Welcome
db4o is the native Java, .NET and Mono open source object database.

This tutorial was written to get you started with db4o as quickly as possible. Before you start, please
make sure that you have downloaded the latest db4o distribution from the db4objects website.

developer.db4o.com
You are invited to join the db4o community in the public db4o forums to ask for help at any time.

Please also try out the keyword search functionality on the db4o knowledgebase.

Links

Here are some further links on developer.db4o.com that you may find useful:
All Downloads

Release Note Blog

SVN Access

Design Wiki

Community Projects

http://www.db4o.com
http://developer.db4o.com/forums/default.aspx
http://developer.db4o.com/Resources/kb.aspx
http://download.db4o.com
http://developer.db4o.com/blogs/product_news/default.aspx
http://developer.db4o.com/Resources/view.aspx/Working_With_Source_Code
http://developer.db4o.com/ProjectSpaces/view.aspx/Db4o_Product_Design
http://developer.db4o.com/ProjectSpaces/default.aspx

Download Contents

The db4o .NET distribution comes as one MSI installer file, db40-6.3-net.msi. After you run the

installer, you get the following directory structure:

o

dbdo-E 3
B2 bin
w_; cormpact-2.0
-2 net-2.0
----- Cecil. Flowdnalysiz. dl
s = Dbdoddmin.exe
----- Dbdobjectz.Dbdo.dIl
- =] Dbdobjects. Dbdo. TA, i
----- |- Dbdobjects.Dbda. TA xml
= Db4objectz. Dbdo. Toolz. dll
~[Z] Db4obiects Dbdo. Tools. xml
o =] Dbdobjects.Dbdo.xml
----- oo, Cecil. dll
. 2 Mono GetOptions. di
fe i readme. htrl
E”.:.'? doc
LT-* api
..:- reference
El..r_; tukarial
5 dbdoB. 3utorial pof
----- Dbdobjectz. Dbdo. Tutonal. exe
; b indes kit
b3 readme. bl
F-02 s
----- & dbdolicensze html
e (08 readme. kit

you:

db40-6.3/doc/api/db4o.chm
The API documentation for db4o is supplied as a compiled Help file. While you read through the rest of

db4o for MET Compact Frameswork

ard party library

dbdo Liilties
dbdo engine

dbdo Transparent Activation framewark

dbdo Toolz (Mative Guery enhancer)

ard party library
ard party library

Javadoc AP documentation

Reference documentation

PDF tutarial for best zearching
Irteractive tutorial
HTHRIL tutorial

complete dbdo sources (includes T2 framewark)
MU General Public License

Please take a look at all the supplied documentation formats to choose the one that works best for

this tutorial, it may be helpful to look into the API documentation occasionaly.

db40-6.3/doc/reference/index.html
The reference documentation is a complete compilation for experienced db4o users. It is maintained

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

online.

db40-6.3/doc/tutorial/Db4objects.Db4o.Tutorial.exe
This is the interactive tutorial application for .NET. Examples can be run "live" against a db4o database

from within the application.

db4o0-6.3/doc/tutorial/db4o-6.3-tutorial.pdf
The PDF version of the tutorial allows best fulltext search capabilities.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://developer.db4o.com/Resources/view.aspx/Reference
http://developer.db4o.com/Resources/view.aspx/Reference
http://developer.db4o.com/Resources/view.aspx/Reference

1. First Glance
Before diving straight into the first source code samples let's get you familiar with some basics.

1.1. The db4o engine...
The db4o object database engine consists of one single DLL. This is all that you need to program
against. The versions supplied with the distribution can be found in /db40-6.3/bin/.

db4o is available in multiple distributions for Microsoft .NET. One downloadable distribution is for the
.NET Framework 1.0/1.1 and the other is for the .NET Framework 2.0. Be sure to download and use
the correct one for your project environment.

/db40-6.3/bin/net-1.1/Db4objects.Db4o.dll
is the standard db4o engine for the .NET 1.1 framework.

/db40-6.3/bin/compact-1.1/Db4objects.Db4o.dll|
is built for the .NET 1.1 CompactFramework.

/db40-6.3/bin/net-2.0/Db4objects.Db4o.dll
is the standard db4o engine for the .NET 2.0 framework.

/db40-6.3/bin/compact-2.0/Db4objects.Db4o.dll|
is built for the .NET 2.0 CompactFramework.

