every Server command and takes effect only for
next one Server command! It should be also before Proxy command. Examples:

ProxyAuthBasic somebody:something

3.10.46. Proxy command
Proxy your.proxy.host[:port]

Use proxy rather then connect directly. One can index ftp servers when using proxy Default port value if
not specified is 3128 (Squid) If proxy host is not specified direct connect will be used. Can be set before
every Server command and takes effect till the end of config file or till next Proxy command. If no one
Proxy command specified indexer will use direct connect. Examples:

Proxy on atoll.anywhere.com, port 3128:
Proxy atoll.anywhere.com
Proxy on lota.anywhere.com, port 8090:
Proxy lota.anywhere.com:8090
Disable proxy (direct connect):
Proxy

3.10.47. AuthBasic command
AuthBasic login:passwd

Use basic http authorization. Can be set before every Server command and takes effect only for next one
Server command! Examples:

43

Chapter 3. Indexing

AuthBasic somebody:something

If you have password protected directory(-ies), but whole server is open,use:
AuthBasic login1:passwd1
Server http://my.server.com/my/secure/directory1/
AuthBasic login2:passwd2
Server http://my.server.com/my/secure/directory2/
Server http://my.server.com/

3.10.48. ServerWeight command
ServerWeight <number>

Server weight for Popularity Rank calculation (see Section 8.5.3). Default value is 1.

ServerWeight 1

3.10.49. OptimizeAtUpdate command
OptimizeAtUpdate yes

Specify word index optimize strategy. Default value: no If enabled, this save disk space, but slow down
indexing. May be placed in indexer.conf and cached.conf.

3.10.50. SkipUnreferred command
SkipUnreferred yes|no|del

Default value: no. Use this command to skip reindexing or delete unreferred documents. An unreferred
document is a document with no links to it. This command require the links collection to be enabled (see
Section 8.5.3).

3.10.51. Bind command
Bind 127.0.0.1

You may use this command to specify local ip address, if your system have several network interfaces.

44

Chapter 3. Indexing

3.10.52. ProvideReferer command
ProvideReferer yes

Use this command to provide Referer: request header for HTTP and HTTPS connections.

3.10.53. LongestTextItems command
LongestTextItems 4

Use this command to specify the number of longest text items to index.

3.11. Extended indexing features

3.11.1. Indexing SQL database tables (htdb: virtual URL scheme)
DataparkSearch can index SQL database text fields - the so called htdb: virtual URL scheme.

Using htdb:/ virtual scheme you can build full text index of your SQL tables as well as index your
database driven WWW server.

Note: You must have PRIMARY key on the table you want to index.

3.11.1.1. HTDB indexer.conf commands

Five indexer.conf commands provide HTDB. They are HTDBAddr, HTDBList, HTDBLimit,
HTDBDoc and HTDBText.

HTDBAddr is used to specify database connection. It’s syntax identical to DBAddr command.

HTDBList is SQL query to generate list of all URLs which correspond to records in the table using
PRIMARY key field. You may use either absolute or relative URLs in HTDBList command:

For example:

HTDBList "SELECT concat(’htdb:/’,id) FROM messages"
or

HTDBList "SELECT id FROM messages"

HTDBLimit command may be used to specify maximal number of records in one SELECT operation. It
allow reduce memory usage for big data tables indexing. For example:

HTDBLimit 512

45

Chapter 3. Indexing

HTDBDoc is a query to get only certain record from database using PRIMARY key value.

HTDBList SQL query is used for all URLs which end with ’/’ sign. For other URLs SQL query given in
HTDBDoc is used.

Note: HTDBDoc query must return FULL HTTP response with headers. So, you can build very
flexible indexing system giving different HTTP status in query. Take a look at HTTP response codes
section of documentation to understand indexer behavior when it gets different HTTP status.

If there is no result of HTDBDoc or query does return several records, HTDB retrieval system generates
"HTTP 404 Not Found". This may happen at reindex time if record was deleted from your table since last
reindexing. You may use HoldBadHrefs 0 to delete such records from DataparkSearch tables as well.

You may use several HTDBDoc/List commands in one indexer.conf with corresponding Server
commands.

HTDBText <section> is a query to get raw text data from database using PRIMARY key value collected
via HTDBList command. The <section> parameter is specify the section name useing for storing this
data. This query may return as many rows as required. You may specify several HTDBText commands
per Server or Realm command.

DBAddr mysql://foo:bar@localhost/database/?dbmode=single

HTDBAddr mysql://foofoo:barbar@localhost/database/

HTDBList "SELECT DISTINCT topic_id FROM messages"

HTDBText body "SELECT raw_text\
FROM messages WHERE topic_id=’$1’"

Server htdb:/

It’ possible to specify both HTDBDoc and HTDBText commands per one Server or Realm command.
HTDBText commands are processing first.

3.11.1.2. HTDB variables

You may use PATH parts of URL as parameters of both HTDBList and HTDBDoc SQL queries. All
parts are to be used as $1, $2, ... $n, where number is the number of PATH part:

htdb:/part1/part2/part3/part4/part5
$1 $2 $3 $4 $5

For example, you have this indexer.conf command:

HTDBList "SELECT id FROM catalog WHERE category=’$1’"

46

Chapter 3. Indexing

When htdb:/cars/ URL is indexed, $1 will be replaced with ’cars’:

SELECT id FROM catalog WHERE category=’cars’

You may use long URLs to provide several parameters to both HTDBList and HTDBDoc queries. For
example, htdb:/path1/path2/path3/path4/id with query:

HTDBList "SELECT id FROM table WHERE field1=’$1’ AND field2=’$2’ and field3=’$3’"

This query will generate the following URLs:

htdb:/path1/path2/path3/path4/id1
...
htdb:/path1/path2/path3/path4/idN

for all values of the field "id" which are in HTDBList output.

3.11.1.3. Creating full text index

Using htdb:/ scheme you can create full text index and use it further in your application. Lets imagine
you have a big SQL table which stores for example web board messages in plain text format. You also
want to build an application with messages search facility. Lets say messages are stored in "messages"
table with two fields "id" and "msg". "id" is an integer primary key and "msg" big text field contains
messages themselves. Using usual SQL LIKE search may take long time to answer:

SELECT id, message FROM message WHERE message LIKE ’%someword%’

Using DataparkSearch htdb: scheme you have a possibility to create full text index on "message" table.
Install DataparkSearch in usual order. Then edit your indexer.conf:

DBAddr mysql://foo:bar@localhost/search/?dbmode=single

HTDBAddr mysql://foofoo:barbar@localhost/database/

HTDBList "SELECT id FROM messages"

HTDBDoc "SELECT concat(\
’HTTP/1.0 200 OK\\r\\n’,\
’Content-type: text/plain\\r\\n’,\
’\\r\\n’,\
msg) \
FROM messages WHERE id=’$1’"

Server htdb:/

47

Chapter 3. Indexing

After start indexer will insert ’htdb:/’ URL into database and will run an SQL query given in HTDBList.
It will produce 1,2,3, ..., N values in result. Those values will be considered as links relative to ’htdb:/’
URL. A list of new URLs in the form htdb:/1, htdb:/2, ... , htdb:/N will be added into database. Then
HTDBDoc SQL query will be executed for each new URL. HTDBDoc will produce HTTP document for
each document in the form:

HTTP/1.0 200 OK
Content-Type: text/plain

<some text from ’message’ field here>

This document will be used to create full text index using words from ’message’ fields. Words will be
stored in ’dict’ table assuming that we are using ’single’ storage mode.

After indexing you can use DataparkSearch tables to perform search:

SELECT url.url
FROM url,dict
WHERE dict.url_id=url.rec_id
AND dict.word=’someword’;

As far as DataparkSearch ’dict’ table has an index on ’word’ field this query will be executed much faster
than queries which use SQL LIKE search on ’messages’ table.

You can also use several words in search:

SELECT url.url, count(*) as c
FROM url,dict
WHERE dict.url_id=url.rec_id
AND dict.word IN (’some’,’word’)
GROUP BY url.url
ORDER BY c DESC;

Both queries will return ’htdb:/XXX’ values in url.url field. Then your application has to cat leading
’htdb:/’ from those values to get PRIMARY key values of your ’messages’ table.

3.11.1.4. Indexing SQL database driven web server

You can also use htdb:/ scheme to index your database driven WWW server. It allows to create indexes
without having to invoke your web server while indexing. So, it is much faster and requires less CPU
resources when direct indexing from WWW server.

The main idea of indexing database driven web server is to build full text index in usual order. The only
thing is that search must produce real URLs instead of URLs in ’htdb:/...’ form. This can be achieved
using DataparkSearch aliasing tools.

HTDBList command generates URLs in the form:

http://search.mnogo.ru/board/message.php?id=XXX

48

Chapter 3. Indexing

where XXX is a "messages" table primary key values.

For each primary key value HTDBDoc command generates text/html document with HTTP headers and
content like this:

<HTML>
<HEAD>
<TITLE> ... subject field here </TITLE>
<META NAME="Description" Content=" ... author here ...">
</HEAD>
<BODY> ... message text here ... </BODY>

At the end of doc/samples/htdb.conf we wrote three commands:

Server htdb:/
Realm http://search.mnogo.ru/board/message.php?id=*
Alias http://search.mnogo.ru/board/message.php?id= htdb:/

First command says indexer to execute HTDBList query which will generate a list of messages in the
form:

http://search.mnogo.ru/board/message.php?id=XXX

Second command allow indexer to accept such message URLs using string match with ’*’ wildcard at
the end.

Third command replaces "http://search.mnogo.ru/board/message.php?id=" substring in URL with
"htdb:/" when indexer retrieve documents with messages. It means that
"http://mysearch.udm.net/board/message.php?id=xxx" URLs will be shown in search result, but
"htdb:/xxx" URL will be indexed instead, where xxx is the PRIMARY key value, the ID of record in
"messages" table.

3.11.2. Indexing binaries output (exec: and cgi: virtual URL schemes)
DataparkSearch supports exec: and cgi: virtual URL schemes. They allows running an external program.
This program must return a result to it’s stdout. Result must be in HTTP standard, i.e. HTTP response
header followed by document’s content.

For example, when indexing both cgi:/usr/local/bin/myprog and
exec:/usr/local/bin/myprog, indexer will execute the /usr/local/bin/myprog program.

3.11.2.1. Passing parameters to cgi: virtual scheme

When executing a program given in cgi: virtual scheme, indexer emulates that program is running under
HTTP server. It creates REQUEST_METHOD environment variable with "GET" value and

49

Chapter 3. Indexing

QUERY_STRING variable according to HTTP standards. For example, if
cgi:/usr/local/apache/cgi-bin/test-cgi?a=b&d=e is being indexed, indexer creates
QUERY_STRING with a=b&d=e value. cgi: virtual URL scheme allows indexing your site without
having to invoke web servers even if you want to index CGI scripts. For example, you have a web site
with static documents under /usr/local/apache/htdocs/ and with CGI scripts under
/usr/local/apache/cgi-bin/. Use the following configuration:

Server http://localhost/
Alias http://localhost/cgi-bin/ cgi:/usr/local/apache/cgi-bin/
Alias http://localhost/ file:/usr/local/apache/htdocs/

3.11.2.2. Passing parameters to exec: virtual scheme

indexer does not create QUERY_STRING variable like in cgi: scheme. It creates a command line with
argument given in URL after ? sign. For example, when indexing
exec:/usr/local/bin/myprog?a=b&d=e, this command will be executed:

/usr/local/bin/myprog "a=b&d=e"

3.11.2.3. Using exec: virtual scheme as an external retrieval system

exec: virtual scheme allow using it as an external retrieval system. It allows using protocols which are
not supported natively by DataparkSearch. For example, you can use curl program which is available
from http://curl.haxx.se/ to index HTTPS sites.

Put this short script to /usr/local/dpsearch/bin/ under curl.sh name.

#!/bin/sh
/usr/local/bin/curl -i $1 2>/dev/null

This script takes an URL given in command line argument and executes curl program to download it. -i
argument says curl to output result together with HTTP headers.

Now use these commands in your indexer.conf:

Server https://some.https.site/
Alias https:// exec:/usr/local/dpsearch/etc/curl.sh?https://

When indexing https://some.https.site/path/to/page.html, indexer will translate this URL
to

exec:/usr/local/dpsearch/etc/curl.sh?https://some.https.site/path/to/page.html

50

Chapter 3. Indexing

execute the curl.sh script:

/usr/local/dpsearch/etc/curl.sh "https://some.https.site/path/to/page.html"

and take it’s output.

3.11.3. Mirroring
You may specify a path to root dir to enable sites mirroring

MirrorRoot /path/to/mirror

You may specify as well root directory of mirrored document’s headers indexer will store HTTP headers
to local disk too.

MirrorHeadersRoot /path/to/headers

You may specify period during which earlier mirrored files will be used while indexing instead of real
downloading.

MirrorPeriod <time>

It is very useful when you do some experiments with DataparkSearch indexing the same hosts and do not
want much traffic from/to Internet. If MirrorHeadersRoot is not specified and headers are not stored to
local disk then default Content-Type’s given in AddType commands will be used. Default value of the
MirrorPeriod is -1, which means do not use mirrored files.

<time> is in the form xxxA[yyyB[zzzC]] (Spaces are allowed between xxx and A and yyy and so on)
where xxx, yyy, zzz are numbers (can be negative!). A, B, C can be one of the following:

s - second
M - minute
h - hour
d - day
m - month
y - year

(these letters are the same as in strptime/strftime functions)

Examples:

15s - 15 seconds
4h30M - 4 hours and 30 minutes
1y6m-15d - 1 year and six month minus 15 days

51

Chapter 3. Indexing

1h-10M+1s - 1 hour minus 10 minutes plus 1 second

If you specify only number without any character, it is assumed that time is given in seconds (this
behavior is for compatibility with versions prior to 3.1.7).

The following command will force using local copies for one day:

MirrorPeriod 1d

If your pages are already indexed, when you re-index with -a indexer will check the headers and only
download files that have been modified since the last indexing. Thus, all pages that are not modified will
not be downloaded and therefore not mirrored either. To create the mirror you need to either (a) start
again with a clean database or (b) use the -m switch.

You can actually use the created files as a full featured mirror to you site. However be careful: indexer
will not download a document that is larger than MaxDocSize. If a document is larger it will be only
partially downloaded. If you site has no large documents, everything will be fine.

3.12. Using syslog
DataparkSearch indexer uses syslog to log its messages. Different verbose levels could be specified with
-v option or by LogLevel command in config files:

Table 3-1. Verbose levels

0 SILENT suppress all log. Bad idea, better
use -l option.

1 ERROR log only critical errors

2 WARNING log warnings as well

3 INFO add info messages to log.
Default.

4 EXTRA extra logging

5 DEBUG for debug purposes

You may use -l option to suppress log to stdout/stderr when running indexer via crontab. Without -l
option log is sent both to stdout/stderr and to log files. If you do not like such behavior, run configure
with --disable-syslog flag and recompile indexer. Compiled without syslog support, indexer uses
only stdout/stderr.

Syslog uses different facilities to separate log messages. The indexer’s default facility is LOCAL7.
Facility could be changed during configure with --enable-syslog=LOG_FACILITY option.
LOG_FACILITY should be one of the standard facilities, usually listed in
/usr/include/sys/syslog.h header file.

Facility helps to separate DataparkSearch messages from others. You can modify /etc/syslog.conf

52

Chapter 3. Indexing

to tell syslog how to treat DataparkSearch messages. For example:

Log all messages from DataparkSearch to separate file
local7.* -/var/log/DataparkSearch.log

Other example:

Send all DataparkSearch messages to host named central
Syslog on central should be configured to allow this
local7.* @central

By default all messages are logged to /var/log/messages as well. DataparkSearch could populate
this file with a number of messages. To avoid this, add local7.none or local7.!* (ignore any messages
from local7 facility) to your ’catch-all’ log files.

For example:

#
Some ‘catch-all’ logfiles.
#

.=info;.=notice;*.=warn;\
auth,authpriv.none;\
cron,daemon.none;\
mail,news.none;\
local7.!* -/var/log/messages

Please take a look at syslogd(8) and syslog.conf(5) man pages for more detailed information about
syslog and its configuration notes.

3.13. Storing compressed document copies
In DataparkSearch it is possible to store compressed copies of indexed documents. Copies are stored and
retrieved by the new daemon - stored, that is installed into sbin directory of DataparkSearch installation
(default: /usr/local/dpsearch/sbin).

stored is also used to make documents excerpts for search results. You may use ExcerptSize command
in search.htm template to specify average excerpt size in bytes. Value by default: 256. You may switch
off document excerpts (but retain ability to show stored copies) using DoExcerpt no command in your
search template.

To enable documents copies archiving without stored usage, place DoStore yes command in your
indexer.conf file instead of stored daemon configuration.

Stored document copies are retrieved by means of storedoc.cgi CGI script. It requests a saved copy
of a documents from stored, then a copy is displayed with user’s web browser with search keywords
highlighted.

To enable stored support, compile DataparkSearch with zlib support:

53

Chapter 3. Indexing

./configure --with-zlib <other arguments>

You may use the Store and NoStore commands to allow or disallow storing several files by pattern. For
arguments of those commands are exactly the same as for the Allow command (see Section 3.10.14). All
documents are stores by defaults, if support for stored is enabled.

3.13.1. Configure stored
To start using stored, please do the following:

• Copy /usr/local/dpsearch/etc/stored.conf-dist to
/usr/local/dpsearch/etc/stored.conf.

Edit /usr/local/dpsearch/etc/stored.conf

There are several commands available for using with stored:

• Listen tells stored which address and/or port to bind to. By default stored listens to port 7004 and
any address. It is possible to specify port only:

Listen 7004

Or address only:

Listen 127.0.0.2

Or both address and port:

Listen 127.0.0.2:7004

• VarDir command specifies an alternate var/ working directory, e.g.

VarDir /mnt/d/dpsearch/var/

• StoredFiles command specifies number of stored data files created in var/stored/ directory, e.g.

StoredFiles 256

• OptimizeInterval command specifies interval in seconds between attempts to optimize a stored
datafile, e.g.

OptimizeInterval 300

• OptimizeRatio command specifies defragmentation threshold for a stored datafile optimization.