1.2. Installation

To use db4o in a development project, you only need to add one of the above Db4objects.Db4o.dll files
to your project references.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1.3. API Overview

Do not forget the API documentation while reading through this tutorial. It provides an organized view
of the API, looking from a namespace perspective and you may find related functionality to the theme
you are currently reading up on.

For starters, the Db4objects.Db4o and Db4objects.Db4o.Query namespaces are all that you need to
worry about.

Db4objects.Db4o

The Db4objects.Db4o namespace contains most of the functionality you will commonly need when you
work with db4o. Two classes of special interest are Db4objects.Db4o.Db4oFactory and
Db4objects.Db4o.I0bjectContainer.

The Db4oFactory is your starting point. Static methods in this class allow you to open a database file,
start a server, or connect to an existing server. It also lets you configure the db4o environment before
opening a database.

The most important interface, and the one that you will be using 99% of the time is
IObjectContainer: This is your db4o database.

- An IObjectContainer can either be a database in single-user mode or a client connection to a db4o
server.

- Every IObjectContainer owns one transaction. All work is transactional. When you open an
IObjectContainer, you are in a transaction, when you Commit() or Rollback(), the next transaction is
started immediately.

- Every I0bjectContainer maintains it's own references to stored and instantiated objects. In doing so,
it manages object identities, and is able to achieve a high level of performance.

- IObjectContainers are intended to be kept open as long as you work against them. When you close
an IObjectContainer, all database references to objects in RAM will be discarded.

Db4objects.Db4o.Ext

In case you wonder why you only see very few methods in an IObjectContainer, here is why: The db4o
interface is supplied in two steps in two namespaces, Db4objects.Db4o and Db4objects.Db4o.Ext for
the following reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- It is an example of how a lightweight version of db4o could look.

Every IObjectContainer object is also an IExtObjectContainer. You can cast the IObjectContainer to
IExtObjectContainer or you can use the .Ext() method to access advanced features.

Db4objects.Db40.Config

The Db4objects.Db4o.Config namespace contains types necessary to configure db4o. The objects and
interfaces within are discussed in the Configuration section.

Db4objects.Db4o.Query

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Configuration

The Db4objects.Db4o.Query namespace contains the Predicate class to construct Native Queries. The
Native Query interface is the primary db4o querying interface and should be preferred over the Soda
Query API .

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Query

2. First Steps

Let's get started as simple as possible. We are going to demonstrate how to store, retrieve, update and
delete instances of a single class that only contains primitive and String members. In our example this
will be a Formula One (F1) pilot whose attributes are his name and the F1 points he has already gained

this season.

First we create a class to hold our data. It looks like this:

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1
{

public class Pil ot

{

string _nane;

int _points;

public Pilot(string name, int points)

{
_name = nane;

_points = points;

public string Nane

{
get
{
return _nane;
}
}

public int Points

{
get
{
return _points;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public void AddPoi nts(int points)
{

_points += points;

override public string ToString()
{

return string. Format ("{0}/{1}", _name, _points);

Notice that this class does not contain any db4o-related code.

2.1. Opening the database

To access a db4o database file or create a new one, call Db4oFactory.OpenFile() and provide the path
to your database file as the parameter, to obtain an IObjectContainer instance. IObjectContainer
represents "The Database", and will be your primary interface to db4o. Closing the I0bjectContainer

with the #Close() method will close the database file and release all resources associated with it.

/] accessDb4o

| Obj ect Cont ai ner db = Db4oFactory. OpenFil e(Uil . YapFi | eNane);
try

{
/1 do sonething with db4do

}
finally

{
db. d ose();

For the following examples we will assume that our environment takes care of opening and closing the

IObjectContainer automagically, and stores the reference in a variable named 'db'.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

2.2. Storing objects

To store an object, we simply call SET() on our database, passing any object as a parameter.

/|l storeFirstPil ot

Pilot pilotl = new Pilot("M chael Schumacher", 100);
db. Set (pilot1);
Consol e. WiteLine("Stored {0}", pilotl);

We'll need a second pilot, too.

/] storeSecondPi | ot
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

db. Set (pil ot 2);
Console. WiteLine("Stored {0}", pilot2);

2.3. Retrieving objects
db4o supplies three different quering systems, Query by Example (QBE), Native Queries (NQ) and the

SODA Query API (SODA). In this first example we will introduce QBE. Once you are familiar with
storing objects, we encourage you to use Native Queries, the main db4o querying interface.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

When using Query-By-Example, you create a prototypical object for db4o to use as an example of what
you wish to retrieve. db4o will retrieve all objects of the given type that contain the same (non-
default) field values as the example. The results will be returned as an IObjectSet instance. We will
use a convenience method #ListResult() to display the contents of our result IObjectSet :

public static void ListResult(lObjectSet result)

{
Consol e. WitelLine(result. Count);
foreach (object itemin result)
{
Consol e. WiteLine(item;
}
}

To retrieve all pilots from our database, we provide an 'empty' prototype:

/1 retrieveAllPil ot QBE

Pilot proto = new Pilot(null, 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

Note that we specify 0 points, but our results were not constrained to only those Pilots with 0 points; 0
is the default value for int fields.

db4o also supplies a shortcut to retrieve all instances of a class:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

[/l retrieveAllPilots

| Qbj ect Set result = db. Get(typeof (Pilot));
Li stResult(result);

For .NET 2.0 there also is a generics shortcut, using the query method:

IList <Pilot> pilots = db. Query<Pil ot >(typeof (Pilot));

To query for a pilot by name:

/1 retrievePil ot ByName

Pilot proto = new Pilot ("M chael Schumacher", 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

And to query for Pilots with a specific number of points:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] retrievePil ot ByExact Poi nts

Pilot proto = new Pilot(null, 100);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

Of course there's much more to db4o queries. They will be covered in more depth in later chapters.

2.4. Updating objects

Updating objects is just as easy as storing them. In fact, you use the same SET() method to update
your objects: just call SET() again after modifying any object.

/| updat ePi | ot

| Qbj ect Set result = db. Get(new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot)result.Next();

found. AddPoi nts(11);

db. Set (f ound) ;

Consol e. WitelLine("Added 11 points for {0}", found);

RetrieveAl |l Pil ots(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Notice that we query for the object first. This is an importaint point. When you call SET() to modify a
stored object, if the object is not 'known' (having been previously stored or retrieved during the
current session), db4o will insert a new object. db4o does this because it does not automatically match
up objects to be stored, with objects previously stored. It assumes you are inserting a second object

which happens to have the same field values.

To make sure you've updated the pilot, please return to any of the retrieval examples above and run

them again.

2.5. Deleting objects

Objects are removed from the database using the DELETE() method.

/1 del et eFi rstPil ot ByNare

| Qbj ect Set result = db. Get (new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot)result.Next();

db. Del et e(f ound) ;

Consol e. WitelLine("Deleted {0}", found);

RetrieveAl |l Pil ots(db);

Let's delete the other one, too.

/1 del et eSecondPi | ot ByNane

| Qbj ect Set result = db. Get (new Pil ot ("Rubens Barrichello", 0));
Pilot found = (Pilot)result.Next();

db. Del et e(f ound) ;

Consol e. WitelLine("Deleted {0}", found);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

RetrieveAl | Pil ots(db);

Please check the deletion with the retrieval examples above.

As with updating objects, the object to be deleted has to be 'known' to db4o. It is not sufficient to
provide a prototype object with the same field values.

2.6. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a few lines of
code. But what about complex queries? Let's have a look at the restrictions of QBE and alternative
approaches in the next chapter .

2.7. Full source

usi ng System
using System |G

usi ng Db4obj ects. Db4o. Query;
usi ng Db4obj ects. Db4o. Tutori al ;

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1

{
public class FirstStepsExanple : Uil

{

public static void Main(string[] args)

{
File.Delete(Util.YapFil eNare);
AccessDb4o();
File.Delete(Util.YapFil eNare);
| Qbj ect Cont ai ner db =

Db4oFact ory. OpenFil e(Uti | . YapFi | eNare) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Query

try

{
StoreFirstPilot(db);
St or eSecondPi | ot (db) ;
RetrieveAl |l Pil ot s(db);
Retri evePi | ot ByNanme(db) ;
Retri evePi | ot ByExact Poi nt s(db) ;
Updat ePi | ot (db) ;
Del et eFi r st Pi | ot ByNane(db) ;
Del et eSecondPi | ot ByNane(db) ;
}
finally
{
db. d ose();
}

public static void AccessDb4o()
{
| Qbj ect Cont ai ner db =
Db4oFactory. OpenFil e(Ui |l . YapFi | eNare) ;
try
{
/1 do sonething with db4do