OptimizeRatio 3

54

Chapter 3. Indexing

• Run stored:

/usr/local/dpsearch/sbin/stored &

• Configure indexer.conf and search.htm (or searchd.conf, if searchd is used). Specify address
and port that indexer will use to connect to stored. Use stored parameter for DBAddr command,
e.g.:

DBAddr mysql://localhost/search/?dbmode=cache&stored=localhost:7004

3.13.2. How stored works
After you have successfully configured stored, the indexer pass downloaded documents to stored
daemon. After that, stored will compress the received documents and save them.

3.13.3. Using stored during search
To enable displaying stored documents during search, do the following:

• Configure storedoc.htm (storedoc.cgi template) if necessary.

• Add a storedoc.cgi link to search.htm <!--res--> section: e.g. Cached copy

• Specify storedoc.cgi CGI script URL in search.htm (by default $(stored_href) will return
/cgi-bin/storedoc.cgi). In case you have to specify other URL, add to search.htm

variables section the following line:

StoredocURL /path/to/storedoc.cgi

Or an absolute path:

StoredocURL http://servername/path/to/storedoc.cgi

This is how stored works during search, if everything configured correctly:

1. search.htm displays a link to storedoc.cgi;

2. When user clicks the link, storedoc.cgi sends a query to stored daemon to the address, specified
in storedoc.htm with the Stored parameter of DBAddr command;

3. After the query, stored will decompress the requested saved copy and send it to storedoc.cgi;

4. storedoc.cgi parses the received document and apply highlighting of search keywords.
Highlighting method is specified with storedoc.htm HlBeg and HlEnd commands;

55

Chapter 4. DataparkSearch HTML parser

4.1. Tag parser
Tag parser understands the following tag notation:

• < ... parameter=value ... >

• < ... parameter="value" ... >

• < ... parameter=’value’ ... >

4.2. Special characters
indexer understands the following special HTML characters:

• < > & "

• All HTML-4 character entities: ä ü and other.

• Characters in their Unicode code notation: ê

4.3. META tags
Indexer’s HTML parser currently understands the following META tags. Note that "HTTP-EQUIV" may
be used instead of "NAME" in all entries.

• <META NAME="Content-Type" Content="text/html; charset=xxxx"> This is used to
detect document character set if it is not specified in Content-type HTTP header.

• <META NAME="REFRESH" Content="5; URL=http://www.somewhere.com"> URL value will
be inserted in database.

• <META NAME="Keywords" Content="xxx">

• <META NAME="Description" Content="xxx">

• <META NAME="Robots" Content="xxx"> with content value ALL, NONE, INDEX,

NOINDEX, FOLLOW, NOFOLLOW, NOARCHIVE.

• <META NAME="DP.PopRank" Content="xxx"> with Content value as a real number. This is used
to assign the initial value of PopularityRank for the page.

4.4. Links
HTML parser understand the following links:

56

Chapter 4. DataparkSearch HTML parser

•

•

• <LINK HREF="xxx">

• <FRAME SRC="xxx">

• <AREA HREF="xxx">

• <BASE HREF="xxx">

Note: If BASE HREF value has incorrectly formed URL, current one will be used instead to compose
relative links.

4.5. Comments

• Text inside the <!-- --> tag is recognized as HTML comment.

• You may use special <!--UdmComment--> <!--/UdmComment--> comment tags to exclude the text
between from indexing. This may be useful to hide such things like menus and others from indexing.

• You may also use <NOINDEX> ... </NOINDEX> as a synonyms to <!--UdmComment--> and
<!--/UdmComment-->

• For compatibility with ASPSeek, <!--noindex--> ... <!--/noindex--> are also equivalent to
<!--UdmComment--> and <!--/UdmComment-->

• Google’s special comments <!-- google_ad_section_start -->, <!--
google_ad_section_start(weight=ignore) --> and <!-- google_ad_section_end --> consider as tags to
include/exclude content for indexing.

4.6. Body patterns
If you need index not whole page, for example, to exclude navigation, ads, etc., you may use
BodyPattern command to specify a pattern to extract content of a page for indexing. For example:

BodyPattern "<!--content-->(.*)<!--/content-->" "$1"

this pattern will extract content between special comments and only that content will be indexed for this
page.

You may specify several BodyPattern commands, but only the first match will be applied to a page.
These patterns are trying to apply to all pages indexed. Beware, huge number of such body patterns may
hurt indexing speed.

57

Chapter 5. Storing data

5.1. SQL storage types

5.1.1. General storage information
DataparkSearch stores every words found in any defined section of document. The count of word
appearance in the document does not affect it’s weight. But the fact whether the word appears in more
important parts of the document (title, description, etc.) is taken in account however.

5.1.2. Various modes of words storage
There are different modes of word storage which are currently supported by DataparkSearch: "single",
"multi", "crc", "crc-multi", "cache". Default mode is "cache". Mode is to be selected by dbmode

parameter of DBAddr command in both indexer.conf and search.htm files.

Examples:
DBAddr mysql://localhost/search/?dbmode=single
DBAddr mysql://localhost/search/?dbmode=multi
DBAddr mysql://localhost/search/?dbmode=crc
DBAddr mysql://localhost/search/?dbmode=crc-multi

5.1.3. Storage mode - single
When "single" is specified, all words are stored in one table with structure (url_id,word,weight), where
url_id is the ID of the document which is referenced by rec_id field in "url" table. Word has variable
char(32) SQL type.

5.1.4. Storage mode - multi
If "multi" is selected, words will be located in different 13 tables depending of their lengths. Structures
of these tables are the same with "single" mode, but fixed length char type is used, which is usually faster
in most databases. This fact makes "multi" mode usually faster comparing with "single" mode.

5.1.5. Storage mode - crc
If "crc" mode is selected, DataparkSearch will store 32 bit integer word IDs calculated by HASH32
algorithm instead of words. This mode requires less disc space and is faster than "single" and "multi"
modes. DataparkSearch uses the fact that HASH32 calculates quite unique check sums for different
words. According to our tests there are only 250 pairs of words have the same HASH32 value in the list
of about 1.600.000 unique words. Most of these pairs (>90%) have at least one misspelled word. Words

58

Chapter 5. Storing data

information is stored in the structure (url_id,word_id,weight), where word_id is 32 bit integer ID
calculated by HASH32 algorithm. This mode is recommended for big search engines.

5.1.6. Storage mode - crc-multi
When "crc-multi" mode is selected, DataparkSearch stores HASH32 word IDs in several tables with the
same to "crc" structures depending on word lengths like in "multi" mode. This mode usually is the most
fast and recommended for big search engines.

5.1.7. SQL structure notes
Please note that we develop DataparkSearch with PostgreSQL as back-end and often have no possibility
to test each version with all of other supported databases. So, if there is no table definition in
create/you_database directory, you may found PostgreSQL definition for the same table and just adopt it
for your back-end. PostgreSQL table definitions are always up-to-date.

5.1.8. Additional features of non-CRC storage modes
"single" and "multi" modes support substring search. As far as "crc" and "crc-multi" do not store words
themselves and use integer values generated by HASH32 algorithm instead, there is no possibility of
substring search in these modes.

5.2. Cache mode storage

5.2.1. Introduction
cache words storage mode is able to index and search quickly through several millions of documents.

5.2.2. Cache mode word indexes structure
The main idea of cache storage mode is that word index and URLs sorting information is stored on disk
rather than in SQL database. Full URL information however is kept in SQL database (tables url and
urlinfo). Word index is divided into number of files specified by WrdFiles command (default value is
0x300). URLs sorting information is divided into number of files specified by URLDataFiles command
(default value is 0x300).

Note: Beware: you should have identical values for WrdFiles and URLDataFiles commands in all
your configs.

59

Chapter 5. Storing data

Word index is located in files under /var/tree directory of DataparkSearch installation. URLs sorting
information is located in files under /var/url directory of DataparkSearch installation.

5.2.3. Cache mode tools
There are two additional programs cached and splitter used in cache mode indexing.

cached is a TCP daemon which collects word information from indexers and stores it on your hard disk.
It can operate in two modes, as old cachelogd daemon to logs data only, and in new mode, when
cachelogd and splitter functionality are combined.

splitter is a program to create fast word indexes using data collected by cached. Those indexes are
used later in search process.

5.2.4. Starting cache mode
To start "cache mode" follow these steps:

1. Start cached server:

cd /usr/local/dpsearch/sbin

./cached 2>cached.out &

It will write some debug information into cached.out file. cached also creates a cached.pid file
in /var directory of base DataparkSearch installation.

cached listens to TCP connections and can accept several indexers from different machines.
Theoretical number of indexers connections is equal to 128. In old mode cached stores information
sent by indexers in /var/splitter/ directory of DataparkSearch installation. In new mode it
stores in /var/tree/ directory.

By default, cached starts in new mode. To run it in old mode, i.e. logs only mode, run it with -l
switch:

cached -l

Or by specify LogsOnly yes command in your cached.conf.

You can specify port for cached to use without recompiling. In order to do that, please run

./cached -p8000

where 8000 is the port number you choose.

You can as well specify a directory to store data (it is /var directory by default) with this command:

./cached -w /path/to/var/dir

2. Configure your indexer.conf as usual and for DBAddr command add cache as value of dbmode
parameter and localhost:7000 as value of cached parameter (see Section 3.10.2).

60

Chapter 5. Storing data

3. Run indexers. Several indexers can be executed simultaneously. Note that you may install indexers
on different machines and then execute them with the same cached server. This distributed system
allows making indexing faster.

4. Flushing cached buffers and url data, and creating cache mode limits. To flush cached buffers and url
data and to create cache mode limits after indexing is done, send -HUP signal to cached. You can
use cached.pid file to do this:

kill -HUP ‘cat /usr/local/dpsearch/var/cached.pid‘

N.B.: you needs wait till all buffers will be flushed before going to next step.

5. Creating word index. This stage is no needs, if cached runs in new, i.e. combined, mode. When
some information is gathered by indexers and collected in /var/splitter/ directory by cached

it is possible to create fast word indexes. splitter program is responsible for this. It is installed in
/sbin directory. Note that indexes can be created anytime without interrupting current indexing
process.

Run splitter without any arguments:

/usr/local/dpsearch/sbin/splitter

It will take sequentially all prepared files in /var/splitter/ directory and use them to build fast
word index. Processed logs in /var/splitter/ directory are truncated after this operation.

5.2.5. Optional usage of several splitters
splitter has two command line arguments: -f [first file] -t [second file] which allows
limiting used files range. If no parameters are specified splitter distributes all prepared files. You can
limit files range using -f and -t keys specifying parameters in HEX notation. For example, splitter -f

000 -t A00 will create word indexes using files in the range from 000 to A00. These keys allow using
several splitters at the same time. It usually gives more quick indexes building. For example, this shell
script starts four splitters in background:

#!/bin/sh
splitter -f 000 -t 3f0 &
splitter -f 400 -t 7f0 &
splitter -f 800 -t bf0 &
splitter -f c00 -t ff0 &

5.2.6. Using run-splitter script
There is a run-splitter script in /sbin directory of DataparkSearch installation. It helps to execute
subsequently all three indexes building steps.

"run-splitter" has these two command line parameters:

run-splitter --hup --split

or a short version:

61

Chapter 5. Storing data

run-splitter -k -s

Each parameter activates corresponding indexes building step. run-splitter executes all three steps of
index building in proper order:

1. Sending -HUP signal to cached. --hup (or -k) run-splitter arguments are responsible for this.

2. Running splitter. Keys --split (or -s).

In most cases just run run-splitter script with all -k -s arguments. Separate usage of those three flags
which correspond to three steps of indexes building is rarely required.

run-splitter have optional parameters: -p=n and -v=m to specify pause in seconds after each log buffer
update and verbose level respectively. n is seconds number (default value: 0), m is verbosity level (default
value: 4).

5.2.7. Doing search
To start using search.cgi in the "cache mode", edit as usually your search.htm template and add the
"cache" as value of dbmode parameter of DBAddr command.

5.2.8. Using search limits
To use search limits in cache mode, you should add appropriate Limit command(s) to your
indexer.conf (or cached.conf, if cached is used) and to search.htm or searchd.conf (if
searchd is used).

To use, for example, search limit by tag, by category and by site, add follow lines to search.htm or to
indexer.conf (searchd.conf, if searchd is used).

Limit t:tag
Limit c:category
Limit site:siteid

where t - name of CGI parameter (&t=) for this constraint, tag - type of constraint.

Instead of tag/category/siteid in example above you can use any of values from table below:

Table 5-1. Cache limit types

category Category limit.

tag Tag limit.

time Time limit (a hour precision).

language Language limit.

content Content-Type limit.

siteid url.site_id limit.

link Limit by pages what links to url.rec_id specified.

62

Chapter 5. Storing data

hostname (obsolete) Hostname (url) limit. This limit is obsolete and
should be replaced by site_id limit

5.3. DataparkSearch performance issues
The cache mode is the fastest DataparkSearch’s storage mode. Use it if you need maximal search speed.

If your /var directory isn’t changing since indexing is finished, you may disable file locking using
"ColdVar yes" command placed in search.htm (or in searchd.conf, if searchd is used). This allow
you to save some time on file locking.

Using UseCRC32URLId yes command (see Section 3.10.12) allow to speed up indexing, but small
number of collisions is possible, especially on large database.

5.3.1. searchd usage recommendation
If you plan use ispell data, synonym or stopword lists, it’s recommended setup the searchd daemon for
speed-up searches (See Section 5.4). searchd daemon preload all these data and lists and holds them in
memory. This reduce average search query execution time.

Also, searchd can preload url info data (20 bytes per URL indexed) and cache mode limits (4 or 8 bytes
per URL depend on limit type). This allow reduce average search time.

5.3.2. Memory based filesystem (mfs) usage recommendation
If you use cache storage mode and you have enough RAM on your PC, you may place
/usr/local/dpsearch/var directory on memory based filesystem (mfs). This allow speedup both
indexing and searching.

If you haven’t enough RAM to fit /usr/local/dpsearch/var, you may place on memory filesystem
any of /usr/local/dpsearch/var/tree, /usr/local/dpsearch/var/url or
/usr/local/dpsearch/var/store directories as well.

5.3.3. URLInfoSQL command
For dbmode cache, you may use URLInfoSQL no command to disable storing URL Info into SQL
database. But using this command, you’ll be unable to use limits by language and by Content-Type.

63

Chapter 5. Storing data

5.3.4. MarkForIndex command
By default, DataparkSearch are marking all URLs selected for indexing as indexed for 4 hours. This
prevent possible simultaneous indexing of the same URL by different indexer instance running. But for
huge installation this feature can take some time for processing. You may switch off this markage using
"MarkForIndex no" in your indexer.conf file.

5.3.5. CheckInsertSQL command
By default, DataparkSearch trying to insert data into SQL database regardless it’s already present there.
On some systems this raise some error loggings. To avoid such errors, you may enable additional checks,
is the inserting data new, by specifying CheckInsertSQL yes command in your indexer.conf.

5.3.6. MySQL performance
MySQL users may declare DataparkSearch tables with DELAY_KEY_WRITE=1 option. This will make
the updating of indexes faster, as these are not logged to disk until the file is closed. DELAY_KEY_WRITE
excludes updating indexes on disk at all.

With it indexes are processed only in memory and written onto disk as last resort, command FLUSH
TABLES or mysqld shutdown. This can take even minutes and impatient user can kill -9 mysql

server and break index files with this. Another downside is that you should run myisamchk on these
tables before you start mysqld to ensure that they are okay if something killed mysqld in the middle.

Because of it we didn’t include this table option into default tables structure. However as the key
information can always be generated from the data, you should not lose anything by using
DELAY_KEY_WRITE. So, use this option for your own risk.

5.3.7. Post-indexing optimization
This article was supplied by Randy Winch <gumby@cafes.net>

I have some performance numbers that some of you might find interesting. I’m using RH 6.2 with the
2.2.14-6.1.1 kernel update (allows files larger than 2 gig) and mysql 2.23.18-alpha. I have just indexed
most of our site using mnoGoSearch 3.0.18:

mnoGoSearch statistics

Status Expired Total

200 821178 2052579 OK
301 797 29891 Moved Permanently
302 3 3 Moved Temporarily
304 0 7 Not Modified
400 0 99 Bad Request
403 0 7 Forbidden
404 30690 100115 Not found
500 0 1 Internal Server Error

64

Chapter 5. Storing data

503 0 1 Service Unavailable

Total 852668 2182703

I optimize the data by dumping it into a file using SELECT * INTO OUTFILE, sort it using the system
sort routine into word (CRC) order and then reloading it into the database using the procedure described
in the mysql online manual
(http://www.mysql.com/documentation/mysql/commented/manual.php?section=Insert_speed).

The performance is wonderful. My favorite test is searching for "John Smith". The optimized database
version takes about 13 seconds. The raw version takes about 73 seconds.

Search results: john : 620241 smith : 177096
Displaying documents 1-20 of total 128656 found

5.3.8. Asynchronous resolver library
Using ares (ftp://athena-dist.mit.edu/pub/ATHENA/ares/), an asynchronous resolver library (dns/ares in
FreeBSD ports collection), allow to perform DNS queries without blocking for every indexing thread.
Please note, this also increase the number of concurrent queries to your DNS server.

5.4. SearchD support

5.4.1. Why using searchd

• Faster searching, especially when using ISpell, synonyms or segmenters for east asian languages.
Related files are loaded into memory when searchd is started, while search.cgi loads data before
every query.

Also, searchd can preload url info data (20 bytes per URL indexed) and cache mode limits (4 or 8
bytes per URL depend on limit type). This allow reduce average search time.

• It is possible to distribute words index and web-server between different machines.

5.4.2. Starting searchd
To start using searchd:

• Copy $PREFIX/etc/searchd.conf-dist to searchd.conf.

• Edit searchd.conf.

65

Chapter 5. Storing data

• If you need preload url data to speed-up searches (this cost about 20 bytes of memory per url), add
the following command to searchd.conf:

PreloadURLData yes

• You may also preload cache mode limits for most frequently used limit values using PreloadLimit
command in searchd.conf file:

PreloadLimit <limit type> <limit value>

For example:

PreloadLimit tag Unix

• Add the following command to search.htm:

DBAddr searchd://hostname/ or DBAddr searchd://hostname:port/, e.g.