}
finally

{
db. d ose();

public static void StoreFirstPil ot (lObjectContainer db)

{
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
db. Set (pilot1l);
Consol e. WitelLine("Stored {0}", pilotl);

}

public static void StoreSecondPil ot (I Obj ect Cont ai ner db)

{
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (pil ot 2) ;
Consol e. WitelLine("Stored {0}", pilot2);

public static void RetrieveAll Pil ot BE(I Qhj ect Cont ai ner db)

{
Pilot proto = new Pilot(null, 0);
| Obj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void RetrieveAllPilots(lObjectContainer db)

{
| Obj ect Set result = db. Get(typeof (Pilot));

Li stResult(result);

public static void RetrievePil ot ByNane(| Qbj ect Cont ai ner db)

{
Pilot proto = new Pilot("M chael Schumacher", 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void

Retri evePi | ot ByExact Poi nt s(1 Obj ect Cont ai ner db)

{
Pilot proto = new Pilot(null, 100);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

}

public static void UpdatePil ot (I Object Contai ner db)
{
| Obj ect Set result = db. Get(new Pil ot ("M chael
Schumacher”, 0));
Pilot found = (Pilot)result. Next();
f ound. AddPoi nt s(11);
db. Set (f ound) ;
Consol e. WitelLi ne("Added 11 points for {0}", found);
RetrieveAl |l Pil ot s(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void Del eteFirstPil ot ByNane(| Cbj ect Cont ai ner
db)

| Obj ect Set result = db. Get(new Pilot("M chae
Schumacher", 0));

Pilot found = (Pilot)result. Next();

db. Del et e(f ound) ;

Consol e. WitelLine("Deleted {0}", found);

RetrieveAl |l Pil ot s(db);

public static void Del et eSecondPi | ot ByName(| Obj ect Cont ai ner
db)

| Obj ect Set result = db. Get (new Pil ot (" Rubens
Barrichello", 0));

Pilot found = (Pilot)result. Next();

db. Del et e(f ound) ;

Consol e. WitelLine("Deleted {0}", found);

RetrieveAl |l Pil ot s(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3. Querying

db4o supplies three querying systems, Query-By-Example (QBE) Native Queries (NQ), and the SODA
API. In the previous chapter, you were briefly introduced to Query By Example(QBE).

Query-By-Example (QBE) is appropriate as a quick start for users who are still acclimating to storing
and retrieving objects with db4o.

Native Queries (NQ) are the main db4o query interface, recommended for general use.

SODA is the underlying internal API. It is provided for backward compatibility and it can be useful for
dynamic generation of queries, where NQ are too strongly typed.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.1. Query by Example (QBE)

When using Query By Example (QBE) you provide db4o with a template object. db4o will return all of
the objects which match all non-default field values. This is done via reflecting all of the fields and
building a query expression where all non-default-value fields are combined with AND expressions.
Here's an example from the previous chapter:

/1 retrievePil ot ByName

Pilot proto = new Pilot("M chael Schumacher", 0);
| Obj ect Set result = db. Get(proto);
Li stResult(result);

Querying this way has some obvious limitations:

- db4o must reflect all members of your example object.

- You cannot perform advanced query expressions. (AND, OR, NOT, etc.)

- You cannot constrain on values like 0 (integers), "" (empty strings), or nulls (reference types)
because they would be interpreted as unconstrained.

- You need to be able to create objects without initialized fields. That means you can not initialize fields
where they are declared. You can not enforce contracts that objects of a class are only allowed in a
well-defined initialized state.

- You need a constructor to create objects without initialized fields.

To get around all of these constraints, db4o provides the Native Query (NQ) system.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.2. Native Queries

Wouldn't it be nice to pose queries in the programming language that you are using? Wouldn't it be
nice if all your query code was 100% typesafe, 100% compile-time checked and 100% refactorable?
Wouldn't it be nice if the full power of object-orientation could be used by calling methods from within
queries? Enter Native Queries.

Native queries are the main db4o query interface and they are the recommended way to query
databases from your application. Because native queries simply use the semantics of your

programming language, they are perfectly standardized and a safe choice for the future.

Native Queries are available for all platforms supported by db4o.