DBAddr searchd://localhost/

Default port value is 7003

• You may start several searchd’s children answering search queries simultaneously. Use MaxClients
comamnd to specify the number of searchd’s children. Value by default is 1.

MaxClients 2

• Start searchd:

/usr/local/dpsearch/sbin/searchd &

To suppress output to stderr, use -l option. The output will go through syslog only (in case syslog
support was not disabled during installation with --disable-syslog). In case syslog is disabled, it is
possible to direct stderr to a file:

/usr/local/dpsearch/sbin/searchd 2>/var/log/searchd.log &

searchd just like indexer can be used with an option of a configuration file, e.g. relative path to /etc

directory of DataparkSearch installation:

searchd searchd1.conf

or with absolute path:

searchd /usr/local/dpsearch/etc/searchd1.conf

66

Chapter 5. Storing data

5.5. Oracle notes

5.5.1.

5.5.1.1. Why Oracle?

Oracle is a powerful, tunable, scalable and reliable industrial RDBMS. It provides some functionalities
which are absent in simple freeware RDBMS like MySQL and PostgresSQL, such as: transactions
support, concurrency and consistency, data integrity, partitioning, replication, cost-based and rule-based
optimizers, parallel execution, redo logs, RAW devices and many other features. Although Oracle is a
very functional database, the additional qualities like reliability impose some overhead. In fact, providing
many advantages Oracle has some disadvantages. For example great tenability requires more
experienced DBA, redo logs support provide great reliability against instance and media failures but
requires more efficient disk system. I think you should select Oracle as a database for DataparkSearch if
you want to search through hundreds of megabytes or several gigabytes of information, reliability is one
of the primary concerns, need high availability of the database, and you are ready to pay higher sums for
hardware and Oracle DBA to achieve better quality of service.

5.5.1.2. DataparkSearch+Oracle8 Installation Requirements

In order to install DataparkSearch with Oracle RDBMS support you must ensure the following
requirements:

• Oracle8 Server must be properly installed on any computer accessible from the site where
DataparkSearch are to be installed. See the documentation provided with your Oracle server.

• Oracle client software and libraries must be installed on the site where you plan to install
DataparkSearch. I strongly recommend to install utilities also, it help you to test the client and server
accessibility.

• glibc 2.0 or glibc 2.1. Oracle 8.0.5.X libraries are built for glibc 2.0.

5.5.1.3. Currently supported/tested platforms

Oracle versions:

• Oracle 8.0.5.X

Operation systems:

• Linux RedHat 6.1 (2.2.X + glibc 2.0)

Oracle Server may be ran on any platform supporting tcp/ip connections. I see no difficulties to port
DataparkSearch Oracle driver to any commercial and freeware unix systems, any contribution is
appreciated.

67

Chapter 5. Storing data

5.5.2. Compilation, Installation and Configuration

5.5.2.1. Compilation

Oracle 8.0.5.X and Linux RedHat 6.1

./Configure --with-oracle8=oracle_home_dir
make
make install

If you have any troubles, try to put CC = i386-glibc20-linux-gcc in the src/Makefile, this is
old version of gcc compiler for glibc 2.0.

5.5.2.2. Installation and Configuration

Check whether Oracle Server and Oracle Client work properly.

First, try DataparkSearch service is accessible

[oracle@ant oracle]$ tnsping DataparkSearch 3

TNS Ping Utility for Linux: Version 8.0.5.0.0 - Production on 29-FEB-00 09:46:12
(c) Copyright 1997 Oracle Corporation. All rights reserved.

Attempting to contact (ADDRESS=(PROTOCOL=TCP)(Host=ant.gpovz.ru)(Port=1521))
OK (10 msec)
OK (0 msec)
OK (10 msec)

Second, try to connect to Oracle Server with svrmgrl and check whether DataparkSearch tables were
created

[oracle@ant oracle]$ svrmgrl command=’connect scott/tiger@DataparkSearch’

Oracle Server Manager Release 3.0.5.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8 Release 8.0.5.1.0 - Production
PL/SQL Release 8.0.5.1.0 - Production

Connected.
SVRMGR> SELECT table_name FROM user_tables;
TABLE_NAME

DICT

68

Chapter 5. Storing data

DICT10
DICT11
DICT12
DICT16
DICT2
DICT3
DICT32
DICT4
DICT5
DICT6
DICT7
DICT8
DICT9
PERFTEST
ROBOTS
STOPWORD
TAB1
URL
19 rows selected.

Check the library paths in /etc/ld.so.conf

[oracle@ant oracle]$ cat /etc/ld.so.conf
/usr/X11R6/lib
/usr/lib
/usr/i486-linux-libc5/lib
/usr/lib/qt-2.0.1/lib
/usr/lib/qt-1.44/lib
/oracle8/app/oracle/product/8.0.5/lib

This file should contain line oracle_home_path/lib to ensure DataparkSearch will be able to open
libclntsh.so, the shared Oracle Client library

Make symbolic link:

ln -s /oracle8/app/oracle/product/8.0.5/network/admin/tnsnames.ora
/etc

Correct the indexer.conf file

You should specify DBName, DBUser, DBPass in order that DataparkSearch can connect to Oracle
Server. DBName is the service name, it should have the same name that was written to tnsnames.ora

file, DBUSer and DBPass are Oracle user and his password correspondingly. You can run indexer now.

Setting up search.cgi

Copy the file /usr/local/dpsearch/bin/search.cgi to apache_root/cgi-bin/search.cgi.
Then add two lines to apache’s http.conf file:

SetEnv ORACLE_HOME /oracle8/app/oracle/product/8.0.5
PassEnv ORACLE_HOME

69

Chapter 5. Storing data

Correct the search.htm to provide DBName, DBUser, DBPass information. search.cgi should work
now.

70

Chapter 6. Subsections

6.1. Tags
Tag is a special parameter which can be given for a set of documents. The main purpose of tags is to join
a number of documents into one group and then while doing search to select a group of documents to
search through.

You can use Tag command of indexer.conf to give some tag value for a server or server subset. While
doing search you can specify tag value to search through documents which tag matches given parameter
with t=xxx parameter, which can be passed from HTML form. Take a look into Section 6.1.1,
indexer.conf-dist and search.htm-dist for explanation and examples.

6.1.1. Tag command
Tag <string>

Use this field for your own purposes. For example for grouping some servers into one group, etc...
During search you’ll be able to limit URLs to be searched through by their tags. Can be set multiple
times before Server command and takes effect till the end of config file or till next Tag command.
Default values is an empty string.

6.1.2. TagIf command
TagIf <tag> [Match|NoMatch] [NoCase|Case] [String|Regex] <section> <arg> [<arg> ...]

Mark document by <tag> tag, if the value of section match the arg pattern given. The meaning of first
three optional parameters are exactly the same as for the Allow command (see Section 3.10.14).

Example

TagIf Docs regex Title Manual

6.1.3. Tags in SQL version
Tag type is CHAR. CHAR type allows to use some nice features. You can use ’_’ and ’%’ LIKE
wildcards in tag parameter when doing search. It makes possible that tag, like a category, does support an
idea of nesting. For example, documents with tag value "AB" can be found with both "A%" and "AB"
tag limits.

Tags also give a way to make an URL a member of multiple tag selections. Playing with LIKE wildcards
you can easily create two or more groups.

For example, tag "ABCDE" is the member of at least these selections:

71

Chapter 6. Subsections

_BCDE
A_CDE
AB_DE
ABC_E
ABCD_

Note: If you have big enough database and often use tag limits, it is useful to create an index by field
"tag" in "server" table. This index is not created by default.

CREATE INDEX srv_tag ON "server" ("tag");

By default, the length of tag field in url table is limited by 16 characters. If you need more, increase
this length before DB creating.

Note: For cache storage mode, you can use SQL’s wildcards only with indexer.

6.2. Categories
There is a categories editor written in Perl. You can get it in perl/cat_ed/ subdirectory of
DataparkSearch installation.

Categories are similar to tag feature, but nested. So you can have one category inside another and so on.

Basic points:

• there are up to 6 nested levels;

• every level occupies 2 hex or 36 base digits;

• parameter for setting category is path, which can be empty (means root category) or up to 10 chars
long (means deepest category).

You can also set up symlinks, e.g. categories that are actually links to other categories. link database
field is used for that. In the symlink last two characters should be @@. In example above Moto->BMW
is a link to Auto->BMW.

First notice that category in the server table is set to be 11 characters long. This means you can use a
valid character to keep track of categories. If you are going to keep a category tree of any size, then I
would suggest using the category editor. But anyways, here’s how it works.

You can use either the tag column or the category column in the server for the same thing. Or you can
categorize a site in two different ways. For example you could keep track of sites that are owned by a
certain company and then categorize them as well. You could use the tag option to keep of ownership and

72

Chapter 6. Subsections

use the category option for categories. When I explain the category option, it goes the same for the tag
option.

A category can be broken down any way you choose. But for it to work with the category editor, I believe
for now, you have to use two characters for each level. If you use the category editor you have the choice
to use a hex number going from 0-F or a 36 base number going from 0-Z. Therefore a top-level category
like ’Auto’ would be 01. If it has a subcategory like ’Ford’, then it would be 01 (the parent category) and
then ’Ford’ which we will give 01. Put those together and you get 0101. If ’Auto’ had another
subcategory named ’VW’, then its id would be 01 because it belongs to the ’Ford’ category and then 02
because it’s the next category. So its id would be 0102. If VW had a sub category called ’Engine’ then
it’s id would start at 01 again and it would get the ’VW’ id 02 and ’Auto’ id of 01, making it 010201.

If you want to search for sites under that category then you pass it cat=010201 in the url...so create a
select box and give like that:

<OPTION value="01">AUTO
<OPTION value="0101">Ford

and so on...

6.2.1. Category command
Category <string>

You may distribute documents between nested categories. Category is a string in hex number notation.
You may have up to 6 levels with 256 members per level. Empty category means the root of category
tree. Take a look into Section 6.2 for more information.

This command means a category on first level:
Category AA
This command means a category on 5th level:
Category FFAABBCCDD

6.2.2. CategoryIf command
CategoryIf <category> [Match|NoMatch] [NoCase|Case] [String|Regex] <section> <arg> [<arg> ...]

Mark document by <category> category, if the value of section match arg pattern given. The meaning
of first three optional parameters is exactly the same as for the Allow command (see Section 3.10.14).

Example

CategoryIf 010F regex Title "JOB ID"

73

Chapter 7. Languages support

7.1. Character sets

7.1.1. Supported character sets
DataparkSearch supports almost all known 8 bit character sets as well as some multi-byte charsets
including Korean euc-kr, Chinese big5 and gb2312, Japanese shift-jis, euc-jp and iso-2022-jp, as well as
UTF-8. Some multi-byte character sets are not supported by default, because the conversion tables for
them are rather large that leads to increase of the executable files size. See configure parameters to
enable support for these charsets.

DataparkSearch also supports the following Macintosh character sets: MacCE, MacCroatian, MacGreek,
MacRoman, MacTurkish, MacIceland, MacRomania, MacThai, MacArabic, MacHebrew, MacCyrillic,
MacGujarati.

Table 7-1. Language groups

Language group Character sets

Arabic cp864, ISO-8859-6, MacArabic, windows-1256

Armenian armscii-8

Baltic cp775, ISO-8859-13, ISO-8859-4, windows-1257

Celtic ISO-8859-14

Central European cp852, ISO-8859-16, ISO-8859-2, MacCE,
MacCroatian, MacRomania, windows-1250

Chinese Simplified GB2312, GBK

Chinese Traditional Big5, Big5-HKSCS, cp950, GB-18030

Cyrillic cp855, cp866, cp866u, ISO-8859-5, KOI-7,
KOI8-R, KOI8-U, MacCyrillic, windows-1251

Georgian geostd8

Greek cp869, cp875, ISO-8859-7, MacGreek,
windows-1253

Hebrew cp862, ISO-8859-8, MacHebrew, windows-1255

Icelandic cp861, MacIceland

Indian MacGujarati, tscii

Iranian ISIRI3342

Japanese EUC-JP, ISO-2022-JP, Shift_JIS

Korean EUC-KR

Lao cp1133

Nordic cp865, ISO-8859-10

South Eur ISO-8859-3

74

Chapter 7. Languages support

Tajik KOI8-T

Thai cp874, ISO-8859-11, MacThai

Turkish cp1026, cp857, ISO-8859-9, MacTurkish,
windows-1254

Unicode sys-int, UTF-16BE, UTF-16LE, UTF-8

Vietnamese VISCII, windows-1258

Western cp437, cp500, cp850, cp860, cp863, IBM037,
ISO-8859-1, ISO-8859-15, MacRoman,
US-ASCII, windows-1252

7.1.2. Character sets aliases
Each charset is recognized by a number of its aliases. Web servers can return the same charset in
different notation. For example, iso-8859-2, iso8859-2, latin2 are the same charsets. There is support for
charsets names aliases which search engine can understand:

Table 7-2. Charsets aliases

armscii-8 armscii-8, armscii8

Big5 big-5, big-five, big5, bigfive, cn-big5, csbig5

Big5-HKSCS big5-hkscs, big5_hkscs, big5hk, hkscs

cp1026 1026, cp-1026, cp1026, ibm1026

cp1133 1133, cp-1133, cp1133, ibm1133

cp437 437, cp437, ibm437

cp500 500, cp500, ibm500

cp775 775, cp775, ibm775

cp850 850, cp850, cspc850multilingual, ibm850

cp852 852, cp852, ibm852

cp855 855, cp855, ibm855

cp857 857, cp857, ibm857

cp860 860, cp860, ibm860

cp861 861, cp861, ibm861

cp862 862, cp862, ibm862

cp863 863, cp863, ibm863

cp864 864, cp864, ibm864

cp865 865, cp865, ibm865

cp866 866, cp866, csibm866, ibm866

cp866u 866u, cp866u

75

Chapter 7. Languages support

cp869 869, cp869, csibm869, ibm869

cp874 874, cp874, cs874, ibm874, windows-874

cp875 875, cp875, ibm875, windows-875

cp950 950, cp950, windows-950

EUC-JP cseucjp, euc-jp, euc_jp, eucjp, ujis, x-euc-jp

EUC-KR cseuckr, euc-kr, euc_kr, euckr

GB-18030 gb-18030, gb18030

GB2312 chinese, cn-gb, csgb2312, csiso58gb231280,
euc-cn, euc_cn, euccn, gb2312, gb_2312-80,
iso-ir-58

GBK cp936, gbk, windows-936

geostd8 geo8-gov, geostd8

IBM037 037, cp037, csibm037, ibm037

ISIRI3342 isiri-3342, isiri3342

ISO-2022-JP csiso2022jp, iso-2022-jp

ISO-8859-1 cp819, csisolatin1, ibm819, iso-8859-1,
iso-ir-100, iso8859-1, iso_8859-1,
iso_8859-1:1987, l1, latin1

ISO-8859-10 csisolatin6, iso-8859-10, iso-ir-157, iso8859-10,
iso_8859-10, iso_8859-10:1992, l6, latin6

ISO-8859-11 iso-8859-11, iso8859-11, iso_8859-11,
iso_8859-11:1992, tactis, thai, tis-620, tis620

ISO-8859-13 iso-8859-13, iso-ir-179, iso8859-13, iso_8859-13,
l7, latin7

ISO-8859-14 iso-8859-14, iso-ir-199, iso8859-14, iso_8859-14,
iso_8859-14:1998, l8, latin8

ISO-8859-15 iso-8859-15, iso-ir-203, iso8859-15, iso_8859-15,
iso_8859-15:1998, l9, latin0, latin9

ISO-8859-16 iso-8859-16, iso-ir-226, iso8859-16, iso_8859-16,
iso_8859-16:2000

ISO-8859-2 csisolatin2, iso-8859-2, iso-ir-101, iso8859-2,
iso_8859-2, iso_8859-2:1987, l2, latin2

ISO-8859-3 csisolatin3, iso-8859-3, iso-ir-109, iso8859-3,
iso_8859-3, iso_8859-3:1988, l3, latin3

ISO-8859-4 csisolatin4, iso-8859-4, iso-ir-110, iso8859-4,
iso_8859-4, iso_8859-4:1988, l4, latin4

ISO-8859-5 csisolatincyrillic, cyrillic, iso-8859-5, iso-ir-144,
iso8859-5, iso_8859-5, iso_8859-5:1988

ISO-8859-6 arabic, asmo-708, csisolatinarabic, ecma-114,
iso-8859-6, iso-ir-127, iso8859-6, iso_8859-6,
iso_8859-6:1987

76

Chapter 7. Languages support

ISO-8859-7 csisolatingreek, ecma-118, elot_928, greek,
greek8, iso-8859-7, iso-ir-126, iso8859-7,
iso_8859-7, iso_8859-7:1987

ISO-8859-8 csisolatinhebrew, hebrew, iso-8859-8, iso-ir-138,
iso8859-8, iso_8859-8, iso_8859-8:1988

ISO-8859-9 csisolatin5, iso-8859-9, iso-ir-148, iso8859-9,
iso_8859-9, iso_8859-9:1989, l5, latin5

KOI-7 iso-ir-37, koi-7, koi7

KOI8-R cskoi8r, koi8-r, koi8r

KOI8-T koi8-t, koi8t

KOI8-U koi8-u, koi8u

MacArabic macarabic

MacCE cmac, macce, maccentraleurope, x-mac-ce

MacCroatian maccroation

MacCyrillic maccyrillic, x-mac-cyrillic

MacGreek macgreek

MacGujarati macgujarati

MacHebrew machebrew

MacIceland macisland

MacRoman csmacintosh, mac, macintosh, macroman

MacRomania macromania

MacThai macthai

MacTurkish macturkish

Shift_JIS csshiftjis, ms_kanji, s-jis, shift-jis, shift_jis, sjis,
x-sjis

sys-int sys-int

tscii tscii

US-ASCII ansi_x3.4-1968, ascii, cp367, csascii, ibm367,
iso-ir-6, iso646-us, iso_646.irv:1991, us, us-ascii

UTF-16BE utf-16, utf-16be, utf16, utf16be

UTF-16LE utf-16le, utf16le

UTF-8 utf-8, utf8

VISCII csviscii, viscii, viscii1.1-1

windows-1250 cp-1250, cp1250, ms-ee, windows-1250

windows-1251 cp-1251, cp1251, ms-cyr, ms-cyrl, win-1251,
win1251, windows-1251

windows-1252 cp-1252, cp1252, ms-ansi, windows-1252

windows-1253 cp-1253, cp1253, ms-greek, windows-1253

windows-1254 cp-1254, cp1254, ms-turk, windows-1254

windows-1255 cp-1255, cp1255, ms-hebr, windows-1255

77

Chapter 7. Languages support

windows-1256 cp-1256, cp1256, ms-arab, windows-1256

windows-1257 cp-1257, cp1257, winbaltrim, windows-1257

windows-1258 cp-1258, cp1258, windows-1258

7.1.3. Recoding
indexer recodes all documents to the character set specified in the LocalCharset command in your
indexer.conf file. Internally recoding is implemented using Unicode. Please note that if some
recoding can’t convert a character directly from one charset to another, DataparkSearch will use HTML
numeric character references to escape this character (i.e. in form &#NNN; where NNN - a character
code in Unicode). Thus, for any LocalCharset you do not lost any information about indexed
documents, but on LocalCharset selection depend the database volume you will get after indexing.

7.1.4. Recoding at search time
You may display search results in any charset supported by DataparkSearch. Use BrowserCharset
command in search.htm to select charset for search results. This charset may be different from
LocalCharset specified. All recodings will done automatically.

7.1.5. Document charset detection
indexer detects document character set in this order:

1. "Content-type: text/html; charset=xxx"

2. <META NAME="Content-Type" CONTENT="text/html; charset=xxx">

Selection of this variant may be switch off by command: GuesserUseMeta no in your
indexer.conf.

3. Defaults from "Charset" field in Common Parameters

7.1.6. Automatic charset guesser
DataparkSearch has an automatic charset and language guesser. It currently recognizes more than 100
various charsets and languages. Charset and language detection is implemented using "N-Gram-Based
Text Categorization" (http://www.maxime.net.ru/doc/guess.en.shtml) technique. There is a number of so
called "language map" files, one for each language-charset pair. They are installed under
/usr/local/dpsearch/etc/langmap/ directory by default. Take a look there to check the list of
currently provided charset-language pairs. Guesser works fine for texts bigger than 500 characters.
Shorter texts may not be guessed well.

78

Chapter 7. Languages support

7.1.6.1. LangMapFile command

Load language map for charset and language guesser from the given file. You may specify either absolute
file name or a name relative to DataparkSearch /etc directory. You may use several LangMapFile
commands.

LangMapFile langmap/en.ascii.lm

7.1.6.2. Build your own language maps

To build your own language map use dpguesser utility. In addition, your need to collect file with
language samples in charset desired. For new language map creation, use the following command:

dpguesser -p -c charset -l language < FILENAME > language.charset.lm

You can also use dpguesser utility for guessing document’s language and charset by existing language
maps. To do this, use following command:

dpguesser [-n maxhits] < FILENAME

For some languages, it may be used few different charset. To convert from one charset supported by
DataparkSearch to another, use dpconv utility.

dpconv [OPTIONS] -f charset_from -t charset_to [configfile] < infile > outfile

You may also specyfy -e switch for dpconv to use HTML escape entities for input, and -E switch - for
output.

By default, both dpguesser and dpconv utilities is installed into /usr/local/dpsearch/sbin/

directory.

DataparkSearch can update language and charset maps automatically while indexing, if remote server is
supply exactly specified language and charset with pages. To enable this function, specify the following
command in your indexer.conf file:

LangMapUpdate yes

By default, DataparkSearch uses only first 8192 bytes of each file indexed to detect language and charset.
You may change this value using GuesserBytes command. Use value of 0 to use all text from document
indexed.

GuesserBytes 16384

79

Chapter 7. Languages support

7.1.7. Default charset
Use RemoteCharset command in indexer.conf to choose the default charset of indexed servers.

7.1.8. Default Language
You can set default language for Servers by using DefaultLang indexer.conf variable. This is useful
while restricting search by URL language.

DefaultLang <string>

Default language for server. Can be used if you need language restriction while doing search.

DefaultLang en

7.1.9. LocalCharset command
Defines the charset which will be used to store data in database. All other character sets will be recoded
into given charset. Take a look into Section 7.1 for detailed explanation how to choose a LocalCharset
depending on languages used on your site(s). This command should be used once and takes global effect
for the config file. Take a look into documentation to check whole list of supported charsets. Default
LocalCharset is iso-8859-1 (latin1).

LocalCharset koi8-r

7.1.10. ForceIISCharset1251 command
This option is useful for users which deals with Cyrillic content and broken (or misconfigured ?)
Microsoft IIS web servers, which tends to not report charset correctly. This is really dirty hack, but if this
option is turned on it is assumed that all servers which reports as ’Microsoft’ or ’IIS’ have content in
Windows-1251 charset. This command should be used only once in configuration file and takes global
effect. Default: no

ForceIISCharset1251 yes

7.1.11. RemoteCharset command
RemoteCharset <charset>

<charset> is default character set for the server in next Server, Realm or Subnet command(s). This is
required only for "bad" servers that do not send information about charset in header: "Content-type:
text/html; charset=some_charset" and do not have <META NAME="Content" Content="text/html;

80

Chapter 7. Languages support

charset="some_charset"> Can be set before every Server, Realm or Subnet command and takes effect
till the end of config file or till next RemoteCharset command. Default value is iso-8859-1 (latin1).

RemoteCharset iso-8859-5

7.1.12. URLCharset command
URLCharset <charset>

<charset> is character set for the URL argument in next Server, Realm or URL command(s). This
command specify character set only for arguments in commands follow and havn’t effect on charset
detection for indexing pages. Have less priority than RemoteCharset. Can be set before every Server,
Realm or URL command and takes effect till the end of config file or till next URLCharset command.
Default value is ISO-8859-1 (latin1).

URLCharset KOI8-R

7.1.13. CharsToEscape command
CharsToEscape "\"&<>![]"

Use this command in your search template to specify the list of characters to escape for $&(x) search
template meta-variables.

7.2. Making multi-language search pages
Original idea instructions by Craig Small <csmall@eye-net.com.au>. Some minor changes by Alex
Barkov <bar@mnogosearch.org>.

It is often required to allow for different languages which means different search.htm files depending on
what language users have set in their browser.

Further installation should be done in three steps.

1. Installing several templates.

The general idea is to have one search.php or search.cgi file and then many
search.[language].htm files. You also have a search.htm file (usually a symlink to
search.en.htm) for the default.

If the name of the script is search.en.php (or search.en.cgi) then both CGI and PHP
front-ends will be looking for /somewhere/etc/search.en.htm assuming that
/somewhere/etc/ is /etc/ directory of DataparkSearch installation.

81

Chapter 7. Languages support

You would then populate /somewhere/etc/ with all the search.htm files so /somewhere/etc

has:

search.en.htm English template

search.pl.htm Polish template

search.ru.htm Russian template

search.htm Symlink to English template

2. Installing front-ends

Create a directory and put search.cgi or search.php there (along with the include files if you
want, but I fiddle with the php include_path and put them elsewhere).

Then setup the symlinks:

search.cgi Original file

search.en.cgi symlink

search.pl.cgi symlink

search.ru.cgi symlink

Or in the case of PHP front-end:

search.php Original file

search.en.php symlink

search.pl.php symlink

search.ru.php symlink

3. Configuring Apache

Then you need to make apache understand what weirdness you are doing here. So you need to get
negotiation happening and some magic with the indexes. I used .htaccess file but you could stick
it in the apache config proper.

AddLanguage en .en
AddLanguage pl .pl
AddLanguage ru .ru

DirectoryIndex search search.cgi (or search.php)
Options FollowSymlinks MultiViews

82

Chapter 7. Languages support

7.2.1. How does it work?

1. You type url http://myhost/mydir/search no slash at end !!

2. Your browser says "I like english (well language negotiation en) "

3. Apache finds search.en.cgi (DirectoryIndex gives search, MultiViews gives the en.cgi)

4. The SCRIPT_FILENAME which is used in both search.cgi and search.php is
somepath/search.en.cgi

Note: Most other variables will give the wrong result, either search or search.cgi)

5. Your hack in config.inc means you will use search.en.htm.

So what happens if the user wants, say, German? Well there is no search.de.cgi (search.de.php)
so the first bit of DirectoryIndex fails, so it tries the second one, search.php OK, they get the page in
English, but it’s better than a 404.

This does work, you may need some more apache fiddling to get negotiation to work because I am
testing this on a server that already has it setup, so I may have missed something.

7.2.2. Possible troubles
You may get some language negotiation problems caused by:

• Dumb caches that don’t follow standards

• Dumb versions of browsers that don’t follow standards

• Dumb users fiddling with language settings and putting weird stuff in.

The apache team is working on some workarounds for most of these, if possible. For a reasonably
heavily used web site you can expect an email about it once a week or so.

7.3. Segmenters for Chinese, Japanese, Korean and Thai
languages

Chinese, Japanese, Korean and Thai writings have no spaces between words in phrase as in western
languages. Thus, while indexing documents in these languages, it’s need additionally to segment phrases
into words.

Sometimes, a text in Chinese, Japanese, Korean or Thai can be typed with a space between every
hieroglyph for better view. In this case, you may use "ResegmentChinese yes", "ResegmentJapanese
yes", "ResegmentKorean yes" or "ResegmentThai yes" commands to index a text typed in such way.

83

Chapter 7. Languages support

With resegmenting enabled, all spaces between characters are removing and then all the text is
segmenting again using DataparkSearch’s segmenters (see below).

7.3.1. Japanese language phrase segmenter
For Japanese language phrase segmenting the one of ChaSen (http://chasen.aist-nara.ac.jp/), a
morphological system for Japanese language, or MeCab
(http://cl.aist-nara.ac.jp/~taku-ku/software/mecab), a Japanese morphological analyser, is used. Thus,
you need one of these systems to be installed before DataparkSearch’s configuring and building.

To enable Japanese language phrase segmenting use --enable-chasen or --enable-mecab switch
for configure.

7.3.2. Chinese language phrase segmenter
For Chinese language phrase segmenting the frequency dictionary of Chinese words is used. And
segmenting itself is done by dynamic programming method to maximize the cumulative frequency of
produced words.

To enable Chinese language phrase segmenting it’s need to enable the support for Chinese charsets while
DataparkSearch configuring, and specify the frequency dictionary of Chinese words by
LoadChineseList command in indexer.conf file.

LoadChineseList [charset dictionaryfilename]

By default, the GB2312 charset and mandarin.freq dictionary is used.

Note: You need to download frequency dictionaries from our web site, or from one of our mirrors, see
Section 1.2.

7.3.3. Thai language phrase segmenter
For Thai language phrase segmenting the frequency dictionary of Thai words is used. And segmenting
itself is done as for Chinese language.

To enable Thai language phrase segmenting it’s need to specify the frequency dictionary of Thai words
by LoadThaiList command in indexer.conf file.

LoadThaiList [charset dictionaryfilename]

By default, the tis-620 charset and thai.freq dictionary is used.

Note: You need to download frequency dictionaries from our web site, or from one of our mirrors, see
Section 1.2.

84

Chapter 7. Languages support

7.3.4. Korean language phrase segmenter
For Korean language phrase segmenting the frequency dictionary of Korean words is used. And
segmenting itself is done as for Chinese language.

To enable Korean language phrase segmenting it’s need to specify the frequency dictionary of Korean
words by LoadKoreanList command in indexer.conf file.

LoadKoreanList [charset dictionaryfilename]

By default, the euc-kr charset and korean.freq dictionary is used.

Note: You need to download frequency dictionaries from our web site, or from one of our mirrors, see
Section 1.2.

7.4. Multilingual servers support
Some web-servers can handle language negotiation for documents language. In this case, for one URL
exist several copies in different languages.

For indexing all pages of such servers, VaryLang command is used. It specify list of languages
separated by spaces. These languages will used for indexing URL with multi-language versions.

Usage example:

VaryLang "ru en fr"

index will fetch all document copies in Russian, English and French languages.

85

Chapter 8. Searching documents

8.1. Using search front-ends

8.1.1. Performing search
Open your preferred front-end in Web browser:

http://your.web.server/path/to/search.cgi

To find something just type words you want to find and press SUBMIT button. For example: mysql
odbc. DataparkSearch will find all documents that contain word mysql and/or word odbc. Best
documents having bigger weights will be displayed first.

To find a phrase, simple enclose it in quotas. For example: "uncontrollable sphere".

8.1.2. Search parameters
DataparkSearch front-ends support the following parameters given in CGI query string. You may use
them in HTML form on search page.

Table 8-1. Available search parameters

q text parameter with search query

vq text parameter with search query in the Verity
Query Language (prefix variant), see Section
8.1.7. To use this parameter, you need to leave
empty the q parameter.

s characters sequence, specify results sorting order.
Small caps specify ascendant sorting, upper caps -
descendant. Following characters can be used: R or
r - for sorting by relevance, P or p - for sorting by
PopularityRank, I or i - for sorting by Importance
(multiplication of relevance and PopularityRank),
A or a - for sorting by sum of relevance and
PopularityRank, D or d - for sorting by last
modified date. Default value: RP.

86

Chapter 8. Searching documents

ps page size, number of search results displayed on
one page, 20 by default. Maximum page size is
100. This value does not allow passing very big
page sizes to avoid server overload and might be
changed with MAX_PS definition in search.c.

np page number, starting by 0, 0 by default (first
page)

p page number starting by 1. Suitable for use with
OpenSearch

m search mode. Currently "all","any", "near" and
"bool" values are supported.

wm word match. You may use this parameter to choose
word match type. There are "wrd", "beg", "end"
and "sub" values that respectively mean whole
word, word beginning, word ending and word
substring match.

t Tag limit. Limits search through only documents
with given tag. This parameter has the same effect
with -t indexer option

c Category limit. Take a look into Section 6.2 for
details.

ul URL limit, URL substring to limit search through
subsection of database. It supports SQL % and _
LIKE wildcards. This parameter has the same
effect with -u indexer option. If relative URL is
specified search.cgi inserts % signs before and
after "ul" value when compiled with SQL support.
It allows to write URL substring in HTML from to
limit search, for example <OPTION
VALUE="/manual/"> instead of
VALUE="%/manual/%". When full URL with
schema is specified search.cgi adds % sign
only after this value. For example for <OPTION
VALUE="http://localhost/"> search.cgi will
pass http://localhost/% in SQL LIKE
comparison. Not supported for cache storage
mode.

wf Weight factors. It allows changing different
document sections weights at a search time.
Should be passed in the form of hex number.
Check the explanation below.

g Language limit. Language abbreviation to limit
search results by url.lang field.

tmplt Template filename (without path). To specify
template file other standard search.htm.

87

Chapter 8. Searching documents

type Content-Type limit. Content-type to limit search
results by url.content_type field. For cache mode
storage this should be exact match. For
SQL-modes it may be sql-like pattern.

sp Words forms limit. =1, if you need search all
forms (include spelling suggestions, if aspell
support is enabled) for entered words. =0, if you
need search only entered words. Default value is 1.
You may switch it to 0 for faster search.

sy Synonyms limit. =1, if you need add synonyms for
entered words. =0, do not use synonyms. Default
value is 1. You may switch it to 0 for faster search.

empty Use limits to show results if no query words is
entered (only for cache mode). =yes, to show
results from limits, if no query words is entered
(default). =no, do not show results from limits, if
no query words is entered.

dt Limit by time. Three types is supported. If dt is
set to back, that means you want to limit result to
recent pages, and you should specify this
recentness in variable dp.
If dt is set to er, that means the search will be
limited to pages newer or older than date given.
Variable dx is newer/older flag (1 means newer or
after, -1 means older or before). Date is specified
in variables dm, dy, dd.

If dt is set to range, that means search within
given range of dates. Variables db and de are
used here and stands for beginning and end date.

All times in cache mode measured in a hour
precision.

dp Limit by recentness, if dt value is back. It should
be specified in xxxA[yyyB[zzzC]] format.
Spaces are allowed between xxx and A and yyy
and so on). xxx, yyy, zzz are numbers (can be
negative!), A, B, C can be one of the following
(the letters are the same as in strptime/strftime
functions): s - second, M - minute, h - hour, d -
day, m - month, y - year. Examples:
4h30M - 2 hours and 30 minutes

1Y6m-15d - 1 year and six month minus 15 days

1h-60M+1s - 1 hour minus 60 minutes plus 1 second

88

Chapter 8. Searching documents

dx is newer/older flag (1 means newer or after, -1
means older or before), if dt value is er.

dm Month, if dt value is er. 0 - January, 1 - February,
... 11 - December.

dy Year, if dt value is er. Four digits. For example,
1999 or 2001.

dd Day, if dt value is er. 1...31.

db Beginning date, if dt value is range. Each date is
string in the form dd/mm/yyyy, there dd is day,
mm is month and yyyy is four-digits year.

de End date, if dt value is range. Each date is string
in the form dd/mm/yyyy, there dd is day, mm is
month and yyyy is four-digits year.

8.1.3. Changing different document parts weights at search time
It is possible to pass "wf" HTML form variable to search.cgi. "wf" variable represents weight factors
for specific document parts. Currently body,title,keywords,description,url parts, crosswords as well as
user defined META and HTTP headers are supported. Take a look into "Section" part of
indexer.conf-dist.

To be able use this feature it is recommended to set different sections IDs for different document parts in
"Section" indexer.conf command. Currently up to 256 different sections are supported.

Imagine that we have these default sections in indexer.conf:

Section body 1 256
Section title 2 128
Section keywords 3 128
Section description 4 128

"wf" value is a string of hex digits ABCD. Each digit is a factor for corresponding section weight. The
most right digit corresponds to section 1. For the given above sections configuration:

D is a factor for section 1 (body)
C is a factor for section 2 (title)
B is a factor for section 3 (keywords)
A is a factor for section 4 (description)

Examples:

wf=0001 will search through body only.

wf=1110 will search through title,keywords,description but not
through the body.

89

Chapter 8. Searching documents

wf=F421 will search through:
Description with factor 15 (F hex)
Keywords with factor 4
Title with factor 2
Body with factor 1

By default, if "wf" variable is omitted in the query, all sections factors are 1, it means all sections have
the same weight.

By default, DataparkSearch uses fast relevance calculation. In this case, only zero and non-zero values
for "wf" variable takes an effect (this allows only include/exclude specified sections in search results). To
enable full support for dynamic section weight, you need specify --enable-fullrel option for
configure when configuring DataparkSearch.

8.1.4. Using front-end with an shtml page
When using a dynamic shtml page containing SSI that calls search.cgi, i.e. search.cgi is not called
directly as a CGI program, it is necessary to override Apache’s SCRIPT_NAME environment attribute so
that all the links on search pages lead to the dynamic page and not to search.cgi.

For example, when a shtml page contains a line <--#include virtual="search.cgi">,
SCRIPT_NAME variable will still point to search.cgi, but not to the shtml page.

To override SCRIPT_NAME variable we implemented a DPSEARCH_SELF variable that you may add
to Apache’s httpd.conf file. Thus search.cgi will check DPSEARCH_SELF variable first and then
SCRIPT_NAME. Here is an example of using DPSEARCH_SELF environment variable with
SetEnv/PassEnv Apache’s httpd.conf command:

SetEnv DPSEARCH_SELF /path/to/search.cgi
PassEnv DPSEARCH_SELF

8.1.5. Using several templates
It is often required to use several templates with the same search.cgi. There are actually several ways
to do it. They are given here in the order how search.cgi detects template name.

1. search.cgi checks environment variable DPSEARCH_TEMPLATE. So you can put a path to
desired search template into this variable.

2. search.cgi checks path info part of URL available in the PATH_INFO environment variable. E.g.
http://localhost/cgi-bin/search.cgi/search1.html uses search1.htm as its
template, and http://localhost/cgi-bin/search.cgi/search2.html uses search2.htm,
and so on.

3. search.cgi also supports Apache internal redirect. It checks REDIRECT_STATUS and
REDIRECT_URL environment variables. To activate this way of template usage you may add these
lines in Apache srm.conf:

90

Chapter 8. Searching documents

AddType text/html .zhtml
AddHandler zhtml .zhtml
Action zhtml /cgi-bin/search.cgi

Put search.cgi into your /cgi-bin/ directory. Then put HTML template into your site directory
structure under any name with .zthml extension, for example template.zhtml. Now you may open
search page: http://www.site.com/path/to/template.zhtml You may use any unused
extension instead of .zthml of course.

4. If the above two ways fail, search.cgi opens a template which has the same name with the script
being executed using SCRIPT_NAME environment variable. search.cgi will open a template
ETC/search.htm, search1.cgi will open ETC/search1.htm and so on, where ETC is
DataparkSearch /etc directory (usually /usr/local/dpsearch/etc). So, you can use the same
search.cgi with different templates without having to recompile it. Just create one or several hard
or symbolic links for search.cgi or copy it and put corresponding search templates into /etc
directory of DataparkSearch installation.

Take a look also into Making multi-language search pages section

8.1.6. Advanced boolean search
If you want more advanced results you may use query language. You should select "bool" search mode in
the search from.

DataparkSearch understands the following boolean operators:

AND or & - logical AND. For example, "mysql & odbc" or "mysql AND odbc" - DataparkSearch
will find any URLs that contain both "mysql" and "odbc".

NEAR - NEAR operator, identical to AND operator, but come true if both words are within 16 words of
each other. For example, "mysql NEAR odbc" - DataparkSearch will find any URLs that contain both
"mysql" and "odbc" within 16 words of each other.

ANYWORD or * - ANYWORD operator, identical to AND operator, but come true if both words have any
one word between and left operand have lesser position than right operand. For example, "mysql *
odbc" - DataparkSearch will find any URLs that contain both "mysql" and "odbc" within any word
between, for example, any document with "mysql via odbc" phrase.

OR or | - logical OR. For example, "mysql | odbc" or "mysql OR odbc" - DataparkSearch will
find any URLs that contain word "mysql" or word "odbc".

NOT or ~ - logical NOT. For example, "mysql & ~ odbc" or "mysql AND NOT odbc" -
DataparkSearch will find URLs that contain word "mysql" and do not contain word "odbc" at the same
time. Note that ~ just excludes given word from results. Query "~ odbc" will find nothing!

() - group command to compose more complex queries. For example "(mysql | msql) & ~ postgres".
Query language is simple and powerful at the same time. Just consider query as usual boolean expression.

91

Chapter 8. Searching documents

8.1.7. The Verity Query Language, VQL
Only the prefix variant of the Verity Query Language is supported by DataparkSearch.

Also, only the following subset of VQL operators is supported by DataparkSearch:

Table 8-2. VQL operators supported by DataparkSearch

<ACCRUE> equal to OR operator in boolean mode.

<AND> equal to AND operator in boolean mode.

<ANY> equal to OR operator in boolean mode.

<NEAR> equal to NEAR operator in boolean mode.

<NOT> equal to NOT operator in boolean mode.

<OR> equal to OR operator in boolean mode.

<PHRASE> equal to a phrase in boolean mode.

<WORD> is considered as an empty operator.

8.1.8. How search handles expired documents
Expired documents are still searchable with their old content.

8.2. mod_dpsearch module for Apache httpd
Since version 4.19 DataparkSearch also provide the mod_dpsearch.so module for Apache web server.

8.2.1. Why using mod_dpsearch

• As for searchd (see Section 5.4.1), mod_dpsearch can hold preloaded in memory some data to
speed-up searches.

• In additional, mod_dpsearch hold in memory last used search template. This save time on template
loading and parsing for every request since second.

• As a plus, the mod_dpsearch itself already loaded into memory when search request come from user,
while search.cgi usualy loads from disk for every search request.

8.2.2. Configuring mod_dpsearch

To enable this extension, add --enable-apache-module switch to configure. In addition, the
mod_dpsearch.so shared library will be created and installed into Apache tree. Then you need activate

92

Chapter 8. Searching documents

this module by adding following line into Apache configuration file:

LoadModule dpsearch_module libexec/mod_dpsearch.so
AddModule mod_dpsearch.c

<Ifmodule mod_dpsearch.c>
DataparkSearchdConf /usr/local/dpsearch/etc/modsearchd.conf

<Location /search>
SetHandler dpsearch
DataparkSearchTemplate /usr/local/dpsearch/etc/modsearch.htm

</Location>
<Location /storedoc>

SetHandler dpstoredoc
DataparkStoredocTemplate /usr/local/dpsearch/etc/modstoredoc.htm

</Location>
</IfModule>

There are three configuration directives supported by this module: DataparkSearchdConf,
DataparkSearchTemplate and DataparkStoredocTemplate . The DataparkSearchdConf
optional directive specify a searchd related configuration file. It may be only one per server. The
DataparkSearchdTemplate directive specify a search template file. The
DataparkStoredocTemplate directive specify a storedoc template file. There can be several
templates specified per servers, by one per location. If DataparkSearchdConf directive specified, there
no need specify DBAddr command in templates.

8.3. How to write search result templates
DataparkSearch users have an ability to customize search results (output of search.cgi). You may do
it by providing template file search.htm, which should be located in /etc/ directory of DataparkSearch
installation.

Template file is usual HTML file, which is divided into sections. Keep in mind that you can just open
template file in your favorite browser and get the idea of how the search results will look like.

Note: Each templates line should not exceed 1024 bytes.

Each section begins with <!--sectionname--> and ends with <!--/sectionname--> delimiters, which
should reside on a separate line.

Each section consists of HTML formatted text with special meta symbols. Every meta symbol is
replaced by it’s corresponding string. You can think of meta symbols as of variables, which will have
their appropriate values while displaying search results.

Format of variables is the following:

$(x) - plain value
$&(x) - HTML-escaped value and search words highlighted.

93

Chapter 8. Searching documents

$*(x) - HTML-escaped value.
$%(x) - value escaped to be used in URLs
$^(x) - search words highlighted.
$(x:128) - value truncated to the first 128 bytes, if longer.
$(x:UTF-8) - value written in UTF-8 charset. You may specify any charset supported.
$(x:128:right) - value truncated to the last 128 bytes, if longer.

8.3.1. Template sections
The following section names are defined:

8.3.1.1. TOP section

This section is included first on every page. You should begin this section with <HTML><HEAD> and
so on. Also, this is a definitive place to provide a search form. There are two special meta symbols you
may use in this section:

$(self) - argument for FORM ACTION tag
$(q) - a search query
$(cat) - current category value
$(tag) - current tag value
$(rN) - random number (here N is a number)

If you want to include some random banners on your pages, please use $(rN). You should also place
string like "RN xxxx" in ’variables’ section (see below), which will give you a range 0..xxxx for $(rN).
You can use as many up random numbers as you want.

Example: $(r0), $(r1), $(r45) etc.

Simple top section should be like this:

<!--top-->
<HTML>
<HEAD>
<TITLE>Search Query: $(q)</TITLE>
</HEAD>
<BODY>

<FORM METHOD=GET ACTION="$(self)">
<INPUT TYPE="hidden" NAME="ul" VALUE="">
<INPUT TYPE="hidden" NAME="ps" VALUE="20">
Search for: <INPUT TYPE="text" NAME="q" SIZE=30
VALUE="$&(q)">
<INPUT TYPE="submit" VALUE="Search!">

</FORM>
<!--/top-->

94

Chapter 8. Searching documents

There are some variables defined in FORM.

lang limit results by language. Value is a two-letter language code.

<SELECT NAME="lang">
<OPTION VALUE="en" SELECTED="$(lang)">English
.....
</SELECT>

ul is the filter for URL. It allows you to limit results to particular site or section etc. For example, you
can put the following in the form

Search through:

<SELECT NAME="ul">
<OPTION VALUE="" SELECTED="$(ul)">Entire site
<OPTION VALUE="/manual/" SELECTED="$(ul)">Manual
<OPTION VALUE="/products/" SELECTED="$(ul)">Products
<OPTION VALUE="/support/" SELECTED="$(ul)">Support
</SELECT>

to limit your search to particular section.

The expression SELECTED="$(ul)" in example above (and all the examples below) allows the selected
option to be reproduced on next pages. If search front-end finds that expression it prints the string
SELECTED only in the case OPTION VALUE given is equal to that variable.

ps is default page size (e.g. how many documents to display per page).

q is the query itself.

pn is ps*np. This variable is not used by DataparkSearch, but may be useful for example in <!INCLUDE
CONTENT="..."> directive if you want to include result produced by another search engine.

Following variables are concerning advanced search capabilities:

• m can be used to choose default search type if your query consists of more than one word. In case
m=any, the search will try to find at least one word, in case m=all, the search is more restrictive - all
words should be in the document. If m=bool query string is considered as a boolean expression.

• dt is time limiting type. There are three types supported.

If ’dt’ is ’back’, that means you want to limit result to recent pages, and you should specify this
"recentness" in variable ’dp’ in the form xxxA[yyyB[zzzC]]. Spaces are allowed between xxx and A
and yyy and so on). xxx, yyy, zzz are numbers (can be negative!) A, B, C can be one of the following
(the letters are the same as in strptime/strftime functions):

s - second
M - minute
h - hour
d - day
m - month
y - year

95

Chapter 8. Searching documents

Examples:

4h30m - 2 hours and 30 minutes
1Y6M-15d - 1 year and six month minus 15 days
1h-60m+1s - 1 hour minus 60 minutes plus 1 second

If ’dt’ is ’er’ (which is short for newer/older), that means the search will be limited to pages newer or
older than date given. Variable dx is newer/older flag (1 means "newer" or "after", -1 means "older" or
"before"). Date is separated into fields as follows:

’dm’ - month (0 - January, 1 - February, .., 11 - December)
’dy’ - year (four digits, for example 1999 or 2000)
’dd’ - day (1...31)

If ’dt’ is ’range’, that means search within given range of dates. Variables ’db’ and ’de’ are used here
and stands for beginning and end date. Each date is string in the form dd/mm/yyyy, there dd is day,
mm is month and yyyy is four-digits year.

This is the example of FORM part where you can choose between different time limiting options.

<!-- ’search with time limits’ options -->
<TR><TD>
<TABLE CELLPADDING=2 CELLSPACING=0 BORDER=0>
<CAPTION>
Limit results to pages published within
a specified period of time.

<I>(Please select only one option)
</I>
</CAPTION>
<TR>
<TD VALIGN=center><INPUT TYPE=radio NAME="dt"
VALUE="back" CHECKED></TD>
<TD><SELECT NAME="dp">
<OPTION VALUE="0" SELECTED="$(dp)">anytime
<OPTION VALUE="10M" SELECTED="$(dp)">in the last ten minutes
<OPTION VALUE="1h" SELECTED="$(dp)">in the last hour
<OPTION VALUE="7d" SELECTED="$(dp)">in the last week
<OPTION VALUE="14d" SELECTED="$(dp)">in the last 2 weeks
<OPTION VALUE="1m" SELECTED="$(dp)">in the last month
<OPTION VALUE="3m" SELECTED="$(dp)">in the last 3 months
<OPTION VALUE="6m" SELECTED="$(dp)">in the last 6 months
<OPTION VALUE="1y" SELECTED="$(dp)">in the last year
<OPTION VALUE="2y" SELECTED="$(dp)">in the last 2 years
</SELECT>
</TD>
</TR>
<TR>
<TD VALIGN=center><INPUT type=radio NAME="dt" VALUE="er">
</TD>
<TD><SELECT NAME="dx">
<OPTION VALUE="1" SELECTED="$(dx)">After

96

Chapter 8. Searching documents

<OPTION VALUE="-1" SELECTED="$(dx)">Before
</SELECT>

or on

<SELECT NAME="dm">
<OPTION VALUE="0" SELECTED="$(dm)">January
<OPTION VALUE="1" SELECTED="$(dm)">February
<OPTION VALUE="2" SELECTED="$(dm)">March
<OPTION VALUE="3" SELECTED="$(dm)">April
<OPTION VALUE="4" SELECTED="$(dm)">May
<OPTION VALUE="5" SELECTED="$(dm)">June
<OPTION VALUE="6" SELECTED="$(dm)">July
<OPTION VALUE="7" SELECTED="$(dm)">August
<OPTION VALUE="8" SELECTED="$(dm)">September
<OPTION VALUE="9" SELECTED="$(dm)">October
<OPTION VALUE="10" SELECTED="$(dm)">November
<OPTION VALUE="11" SELECTED="$(dm)">December
</SELECT>
<INPUT TYPE=text NAME="dd" VALUE="$(dd)" SIZE=2 maxlength=2>
,
<SELECT NAME="dy" >
<OPTION VALUE="1990" SELECTED="$(dy)">1990
<OPTION VALUE="1991" SELECTED="$(dy)">1991
<OPTION VALUE="1992" SELECTED="$(dy)">1992
<OPTION VALUE="1993" SELECTED="$(dy)">1993
<OPTION VALUE="1994" SELECTED="$(dy)">1994
<OPTION VALUE="1995" SELECTED="$(dy)">1995
<OPTION VALUE="1996" SELECTED="$(dy)">1996
<OPTION VALUE="1997" SELECTED="$(dy)">1997
<OPTION VALUE="1998" SELECTED="$(dy)">1998
<OPTION VALUE="1999" SELECTED="$(dy)">1999
<OPTION VALUE="2000" SELECTED="$(dy)">2000
<OPTION VALUE="2001" SELECTED="$(dy)">2001
</SELECT>
</TD>
</TR>
</TR>
<TD VALIGN=center><INPUT TYPE=radio NAME="dt" VALUE="range">
</TD>
<TD>
Between
<INPUT TYPE=text NAME="db" VALUE="$(db)" SIZE=11 MAXLENGTH=11>
and
<INPUT TYPE=text NAME="de" VALUE="$(de)" SIZE=11 MAXLENGTH=11>
</TD>
</TR>
</TABLE>
</TD></TR>
<!-- end of stl options -->

97

Chapter 8. Searching documents

8.3.1.2. BOTTOM section

This section is always included last in every page. So you should provide all closing tags which have
their counterparts in top section. Although it is not obligatory to place this section at the end of template
file, but doing so will help you to view your template as an ordinary html file in a browser to get the idea
how it’s look like.

Below is an example of bottom section:

<!--bottom-->
<P>
<HR>
<DIV ALIGN=right>

<IMG SRC="dpsearch.gif" BORDER=0
ALT="[Powered by DataparkSearch search engine software]">

</BODY>
</HTML>
<!--/bottom-->

8.3.1.3. RESTOP section

This section is included just before the search results. It’s a good idea to provide some common search
results. You can do so by using the next meta symbols:

• $(first) - number of First document displayed on this page

• $(last) - number of Last document displayed on this page

• $(total) - total number of found documents

• $(WE) - search results with full statistics of every word form search

• $(W) - search results with information about the number of the word form found and the number of
all word forms found delimited with "/" sign for every search word, e.g. if the search result is test:
25/73, it means that the number of word form "test" found is 25, and the number of all its forms
("test", "tests", "testing", etc.) found is 73.

• $(WS) - search results in short form with the number of all word forms found.

• $(SearchTime) - search query execution time.

• $(ndocs) - number of documents in database.

Below is an example of ’restop’ section:

<!--restop-->
<TABLE BORDER=0 WIDTH=100%>
<TR>

98

Chapter 8. Searching documents

<TD>Search
results:</TD>
<TD><small>$(WE)</small></TD>
<TD><small>$(W)</small></TD>
</TR>
</TABLE>
<HR>
<CENTER>
Displaying documents $(first)-$(last) of total $(total) found.
</CENTER>
<!--/restop-->

8.3.1.4. RES section

This section is used for displaying various information about every found document. The following meta
symbols are used:

• $(URL) Document URL

• $(Title) Document Title

• $(Score) Document Rating (as calculated by DataparkSearch

• $(Body) Document text, the document excerpt, if stored is used, or the first couple of lines,
otherwise, to give an idea of what the document is about).

• $(Content-Type) Document Content-type (for example, text/html)

• $(Last-Modified) Document Last-Modified date

• $(Content-Length) Document Size in bytes

• $(FancySize) Document Size in bytes, kilobytes or megabytes, what best match.

• $(Order) Overall Document Number (in order of appearance), i.e. from 1 to $(total).

• $(Pos) Document Number on the page (in order of appearance), i.e. from 1 to $(ps).

• $(meta.description) Document Description (from META DESCRIPTION tag)

• $(meta.keywords) Document Keywords (from META KEYWORDS tag)

• $(DY) Document category with links, i.e. /home/computers/software/www/

• $(CL) Clone List (see Section 8.3.1.5 for details)

• $(BrowserCharset) Charset used to display search results

• $(PerSite) Total number of document from this site, if grouping by site is enabled, =0 otherwise.

Note: It is possible to specify maximum number of characters returned by any of the above variables.
E.g. $(URL) may return a long URL that may break page table structure. To specify maximum
number of characters in the displayed URL’s, use $(URL:xx), where xx - maximum number of
characters:

$(URL:40)

99

Chapter 8. Searching documents

will return a URL, and if it is longer than 40 character, only 40 characters will be displayed including
the ending points:

http://very.long.url/path/veery/long/...

Here is an example of res section:

<!--res-->
<DL><DT>
$(Order).
$(Title) [$(Score)]<DD>
$(Body)...

URL:
$(URL)($(Content-Type))

$(Last-Modified), $(Content-Length) bytes

Description: $(meta.description)

Keywords: $(meta.keywords)

</DL>

$(CL)

<!--/res-->

8.3.1.5. CLONE section

The contents of this section is included in result just instead of $(CL) meta symbol for every document
clone found. This is used to provide all URLs with the same contents (like mirrors etc.). You can use the
same $(D*) meta symbols here as in ’res’ section. Of course, some information about clone, like $(DS),
$(DR), $(DX) will be the same so it is of little use to place it here.

Below is an example of ’clone’ section.

<!--clone-->
$(DU) ($(DC)) $(DM)
<!--/clone-->

8.3.1.6. RESBOT section

This is included just after last ’res’ section. You usually give a navigation bar here to allow user go to
next/previous results page.

This is an example of ’resbot’ section:

<!--resbot-->
<HR>
<CENTER>
Result pages: (NL)(NB)$(NR)

100

Chapter 8. Searching documents

</CENTER>
<!--/resbot-->

Navigator is a complex thing and therefore is constructed from the following template sections:

8.3.1.7. navleft, navleft_nop section

These are used for printing the link to the previous page. If that page exists, <!--navleft--> is used, and on
the first page there is no previous page, so <!--navleft_nop--> is used.

<!--navleft-->
<TD><IMG...>

Prev</TD>
<!--/navleft-->

<!--navleft_nop-->
<TD><IMG...>

Prev</TD>
<!--/navleft_nop-->

8.3.1.8. navbar0 section

This is used for printing the current page in the page list.

<!--navbar0-->
<TD><IMG...>
$(NP)</TD>
<!--navbar0-->

8.3.1.9. navright, navright_nop section

These are used for printing the link to the next page. If that page exists, <!--navright--> is used, and on
the last page <!--navright_nop--> is used instead.

<!--navright-->
<TD>
<IMG...>

Next</TD>
<!--/navright-->

<!--navright_nop-->
<TD>
<IMG...>

101

Chapter 8. Searching documents

Next</TD>
<!--/navright_nop-->

8.3.1.10. navbar1 section

This is used for printing the links to the other pages in the page list.

<!--navbar1-->
<TD>

<IMG...>

$(NP)
</TD>
<!--/navbar1-->

8.3.1.11. notfound section

As its name implies, this section is displayed in case when no documents are found. You usually give a
little message saying that and maybe some hints how to make search less restrictive.

Below is an example of notfound section:

<!--notfound-->
<CENTER>
Sorry, but search hasn’t returned results.<P>
<I>Try to compose less restrictive search query or check spelling.</I>
</CENTER>
<HR>
<!--/notfound-->

8.3.1.12. noquery section

This section is displayed in case when user gives an empty query. Below is an example of noquery
section:

<!--noquery-->
<CENTER>
You haven’t typed any word(s) to search for.
</CENTER>
<HR>
<!--/noquery-->

102

Chapter 8. Searching documents

8.3.1.13. error section

This section is displayed in case some internal error occurred while searching. For example, database
server is not running or so. You may provide the following meta symbol: $(E) - error text.

Example of error section:

<!--error-->
<CENTER>
An error occured!
<P>
$(E)
</CENTER>
<!--/error-->

8.3.2. Variables section
There is also a special variables section, in which you can set up some values for search.

Special variables section usually looks like this:

<!--variables
DBAddr mysql://foo:bar@localhost/search/?dbmode=single
VarDir /usr/local/dpsearch/var/
LocalCharset iso-8859-1
BrowserCharset iso-8859-1
TrackQuery no
Cache no
DetectClones yes
HlBeg <i>
HlEnd </i>
R1 100
R2 256
Synonym synonym/english.syn
ResultContentType text/xml
Locale fr_FR.ISO_8859-1
-->

Note: Database option DBAddr like in indexer.conf, host part in DBAddr argument takes affect for
natively supported databases only and does not matter for ODBC databases. In case of ODBC use
database name part of DBAddr to specify ODBC DSN.

VarDir command specifies a custom path to directory that indexer stores data to when use with cache
mode. By default /var directory of DataparkSearch installation is used.

LocalCharset specifies a charset of database. It must be the same with indexer.conf LocalCharset.

103

Chapter 8. Searching documents

BrowserCharset specifies which charset will be used to display results. It may differ from LocalCharset.
All template variables which correspond data from search result (such as document title, description,
text) will be converted from LocalCharset to BrowserCharset. Contents of template itself is not
converted, it must be in BrowserCharset.

Use "Cache yes/no" to enable/disable search results cache.

Use "DetectClones yes/no" to enable/disable clones detection.

Use "GroupBySite yes/no" to enable/disable grouping results by url.site_id.

Note: If searchd is used you should place GroupBySite in your searchd.conf file, or pass it as CGI
parameter.

If cache storage mode is used, you need also create SITE limit (see Section 5.2.8).

Use PagesInGroup command to specify the number of additional results from the same site when
google-like groupping is enabled.

You may use MaxSiteLevel command to specify maximal domain name level using for site_id
calculation. Default value: 2. One exception: three or less letter domains at level 2 count as domain
names at level 1. For example: domain.ext - level 2, www.domain.ext - level 3, domain.com.ext - level
2. A negative value for MaxSiteLevel mean grouping performs on per directory basis, i.e. for level -1
www.site.ext/dir1/ and www.site.ext/dir2 group as different sites.

HlBeg and HlEnd commands are used to configure search results highlighting. Found words will be
surrounded in those tags.

There is an Alias command in search.htm, that is similar to the one in indexer.conf, but it affects
only search results while having no effect on indexing. See Section 3.7 for details.

R1 and R2 specify ranges for random variables $(R1) and $(R2).

Synonym command is used to load specified synonyms list. Synonyms file name is either absolute or
relative to /etc directory of DataparkSearch installation.

DateFormat command is used to change Last-Modified date format output. Use strftime function
meta-variables for your own format string.

Note: If searchd is used, you may specify DateFormat in your searchd.conf file, but there you
should enclose this string in quotas ("), or pass it as CGI parameter.

"Log2stderr yes/no" command is used to enable error logging to stderr.

ResultsLimit command is uses to limit maximum number of results shown. If searchd is used, this
command may be specified in searchd.conf.

ResultContentType command is uses to specify Content-Type header for results page. Default value:
text/html.

Locale command is uses to specify LC_ALL locale settings for search results output. Default value:
unspecified (uses the value specified before in system settings).

104

Chapter 8. Searching documents

8.3.3. Includes in templates
You may use <!INCLUDE Content="http://hostname/path"> to include external URLs into search
results.

WARNING: You can use <!INCLUDE> ONLY in the following template sections:

<!--top-->
<!--bottom-->
<!--restop-->
<!--resbot-->
<!--notfound-->
<!--error-->

This is an example of includes usage:

<!--top-->
....
<!INCLUDE CONTENT="http://hostname/banner?query=$&(q)">
...
<!--/top-->

8.3.4. Conditional template operators
DataparkSearch is support conditional operators in search templates:

<!IF NAME="Content-Type" Content="application/pdf">

<!ELIF NAME="Content-Type" Content="text/plain">

<!ENDIF>

It’s possible to use nested conditional operators. This give much power for search template construction.
See samples in etc/search.htm-dist file.

8.3.5. Security issues
WARNING: Since the template file contains such info as password, it is highly recommended to give the
file proper permissions to protect it from reading by anyone but you and search program. Otherwise your
passwords may leak.

8.4. Designing search.html
This section is assuming that you are using the CGI front end.

105

Chapter 8. Searching documents

8.4.1. How the results page is created
The file etc/search.htm consists of a number of blocks delimited by HTML comments that start with
<!--comment--> and end with <!--/comment-->.

The <!--variables--> block is only used by search.cgi. The other blocks form part of the results output
depending on the situation.

The blocks <--top--> and <!--bottom--> are always returned to the user as the top and bottom part of the
output respectively.

There are three series of <!--restop-->, <!--res--> and <!--resbot--> blocks. The first series is returned to
users that have requested long results (default), the second one to those that have requested short results
and the third one to those that have requested results as URL only. All three blocks must be present in
search.htm. Furthermore there is a series of navigation blocks and the blocks <!--notfound-->,
<!--noquery--> and <!--error-->. The latter are returned occasionally instead of results.

Any HTML that is outside the pre-defined blocks in search.htm is completely ignored.

Thus, the output of search.cgi will always be something like this:

top
restop top top top
res or notfound or error or noquery
resbot bottom bottom bottom
(navigation)
bottom

The navigation part is built in the same way, with the elements that pertain to each results page. For
example, <!--navleft--> and <!--navright--> are used to link to the previous and next results pages, while
<!--navXXX_nop--> is used when there are no more pages in one or either direction.

8.4.2. Your HTML
The simplest HTML is provided ready for use in etc/search.htm-dist. It is advisable that you use
this until your back-end works fine.

Once you decide to add bells and whistles to your search, you have two options. One is to keep the
simple design of search.htm, but make it part of a frame set. This way you can add elements such as
menus etc in a frame and keep the output of search.htm in another.

The other option is to incorporate your entire design in search.htm. If you fully understand the
"blocks" system described above, this should not be too difficult. The one most important factor is to
keep track of elements that need to be opened in one block and closed in another.

For example, you might want a page in tables that looks like this:

| top table |
|..................................|

106

Chapter 8. Searching documents

| . |
|left . |
| . |
| . main table |
|table . |
| . |
.

If you are planning to put your results in the main table, you can put all the HTML code in the <!--top-->
block of search.htm, up to and including the opening of the main table (<table><tr><td>). If you then
put the closing of the main table and the closing tags of the page in the <!--bottom--> block
(</table></tr></td></body></html>) and leave all other blocks unformatted, you will have the design of
your choice and all your results in the right place.

In a more complicated design, where you want to format results individually, you can apply the same
method as long as you keep track of the opening and closing of HTML elements. You must either open
and close them in the same block, or make sure that any possible combination of blocks will result in
properly opened and closed HTML tags.

What you cannot do without editing the source code, is change the order in which the blocks are parsed.
Taking the above example, let’s assume that you want your page to look like this:

| logo banner ads |
|..................................|
| . |
|choices . |
| . |
| . results |
|search . |
|button . |
.

To get this, you need to have everything except the results and navigation in the <!--top--> block, since
that is the only block that can draw the page even if there are no results at all. In this case your
search.htm would look like this:

<!--variables-->
[your configuration]
<!--/variables-->

<!--top-->
<html>
<body>
<table>
<tr colspan="2">
<td>[logo, banner ads]</td>
</tr>

107

Chapter 8. Searching documents

<tr>
<td>[search form]</td>
<td>

<!--/top-->

[all other blocks in search.htm except "bottom"]

<!--bottom-->
[closing elements like the DataparkSearch link
and a link to the webmaster]
</td>
</tr>

</table>
</body>
</html>
<!--/bottom-->

The individual blocks can be formatted individually as long as that formatting is closed within each
block. Thus, nothing stops you from doing things like

<!--error-->
<table>
<tr><td bgcolor"red">

[error variables]

</tr><td>
</table>

<!--error-->

as long as such formatting is opened and closed properly within the same block.

8.4.3. Forms considerations
Most modern browsers can handle forms that stretch over different tables, but writing such forms is
against all standards and is bad HTML. Unless you really can’t avoid it, don’t do it.

For example,

<table>
<tr><td>

<form>
<input type="text" name="something">
<input type="radio" name"button1">
<input type="radio" name"button2">
</form>

</tr></td>
</table>

108

Chapter 8. Searching documents

is fine, but

<table>
<tr><td>

<form>
<input type="text" name="something">

</tr></td>
</table>
<table>
<tr><td>

<input type="radio" name"button1">
<input type="radio" name"button2">
</form>

</tr></td>
</table>

is not.

Note that the input forms in search.htm can be changed at will. The default is drop-down menus, but
nothing stops you from using radio buttons or hidden input or even text boxes. For instance, where
search.htm says

Results per page:
<SELECT NAME="ps">
<OPTION VALUE="10" SELECTED="$(ps)">10
<OPTION VALUE="20" SELECTED="$(ps)">20
<OPTION VALUE="50" SELECTED="$(ps)">50
</SELECT>

you can very well substitute

<input type="radio" name="ps" value="10" checked="$(ps)">
<input type="radio" name="ps" value="20" checked="$(ps)">
<input type="radio" name="ps" value="50" checked="$(ps)">

which will result in three radio buttons instead of a drop-down menu, with "20" as the default and the
exact same functionality. What you obviously cannot do is provide multiple-choice menus like
<type="checkbox"> or <select multiple>.

Note that you can also use the

<input type="hidden" name="XX" value="YY">

format if you want to set other defaults than the pre-defined and not allow the user to change them.

109

Chapter 8. Searching documents

8.4.4. Relative links in search.htm
It might be worth mentioning that search.htm is parsed from your cgi-bin directory. The position of
this directory in relation to your document root is determined by the web server, independently of its
actual position in the file system. Almost invariably is http://your_document_root/cgi-bin/ . Since
search.cgi lives in cgi-bin, any links to images etc in search.htm will assume cgi-bin as the base
directory. Therefore, if you have a file system structure like

home/
home/your_document_root/
home/your_document_root/img/
home/cgi-bin/

the correct relative link from search.cgi to images in img/ would still be

despite the fact that it doesn’t match the file system structure.

8.4.5. Adding Search form to other pages
To place a search form to any of your pages, please place the following code where you would like the
form to be displayed:

<FORM
METHOD=GET
ACTION="http://path-to-search.cgi">

<INPUT TYPE="text" NAME="q" VALUE="">
<INPUT TYPE="submit" VALUE="Search!">

</FORM>

8.5. Relevance

8.5.1. Ordering documents
DataparkSearch by default sorts results first by relevency and second by popularity rank.

8.5.2. Relevance calculation
In indexing, DataparkSearch divides every document onto sections. A section is any part of the
document, for example, for HTML documents this may be TITLE or META Description tag.

In addition to sections, some document factors are also take in account for relevance calculation: the
average distance between query words, the number of query word occurrences, the position of first

110

Chapter 8. Searching documents

occurrence of a query word, the difference between the distribution of query word counts and the
uniform distribution.

In searching, DataparkSearch compares every document found against an "ideal" document. The "ideal"
document should have query words in every section defined and should have also the predefined values
of additional factors.

Since sections definition located only in indexer.conf file, use NumSections command in
searchd.conf or in search.htm to specify the number od section used. By default, this value is 256.
But note, NumSections do not affect document ordering, only the relevance value.

Table 8-3. Configure-time parameters to tune relevance calculation (switches for configure)

--enable-fullrel This option enables full version of relevance
calculation. Value by default: disabled (or fast
relevance calculation).

--disable-reldistance This option disables accounting of average word
distance for relevance calculation. Value by
default: enabled.

--disable-relposition This option disables accounting of first query word
position for relevance calculation. Value by
default: enabled.

--disable-relwrdcount This option disables accounting of word counts for
relevance calculation. Value by default: enabled.

--with-avgdist=NUM This option specify the NUM as the best average
distance between words in document found. Value
by default: 464.

--with-bestpos=NUM This option specify the NUM as the best value of
first word position in document found. Value by
default: 4.

--with-bestwrdcnt=NUM This option specify the NUM as the best number of
each query word in document found. Value by
default: 11.

--with-distfactor=NUM This option specify the NUM as a factor for average
word distance for relevance calculation. Value by
default: 0.2.

--with-lessdistfactor=NUM This option specify the NUM as a factor for average
word distance for relevance calculation. Value by
default: 0.2.

--with-posfactor=NUM This option specify the NUM as factor for difference
between first query word position in document
found and best position specified by
--with-bestpos option. Value by default: 0.5.

111

Chapter 8. Searching documents

--with-wrdcntfactor=NUM This option specify the NUM as factor for difference
between count of query words in document found
and the best value specified by
--with-bestwrdcnt option. Value by default:
0.4.

--with-wrdunifactor=NUM This option specify the NUM as factor for difference
of query word counts from uniform distribution.
Value by default: 1.5.

8.5.2.1. A full method of relevance calculation.

Let x is the weighted sum of all sections. The weights for these sections are define by wf parameter (see
Section 8.1.3). Let y is the weighted sum of differences between values of additional factors of document
found and corresponding values of additional factors of the "ideal" document. And let xy is the weighted
sum of sections where at least one query word has been found. Then value of relevance for a document
found is calculates as: 0.5 * (x + xy) / (x + y).

8.5.2.2. A fast method of relevance calculation.

Let x is the number of bits used in weighted values of all sections defined. Let y is the weighted sum of
differences between additional factors of document found and corresponding values of the "ideal"
document. And let xy is the number of bits where weighted values of sections of the "ideal" document
are different to weighted values of sections of document found. Then value of document relevance is
calculates as: (x - xy) / (x + y).

8.5.3. Popularity rank
DataparkSearch support two methods for popularity rank calculation. A method used in previous
versions called "Goo", and new method is called "Neo". By default, the Goo method is used. To select
desired PopRank calculation method use PopRankMethod command:

PopRankMethod Neo

You need enable links collection by CollectLinks yes command in your indexer.conf file for Neo
method and for full functionality of Goo method. But this slow down a bit indexing speed. By default,
links collection is not enabled.

By default, only intersite links (i.e. links from a page on one site to a page on an another site) are taken in
account for the popularity rank calculation. If you place PopRankSkipSameSite no command in
indexer.conf file, indexer take all links for this purpose.

You may assign initial value for page popularity rank using DP.PopRank META tag (see Section 4.3).

112

Chapter 8. Searching documents

8.5.3.1. "Goo" popularity rank calculation method

The popularity rank calculation is made in two stages. At first stage, the value of Weight parameter for
every server is divide by number of links from this server. Thus, the weight of one link from this server is
calculated. At second stage, for every page we find the sum of weights of all links pointed to this page.
This sum is popularity rank for this page.

By default, the value of Weight parameter is equal to 1 for all servers indexed. You may change this
value by Weight command in indexer.conf file or directly in server table, if you load servers
configuration from this table.

If you place PopRankFeedBack yes command in indexer.conf file, indexer will calculate site
weights before page rank calculation. To do that, indexer calculate sum of popularity rank for all pages
from same site. If this sum will great 1, the weight for site set to this sum, otherwise, site weight is set to
1.

If you place PopRankUseTracking yes command in indexer.conf file, indexer will calculate site
weight as the number of tracked queries with restriction on this site.

If you place PopRankUseShowCnt yes command in search.htm (or searchd.conf) file, then for
every result shown to user corresponding url.shows value will be increased on 1, if relevance for this
result is great or equal to value specified by PopRankShowCntRatio command (default value is 25.0).
If you place PopRankUseShowCnt yes in indexer.conf file, indexer will add to url’s
PopularityRank the value of url.shows multiplied by value, specified in PopRankShowCntWeight

command (default value is 0.01).

8.5.3.2. "Neo" popularity rank calculation method

For this method is supposed all pages are neurons and links between pages are links between neurons. So
it’s possible use an error back-propagation algorithm to train this neural network. Popularity rank for a
page is the activity level for corresponding neuron. See short description of The Neo Popularity Rank for
web pages (http://www.maxime.net.ru/doc/Neo-en.pdf).

You may use PopRankNeoIterations command to specify the number of iterations of the Neo
Popularity Rank calculation. Default value is 3.

By default, the Neo Popularity Rank is caclulated along with indexing. To speed up indexing, you may
postpone Popularity Rank execution using PopRankPostpone command:

PopRankPostpone yes

Then you may calculate the Neo Popularity Rank after indexing in same way as for method Goo, i.e.:
indexer -TR

8.5.4. Boolean search
Please note that in case of boolean searching for two or more words, you have to enter operators (&, |, ~).
I.e. it is necessary to enter a & book instead of a book.

113

Chapter 8. Searching documents

8.5.5. Crosswords
This feature allows to assign words between and also to a document this link leads
to. To enable Crosswords, please use CrossWords yes command in indexer.conf and search.htm,
and define crosswords section in sections.conf file.

8.5.6. The Summary Extraction Algorithm (SEA)
The Summary Exctraction Algorith (SEA) builds the summary of three or more the most
relevant sentences of the each document indexed, if this document consists of six or more sentences. To
enable this feature, add this command to your seaction.conf file:

Section sea x y

where x - the number of section and y - the maximum length of this section value, leave 0, if you do not
want show this in result pages. If you specify y non-zero, you may use $(sea) meta-variable in your
search template to show the summary in result pages.

Related configuration directives:

The SEASentenceMinLength command specify the minimal length of sentence to be used in summary
construction using the SEA. Default value: 64.

The SEASentences command uses to specify the maximal number of sentences with length greater or
equal to the value specified by the SEASentenceMinLength command, which are used for summary
construction in the SEA. Default value: 32. Since the summary construction using SEA is nonlinear
expensive (affects only indexing), you may adjust this value according to desired indexing performance.

This algorithm of automatic summary construction is based on ideas of Rada Mihalcea described in the
paper Rada Mihalcea and Paul Tarau, An Algorithm for Language Independent Single and Multiple
Document Summarization, in Proceedings of the International Joint Conference on Natural Language
Processing (IJCNLP), Korea, October 2005 (http://www.cs.unt.edu/~rada/papers/mihalcea.ijcnlp05.pdf).

Differences in DataparkSearch’s SEA:

• Initial weights for graph edges are calculates as a measure of similarity between 3-gram distributions
of corresponding sentences.

• All initial values for graph vertexes are equal to some initial value (1 / (number of sentences + 1) in
current implementtion).

• The Neo PopRank algorithm is used as ranking algorithm to iterate values assigned to vertexes.

After indexing of document collection with this section defined, you may use $(sea) meta-variable in
your template to show summary for a search result.

8.6. Search queries tracking
DataparkSearch supports query tracking.

114

Chapter 8. Searching documents

When doing a search, front-end uses table qtrack to store query words, client IP address, a number of
found documents and current UNIX timestamp in seconds and table qinfo to store all search parameters.

To enable tracking, add the trackquery parameter to DBAddr command (see Section 3.10.2) in your
search template. For example:

DBAddr pgsql://user:pass@localhost/search/?dbmode=cache&trackquery

Note: If you use searchd, you should add this parameter only in your searchd.conf file.

You may use TrackDBAddr command to specify different database to store query tracking data. This
database should have the same qtrack and qinfo tables as in DataparkSearch’s database.

Query tracking is useful to have a statistics of your search engine usage. To make a search queries
summary, you may execute, for example, this SQL expression:

SELECT qwords,count(*),sum(found),avg(found) FROM qtrack GROUP BY qwords;

8.7. Search results cache
Search results cache allows search.cgi to make very fast response on recently used queries as well as
user’s navigation though the pages of the same result.

Search results cache is disabled by default. You may use Cache yes command in search.htm to enable
results caching. If you use searchd, add "Cache yes" command to searchd.conf file.

Search cache is located in $PREFIX/var/cache/ subdirectory, where $PREFIX is DataparkSearch
installation base directory. Each result is stored in a separate file.

By defaults, search results cache is not deleted automatically. You have to delete it every time after
indexer’s work to avoid displaying non-recent cached results. Or you may specify a refresh period for
search results cache using HoldCache command:

HoldCache <time>

For <time> format see description of Period command in Section 3.10.26.

HoldCache 3h

115

Chapter 8. Searching documents

8.8. Fuzzy search

8.8.1. Ispell
When DataparkSearch is used with ispell support enabled, it automatically extend search query by all
grammatical forms of the query words. E.g. search front-end will try to find the word "test" if "testing" or
"tests" is given in search query.

8.8.1.1. Two types of ispell files

DataparkSearch understands two types of ispell files: affixes and dictionaries. Ispell affixes file contains
rules for words and has approximately the following format:

Flag V:
E > -E, IVE # As in create> creative
[^E] > IVE # As in prevent > preventive

Flag *N:
E > -E, ION # As in create > creation
Y > -Y, ICATION # As in multiply > multiplication

[^EY] > EN # As in fall > fallen

Ispell dictionary file contains words themselves and has the following format:

wop/S
word/DGJMS
wordage/S
wordbook
wordily
wordless/P

8.8.1.2. Using Ispell

To make DataparkSearch support ispell you must specify Affix and Spell commands in search.htm

file. The format of commands:

Affix [lang] [charset] [ispell affixes file name]
Spell [lang] [charset] [ispell dictionary filename]

The first parameter of both commands is two letters language abbreviation. The second is ispell files
charset. The third one is filename. File names are relative to DataparkSearch /etc directory. Absolute
paths can be also specified.

Note: Simultaneous loading of several languages is supported, e.g.:

Affix en iso-8859-1 en.aff

116

Chapter 8. Searching documents

Spell en iso-8859-1 en.dict
Affix de iso-8859-1 de.aff
Spell de iso-8859-1 de.dict

Will load support for both English and German languages.

If you use searchd, add the same commands to searchd.conf.

When DataparkSearch is used with ispell support it is recommended to use searchd, especially for
several languages support. Otherwise the starting time of search.cgi increases.

8.8.1.3. Customizing dictionary

It is possible that several rare words are found in your site which are not in ispell dictionaries. In such
case, an entry with longest match suffix is taking to produce word forms.

But you can also create the list of such words in plain text file with the following format (one word per
line):

rare.dict:

webmaster
intranet
.......
www
http

You may also use ispell flags in this file (for ispell flags refer to ISpell documentation). This will allow
not writing the same word with different endings to the rare words file, for example "webmaster" and
"webmasters". You may choose the word which has the same changing rules from existing ispell
dictionary and just to copy flags from it. For example, English dictionary has this line:

postmaster/MS

So, webmaster with MS flags will be probably OK:

webmaster/MS

Then copy this file to /etc directory of DataparkSearch and add this file by Spell command in
DataparkSearch configuration:

During next reindexing using of all documents new words will be considered as words with correct
spelling. The only really incorrect words will remain.

117

Chapter 8. Searching documents

8.8.1.4. Where to get Ispell files

You may find ispell files for many of languages at this page
(http://fmg-www.cs.ucla.edu/geoff/ispell-dictionaries.html).

For Japanese language there exist quasi-ispell files suitable for use with DataparkSearch only. You may
get this data from our web site (http://www.dataparksearch.org/) or from one of our mirrors. See Section
1.2.

8.8.2. Aspell
With Aspell support compiled, it’s possible automatically extend search query by spelling suggestions
for query words. To enable this feature, you need to install Aspell (http://aspell.net/) at your system
before DataparkSearch build. Then you need to place AspellExtensions yes command into
your indexer.conf and search.htm (or into searchd.conf, if searchd is used) files to activate this
feature.

Automatically spelling suggestion for search query words is going only if sp search parameter is set, see
Section 8.1.2.

8.8.3. Synonyms
DataparkSearch also support a synonyms-based fuzzy search.

Synonyms files are installed into etc/synonym subdirectory of DataparkSearch installation. Large
synonyms files you need to download separately from our web site, or from one of our mirrors, see
Section 1.2.

To enable synonyms, add to search.htm search template commands like Synonym <filename>, e.g.:

Synonym synonym/english.syn
Synonym synonym/russian.syn

Filenames are relative to etc directory of DataparkSearch installation or absolute if begin with /

If you use searchd, add the same commands to searchd.conf.

You may create your own synonyms lists. As an example you may take the English synonyms file. In the
beginning of the list please specify the following two commands:

Language: en
Charset: us-ascii

• Language - standard (ISO 639) two-letter language abbreviation.

• Charset - any charset supported by DataparkSearch (see Section 7.1).

Optionaly you may specify following command in the list:

118

Chapter 8. Searching documents

Thesaurus: yes

This command enable thesaurus mode for synonyms list. For this mode, only words at one line treats as
synonyms.

8.8.4. Accent insensitive search
Since version 4.17 DataparkSearch also support an accent insensitive search.

To enable this extension, use AccentExtensions command in your search.htm (or in searchd.conf,
if searchd is used) to make automatically accent-free copies for query words, and in your
indexer.conf config file to produce accent-free word’s copies to store in database.

AccentExtensions yes

If AccentExtensions command is placed before Spell and Affix commands, accent-free copies for those
data also will be loaded automaticaly.

8.8.5. Acronyms and abbreviations
Since version 4.30 DataparkSearch also support an acronyms and abbreviation based fuzzy search.

Acronyms files are installed into etc/acronym subdirectory of DataparkSearch installation.

To enable acronyms, add to search.htm search template commands like Acronym <filename>, e.g.:

Acronym acronym/en.fido.acr
Acronym acronym/en.acr

Filenames are relative to etc directory of DataparkSearch installation or absolute if begin with /

If you use searchd, add the same commands to searchd.conf.

You may create your own acronyms lists. As an example you may take the English acronyms file. In the
beginning of the list please specify the following two commands:

Language: en
Charset: us-ascii

• Language - standard (ISO 639) two-letter language abbreviation.

• Charset - any charset supported by DataparkSearch (see Section 7.1).

Please send your own acronym files to <maxime@maxime.net.ru>, if you want share its with other
users.

119

Chapter 9. Miscellaneous

9.1. Reporting bugs
When reporting bugs, please specify DataparkSearch version and provide us as much information about
your problem as possible. Such information as your platform and OS details, database version, database
statistics like number of URLs in database or probably count of records in different tables would be very
helpful to find and fix possible bugs.

Please, submit bug reports using our Bug Reporting System
(http://www.dataparksearch.org/cgi-bin/bt.pl) at DataparkSearch web site
(http://www.dataparksearch.org/). Please do not send reports to mailing list or to personal authors
addresses!

9.1.1. Core dump reports
If indexer or search.cgi die during their work and produce core, it would be very helpful to send us
gdb (The GNU Debugger) output. To do this, please make the following steps. E.g. your binary is
"indexer" and core file name is indexer.core (or may be just core on some platforms).

Run GNU Debugger with executable as the first argument and with core file as the second:

gdb indexer indexer.core

Some information about the crash location will appear:

Core was generated by ‘indexer’.
Program terminated with signal 8, Floating point exception.
Reading symbols from /usr/lib/libc.so.3...done.
Reading symbols from /usr/libexec/ld-elf.so.1...done.
#0 0x80483f3 in main () at indexer.c:4
4 printf("%d",0/0);

Then type backtrace command:

(gdb) backtrace
#0 0x80483f3 in main () at indexer.c:4
#1 0x804837d in _start ()

Send us either first and second outputs or just a screenshot of gdb session.

120

Chapter 9. Miscellaneous

9.2. Using libdpsearch library
The libdpsearch is available for using it in third party applications. You can easily add search into
your own application using library and include files installed in /lib and /include DataparkSearch
directories. Each application which uses libdpsearch must have dpsearch.h header file included.

9.2.1. dps-config script
When compiled with one of supported SQL back-end, libdpsearch requires some dependent libraries,
for example libmysqlclient. You can find dps-config script in /bin directory of DataparkSearch
installation. This script helps to take in account required dependencies. dps-config script can take
several options in it’s command line. By default dps-config outputs all available options:

Usage: ./dps-config [OPTIONS]
Options:

[--version]
[--libs]
[--cflags]

When executed with --libs command line option dps-config outputs all required to libdpsearch

linker flags, for example:

./dps-config --libs
-lm -L/usr/local/mysql/lib/mysql -lmysqlclient \
-L/usr/local/dpsearch/lib -ldpsearch

So you may insert dps-config --libs into CC compiler command line:

cc myprog.c -o myprog ‘dps-config --libs‘

9.2.2. DataparkSearch API
There is no detailed description of DataparkSearch API yet. This is because API is currently under rapid
development and may have major changes from version to version. You may use search.c as an
example of application which uses libdpsearch library.

121

Chapter 9. Miscellaneous

9.3. Database schema
Full database schema used by DataparkSearch is defined in appropriate sql-scipts for database creation
located under create subdirectory.

Table 9-1. server table schema

rec_id Unique record identificator.

enabled A flag to enable/disable record for indexer.

url URL or pattern.

tag Tag value.

category Categories table rec_id.

command =S - this record is a server.
=F - this record is a filter.

ordre Sorting key, it define records order for server
table loading.

parent If not null, this record is added automaticaly by
indexer and url field contain a server name
accepted on record pointed by this filed value.

weight This record weight for PopRank calculation.

pop_weight One link weight from pages of this server.
Calculated automatically. Manually change will
have no effect.

Other server’s parameters store in srvinfo table. Possible values for several parameters is given in table
below.

Table 9-2. Several server’s parameters values in srvinfo table

sname value Possible sval values.
Alias Alias used for url.

Period Reindexing period in seconds.

DeleteOlder How much time to hold URLs before deleting
them from the database.

RemoteCharset Default charset value.

DefaultLang Default language value.

Request.Authorization For basic authorization.

Request.Proxy Proxy server to access documents from this
resource.

Request.Proxy-Authorization Proxy server authorization.

122

Chapter 9. Miscellaneous

sname value Possible sval values.
MaxHops Maximum depth of way in "mouse" clicks from

start url.

Index A flag to enable/disable documents indexing.

Follow =0, "page"
=1, "path"

=2, "site"

=3, "world"

Robots A flag to enable/disable robots.txt file using.

DetectClones A flag to enable/disable "clones" detection.

MaxNetErrors Maximum network errors for this server.

NetDelayTime Indexing delay time if a network error is occurred.

ReadTimeout Network timeout value.

match_type =0, DPS_MATCH_FULL - full coincidence.
=1, DPS_MATCH_BEGIN - pattern is a URL
prefix.

=2, DPS_MATCH_SUBSTR - pattern is a URL
substring.

=3, DPS_MATCH_END - pattern is a URL
suffix.

=4, DPS_MATCH_REGEX - pattern is a regular
expression.

=5, DPS_MATCH_WILD - pattern is a wildcards
pattern (* and ? wildcards may be used).

=6, DPS_MATCH_SUBNET - < not yet
supported >.

case_sense =1, - case insensitive comparison.
=0, - case sensitive comparison.

nomatch =1, - URLs not match this record is accepted.
=0, - URL match this record is accepted.

123

sname value Possible sval values.
Method Specify a document action for this command.

=Allow, - all corresponding documents will be
indexed and scanned for new links.

=Disallow, - all corresponding documents will be
ignored and deleted from database.

=HrefOnly, - all corresponding documents will be
only scanned for new links (not indexed).

=CheckOnly, - all corresponding documents will
be requested by HTTP HEAD request, not HTTP
GET, i.e. inly brief info about documents (size,
last modified, content type) will be fetched.

=Skip, - all corresponding documents will be
skipped while indexing.

=CheckMP3, - all corresponding documents will
be checked for MP3 tags along if its
Content-Type is equal to audio/mpeg.

=CheckMP3Only, - is equal to CheckMP3, but if
MP3 tag is not present, processing on
Content-Type will not be taken.

=TagIf, - all documents will be maked by tag
specified.

=CategoryIf, - all documents will be maked by
category specified.

=IndexIf, - all documents will be indexed, if the
value of section specified match the pattern given.

=NoIndexIf, - all documents will be ignored and
deleted from database, if the value of section
specified match the pattern given.

Section Section name used in pattern matching for IndexIf
and NotIndexIf methods.

124

Appendix A. Donations

Appendix A. Donations
If you like the DataparkSearch Engine and want to encourage further development, feel free to make a
donation (at Kagi) (http://order.kagi.com/?6CYPQ) to support this project. Any donation is greatfully
appreciated.

The following individuals have made donations to support DataparkSearch development, and deserve
credit for it:

• Many people prefer not to be listed, and the details of many others were not recorded (If anyone
wishes to send details of their donation, we would be very happy to include them).

125

Index
Accent insensitive search, 119
Acronyms and abbreviations, 119
Aspell, 118
Authors, 3
Boolean search

advanced, 91
relevance, 113

Bugs
reporting, 120

Categories, 72
Changelog latest, 1
Charsets, 74
Clear database, 11
Clones, 15
Command

AccentExtensions, 119
Acronym, 119
AddType, 26, 37
Affix, 116
Alias, 21, 24, 104
AliasProg, 23
Allow, 34
AspellExtensions, 118
AuthBasic, 11, 43
Bind, 44
BodyPattern, 57
BrowserCharset, 78, 104
Cache, 104
Category, 73
CategoryIf, 73
CharsToEscape, 81
CheckInsertSQL, 64
CheckMp3, 35
CheckMp3Only, 36
CheckOnly, 35
ColdVar, 63
CollectLinks, 112
Cookies, 41
CrawlDelay, 42
CrossWords, 114
DataparkSearchdConf, 92
DataparkSearchTemplate, 92
DataparkStoredocTemplate, 92
DateFormat, 104
DBAddr, 30, 103

126

DefaultLang, 80
DeleteOlder, 37
DetectClones, 15, 104
Disallow, 34
DocTimeOut, 40
DoExcerpt, 53
DoStore, 53
ExcerptSize, 53
ExpireAt, 38
FlushServerTable, 25
ForceIISCharset1251, 80
GroupBySite, 104
GuesserBytes, 79
GuesserUseMeta, 78
HlBeg, 55, 104
HlEnd, 55, 104
HoldBadHrefs, 37
HoldCache, 115
HrefOnly, 35
HrefSection, 42
HTDBAddr, 45
HTDBDoc, 46
HTDBLimit, 45
HTDBList, 45
HTDBText, 46
HTTPHeader, 34
Include, 30
Index, 43
IndexDocSizeLimit, 33
IndexIf, 36
LangMapFile, 79
LangMapUpdate, 79
Limit, 62
Listen, 54
LoadChineseList, 84
LoadKoreanList, 85
LoadThaiList, 84
LocalCharset, 80, 103
Locale, 104
Log2stderr, 104
LogLevel, 52
LogsOnly, 60
LongestTextItems, 45
MarkForIndex, 64
MaxClients, 66
MaxDepth, 39
MaxDocSize, 32
MaxDocsPerServer, 40

127

MaxHops, 39
MaxNetErrors, 40
MaxSiteLevel, 104
MaxWordLength, 32
Mime, 26
MinDocSize, 33
MinWordLength, 32
MirrorHeadersRoot, 51
MirrorPeriod, 51
MirrorRoot, 51
NetErrorDelayTime, 41
NewsExtensions, 32
NoIndexIf, 36
NoStore, 54
NumSections, 111
OptimizeAtUpdate, 44
OptimizeInterval, 54
OptimizeRatio, 54
PagesInGroup, 104
ParserTimeOut, 26
Period, 10, 38
PeriodByHops, 38
PopRankFeedBack, 113
PopRankMethod, 112
PopRankNeoIterations, 113
PopRankPostpone, 113
PopRankShowCntRatio, 113
PopRankShowCntWeight, 113
PopRankSkipSameSite, 112
PopRankUseShowCnt, 113
PopRankUseTracking, 113
PreloadLimit, 66
PreloadURLData, 66
ProvideReferer, 45
Proxy, 43
ProxyAuthBasic, 43
R*, 104
ReadTimeOut, 40
Realm, 18
RealmDB, 20
RemoteCharset, 80, 80
ResegmentChinese, 83
ResegmentJapanese, 83
ResegmentKorean, 83
ResegmentThai, 83
ResultContentType, 104
ResultsLimit, 104
ReverseAlias, 23

128

Robots, 41
RobotsPeriod, 41
SEASentenceMinLength, 114
SEASentences, 114
Section, 42
Server, 18
ServerDB, 20
ServerTable, 24
ServerWeight, 44
SkipUnreferred, 44
Spell, 116
StopwordFile, 14
Store, 54
StoredFiles, 54
Subnet, 19
SubnetDB, 20
Synonym, 104, 118
SyslogFacility, 32
Tag, 71, 71
TagIf, 71
TrackDBAddr, 115
TrackHops, 39
URL, 20
URLCharset, 81
URLDataFiles, 59
URLDB, 20
URLDumpCacheSize, 33
URLinfoSQL, 63
URLSelectCacheSize, 33
UseCRC32URLId, 33
UseDateHeader, 39
UseRemoteContentType, 37
VarDir, 32, 54, 103
VaryLang, 85
Weight, 113
WrdFiles, 59

Content-Encoding, 14
Contributors, 3
Creating SQL table structure, 10
Crosswords, 114
Database schema, 122
Database statistics, 11
Disclaimer of DataparkSearch, 2
DMALLOC, 7
Document

excerpts, 53
summary, 114

Donations, 125

129

dpconv, 79
dpguesser, 79
DPS_URL environment variable, 27
Dropping SQL table structure, 11
Features, 1
HTDB

Indexing SQL database tables, 45
variables, 46

Indexing binaries output, 49
Installation

problems, 8
requirements, 4
steps, 5

Introduction, 1
Ispell, 116
libdpsearch, 121
Link validation, 12
META

Content-Type, 56
Description, 56
DP.PopRank, 56
Keywords, 56
Refresh, 56
Robots, 56

META tags, 56
Mirroring, 51
mod_dpsearch, 92
Multi-language, 81
Oracle

notes, 67
Parallel indexing, 12
Parameter method

Allow, 15
CheckMP3, 16
CheckMP3Only, 16
CheckOnly, 16
Disallow, 15
HrefOnly, 16
Skip, 16

Parsers, 25
Charsets, 27
third-party, 27

Performance issues, 63
Phrase segmenter

Chinese language, 84
Japanese language, 84
Korean language, 85
Thai language, 84

130

Popularity rank, 112
Relevance, 110

fast method, 112
full method, 112

SEA
The Summary Extraction Algorithm, 114

Search parameters, 86
Search results cache, 115
searchd, 65
Stopwords, 14
Storage modes

cache mode, 59
crc mode, 58
crc-multi mode, 59
multi mode, 58
single mode, 58

stored, 53
Summary Extraction Algorithm, The, 114
Synonyms, 118
Syslog, 52
Tag parser, 56
Tags, 71
Template section

BOTTON, 98
CLONE, 100
error, 103
navbar0, 101
navbar1, 102
navright, navright_nop, 101
noquery, 102
notfound, 102
RES, 99
RESBOT, 100
RESTOP, 98
TOP, 94

Template variable
$(Body), 99
$(BrowserCharset), 99
$(CL), 99
$(Content-Length), 99
$(Content-Type), 99
$(DY), 99
$(E), 103
$(FancySize), 99
$(first), 98
$(last), 98
$(Last-Modified), 99
$(meta.description), 99

131

$(meta.keywords), 99
$(ndocs), 98
$(Order), 99
$(PerSite), 99
$(Pos), 99
$(Score), 99
$(sea), 114
$(SearchTime), 98
$(Title), 99
$(total), 98
$(URL), 99
$(W), 98
$(WE), 98
$(WS), 98

Templates, 93
sections, 94
Variables section, 103

tracking of search queries, 114
Where to get DataparkSearch, 2

132

	DataparkSearch Engine 4.50
	
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. DataparkSearch Features
	1.2. Where to get DataparkSearch.
	1.3. Disclaimer
	1.4. Authors
	1.4.1. Contributors

	Chapter 2. Installation
	2.1. SQL database requirements
	2.2. Supported operating systems
	2.3. Tools required for installation
	2.4. Installing DataparkSearch
	2.5. Possible installation problems
	2.6. Installation registration

	Chapter 3. Indexing
	3.1. Indexing in general
	3.1.1. Configuration
	3.1.2. Running indexer
	3.1.3. How to create SQL table structure
	3.1.4. How to drop SQL table structure
	3.1.5. Subsection control
	3.1.6. How to clear database
	3.1.7. Database Statistics
	3.1.8. Link validation
	3.1.9. Parallel indexing

	3.2. Supported HTTP response codes
	3.3. ContentEncoding support
	3.4. Stopwords
	3.4.1. StopwordFile command

	3.5. Clones
	3.5.1. DetectClones command

	3.6. Specifying WEB space to be indexed
	3.6.1. Server command
	3.6.2. Realm command
	3.6.3. Subnet command
	3.6.4. Using different parameter for server and it's subsections
	3.6.5. Default indexer behavior
	3.6.6. Using indexer f filename
	3.6.7. ServerDB, RealmDB, SubnetDB and URLDB commands
	3.6.8. URL command

	3.7. Aliases
	3.7.1. Alias indexer.conf command
	3.7.2. Different aliases for server parts
	3.7.3. Using aliases in Server commands
	3.7.4. Using aliases in Realm commands
	3.7.5. AliasProg command
	3.7.6. ReverseAlias command
	3.7.7. Alias command in search.htm search template

	3.8. Servers Table
	3.8.1. Loading servers table
	3.8.2. Servers table structure
	3.8.3. Flushing Servers Table

	3.9. External parsers
	3.9.1. Supported parser types
	3.9.2. Setting up parsers
	3.9.3. Avoid indexer hang on parser execution
	3.9.4. Pipes in parser's command line
	3.9.5. Charsets and parsers
	3.9.6. DPSURL environment variable
	3.9.7. Some thirdparty parsers

	3.10. Other commands uses in indexer.conf
	3.10.1. Include command
	3.10.2. DBAddr command
	3.10.3. VarDir command
	3.10.4. NewsExtensions command
	3.10.5. SyslogFacility command
	3.10.6. Word length commands
	3.10.7. MaxDocSize command
	3.10.8. MinDocSize command
	3.10.9. IndexDocSizeLimit command
	3.10.10. URLSelectCacheSize command
	3.10.11. URLDumpCacheSize command
	3.10.12. UseCRC32URLId command
	3.10.13. HTTPHeader command
	3.10.14. Allow command
	3.10.15. Disallow command
	3.10.16. CheckOnly command
	3.10.17. HrefOnly command
	3.10.18. CheckMp3 command
	3.10.19. CheckMp3Only command
	3.10.20. IndexIf command
	3.10.21. NoIndexIf command
	3.10.22. HoldBadHrefs command
	3.10.23. DeleteOlder command
	3.10.24. UseRemoteContentType command
	3.10.25. AddType command
	3.10.26. Period command
	3.10.27. PeriodByHops command
	3.10.28. ExpireAt command
	3.10.29. UseDateHeader command
	3.10.30. MaxHops command
	3.10.31. TrackHops command
	3.10.32. MaxDepth command
	3.10.33. MaxDocsPerServer command
	3.10.34. MaxNetErrors command
	3.10.35. ReadTimeOut command
	3.10.36. DocTimeOut command
	3.10.37. NetErrorDelayTime command
	3.10.38. Cookies command
	3.10.39. Robots command
	3.10.40. RobotsPeriod command
	3.10.41. CrawlDelay command
	3.10.42. Section command
	3.10.43. HrefSection command
	3.10.44. Index command
	3.10.45. ProxyAuthBasic command
	3.10.46. Proxy command
	3.10.47. AuthBasic command
	3.10.48. ServerWeight command
	3.10.49. OptimizeAtUpdate command
	3.10.50. SkipUnreferred command
	3.10.51. Bind command
	3.10.52. ProvideReferer command
	3.10.53. LongestTextItems command

	3.11. Extended indexing features
	3.11.1. Indexing SQL database tables (htdb: virtual URL scheme)
	3.11.1.1. HTDB indexer.conf commands
	3.11.1.2. HTDB variables
	3.11.1.3. Creating full text index
	3.11.1.4. Indexing SQL database driven web server

	3.11.2. Indexing binaries output (exec: and cgi: virtual URL schemes)
	3.11.2.1. Passing parameters to cgi: virtual scheme
	3.11.2.2. Passing parameters to exec: virtual scheme
	3.11.2.3. Using exec: virtual scheme as an external retrieval system

	3.11.3. Mirroring

	3.12. Using syslog
	3.13. Storing compressed document copies
	3.13.1. Configure stored
	3.13.2. How stored works
	3.13.3. Using stored during search

	Chapter 4. DataparkSearch HTML parser
	4.1. Tag parser
	4.2. Special characters
	4.3. META tags
	4.4. Links
	4.5. Comments
	4.6. Body patterns

	Chapter 5. Storing data
	5.1. SQL storage types
	5.1.1. General storage information
	5.1.2. Various modes of words storage
	5.1.3. Storage mode single
	5.1.4. Storage mode multi
	5.1.5. Storage mode crc
	5.1.6. Storage mode crcmulti
	5.1.7. SQL structure notes
	5.1.8. Additional features of nonCRC storage modes

	5.2. Cache mode storage
	5.2.1. Introduction
	5.2.2. Cache mode word indexes structure
	5.2.3. Cache mode tools
	5.2.4. Starting cache mode
	5.2.5. Optional usage of several splitters
	5.2.6. Using runsplitter script
	5.2.7. Doing search
	5.2.8. Using search limits

	5.3. DataparkSearch performance issues
	5.3.1. searchd usage recommendation
	5.3.2. Memory based filesystem (mfs) usage recommendation
	5.3.3. URLInfoSQL command
	5.3.4. MarkForIndex command
	5.3.5. CheckInsertSQL command
	5.3.6. MySQL performance
	5.3.7. Postindexing optimization
	5.3.8. Asynchronous resolver library

	5.4. SearchD support
	5.4.1. Why using searchd
	5.4.2. Starting searchd

	5.5. Oracle notes
	5.5.1.
	5.5.1.1. Why Oracle?
	5.5.1.2. DataparkSearch+Oracle8 Installation Requirements
	5.5.1.3. Currently supported/tested platforms

	5.5.2. Compilation, Installation and Configuration
	5.5.2.1. Compilation
	5.5.2.2. Installation and Configuration

	Chapter 6. Subsections
	6.1. Tags
	6.1.1. Tag command
	6.1.2. TagIf command
	6.1.3. Tags in SQL version

	6.2. Categories
	6.2.1. Category command
	6.2.2. CategoryIf command

	Chapter 7. Languages support
	7.1. Character sets
	7.1.1. Supported character sets
	7.1.2. Character sets aliases
	7.1.3. Recoding
	7.1.4. Recoding at search time
	7.1.5. Document charset detection
	7.1.6. Automatic charset guesser
	7.1.6.1. LangMapFile command
	7.1.6.2. Build your own language maps

	7.1.7. Default charset
	7.1.8. Default Language
	7.1.9. LocalCharset command
	7.1.10. ForceIISCharset1251 command
	7.1.11. RemoteCharset command
	7.1.12. URLCharset command
	7.1.13. CharsToEscape command

	7.2. Making multilanguage search pages
	7.2.1. How does it work?
	7.2.2. Possible troubles

	7.3. Segmenters for Chinese, Japanese, Korean and Thai languages
	7.3.1. Japanese language phrase segmenter
	7.3.2. Chinese language phrase segmenter
	7.3.3. Thai language phrase segmenter
	7.3.4. Korean language phrase segmenter

	7.4. Multilingual servers support

	Chapter 8. Searching documents
	8.1. Using search frontends
	8.1.1. Performing search
	8.1.2. Search parameters
	8.1.3. Changing different document parts weights at search time
	8.1.4. Using frontend with an shtml page
	8.1.5. Using several templates
	8.1.6. Advanced boolean search
	8.1.7. The Verity Query Language, VQL
	8.1.8. How search handles expired documents

	8.2. moddpsearch module for Apache httpd
	8.2.1. Why using moddpsearch
	8.2.2. Configuring moddpsearch

	8.3. How to write search result templates
	8.3.1. Template sections
	8.3.1.1. TOP section
	8.3.1.2. BOTTOM section
	8.3.1.3. RESTOP section
	8.3.1.4. RES section
	8.3.1.5. CLONE section
	8.3.1.6. RESBOT section
	8.3.1.7. navleft, navleftnop section
	8.3.1.8. navbar0 section
	8.3.1.9. navright, navrightnop section
	8.3.1.10. navbar1 section
	8.3.1.11. notfound section
	8.3.1.12. noquery section
	8.3.1.13. error section

	8.3.2. Variables section
	8.3.3. Includes in templates
	8.3.4. Conditional template operators
	8.3.5. Security issues

	8.4. Designing search.html
	8.4.1. How the results page is created
	8.4.2. Your HTML
	8.4.3. Forms considerations
	8.4.4. Relative links in search.htm
	8.4.5. Adding Search form to other pages

	8.5. Relevance
	8.5.1. Ordering documents
	8.5.2. Relevance calculation
	8.5.2.1. A full method of relevance calculation.
	8.5.2.2. A fast method of relevance calculation.

	8.5.3. Popularity rank
	8.5.3.1. "Goo" popularity rank calculation method
	8.5.3.2. "Neo" popularity rank calculation method

	8.5.4. Boolean search
	8.5.5. Crosswords
	8.5.6. The Summary Extraction Algorithm (SEA)

	8.6. Search queries tracking
	8.7. Search results cache
	8.8. Fuzzy search
	8.8.1. Ispell
	8.8.1.1. Two types of ispell files
	8.8.1.2. Using Ispell
	8.8.1.3. Customizing dictionary
	8.8.1.4. Where to get Ispell files

	8.8.2. Aspell
	8.8.3. Synonyms
	8.8.4. Accent insensitive search
	8.8.5. Acronyms and abbreviations

	Chapter 9. Miscellaneous
	9.1. Reporting bugs
	9.1.1. Core dump reports

	9.2. Using libdpsearch library
	9.2.1. dpsconfig script
	9.2.2. DataparkSearch API

	9.3. Database schema

	Appendix A. Donations
	Index