3.2.1. Concept

The concept of native queries is taken from the following two papers:

- Cook/Rosenberger, Native Queries for Persistent Objects, A Design White Paper

- Cook/Rai, Safe Query Objects: Statically Typed Objects as Remotely Executable Queries

3.2.2. Principle

Native Queries provide the ability to run one or more lines of code against all instances of a class.
Native query expressions should return true to mark specific instances as part of the result set. db4o
will attempt to optimize native query expressions and run them against indexes and without
instantiating actual objects, where this is possible.

3.2.3. Simple Example
Let's look at how a simple native query will look like in some of the programming languages and

dialects that db4o supports:

C# .NET 2.0

IList <Pilot> pilots = db. Query <Pilot> (del egate(Pilot pilot) {
return pilot.Points == 100;
1)

Java JDK 5

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/SafeQuery05/SafeQueryFinal.pdf

List <Pilot> pilots = db.query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.2 to 1.4

List pilots = db. query(new Predicate() ({
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.1

nj ect Set pilots = db. query(new Pil ot Hundr edPoi nts());
public static class PilotHundredPoi nts extends Predicate {

public bool ean match(Pilot pilot) {
return pilot.getPoints() == 100;

C# .NET 1.1

IList pilots = db. Query(new Pil ot Hundr edPoi nts());
public class Pil ot HundredPoints : Predicate {

public bool ean Match(Pilot pilot) {
return pilot.Points == 100;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

VB .NET 1.1

Dimpilots As |List = db. Query(new Pil ot Hundr edPoi nt s())

Public C ass Pil ot Hundr edPoi nt s
I nherits Predicate
Public Function Match (pilot As Pilot) as Bool ean
If pilot.Points = 100 Then
Return True
El se
Return Fal se
End Functi on

End d ass

A side note on the above syntax:
For all dialects without support for generics, Native Queries work by convention. A class that extends
the com.db4o.Predicate class is expected to have a boolean #Match() method with one parameter to

describe the class extent:

bool Match(Pil ot candidate);

When using native queries, don't forget that modern integrated development environments (IDEs) can
do all the typing work around the native query expression for you, if you use templates and

autocompletion.

Here is how to configure a Native Query template with Eclipse 3.1:
From the menu, choose Window + Preferences + Java + Editor + Templates + New
As the name type "nq". Make sure that "java" is selected as the context on the right. Paste the

following into the pattern field:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

List <${extent}> list = db.query(new Predicate <${extent}> () {
publ i ¢ bool ean mat ch(${extent} candi date){

return true,

1)

Now you can create a native query with three keys: n + q + Control-Space.

Similar features are available in most modern IDEs.
3.2.4. Advanced Example

For complex queries, the native syntax is very precise and quick to write. Let's compare to a SODA

query that finds all pilots with a given name or a score within a given range:

/! storePilots

db. Set (new Pil ot ("M chael Schumacher", 100));
db. Set (new Pi | ot ("Rubens Barrichello", 99));

/] retrieveConpl exSODA

| Query query=db. Query();
query. Constrai n(typeof (Pilot));
| Query point Query=query. Descend(" _points");

qguery. Descend("_name") . Constrai n("Rubens Barrichell o")
. O (poi nt Query. Constrai n(99). Geater()
. And(poi nt Query. Constrain(199). Snaller()));

| Obj ect Set resul t =query. Execut e();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Here is how the same query will look like with native query syntax, fully accessible to autocompletion,
refactoring and other IDE features, fully checked at compile time:

C# .NET 2.0

IList <Pilot> result = db. Query<Pilot> (del egate(Pilot pilot) {
return pilot.Points > 99
&& pilot.Points < 199
|| pilot.Name == "Rubens Barrichell o0";

1)

Java JDK 5

List <Pilot> result = db.query(new Predicate<Pilot>() {
publi ¢ bool ean match(Pilot pilot) {
return pilot.getPoints() > 99
&& pilot.getPoints() < 199
|| pilot.getNanme().equal s("Rubens Barrichello");

1)

3.2.5. Arbitrary Code
Basically that's all there is to know about native queries to be able to use them efficiently. In principle
you can run arbitrary code as native queries, you just have to be very careful with side effects -

especially those that might affect persistent objects.

Let's run an example that involves some more of the language features available.

usi ng Db4obj ect s. Db4o. Query;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1

{
public class ArbitraryQuery : Predicate
{
private int[] _points;
public ArbitraryQuery(int[] points)
{
_poi nt s=poi nt s;
}
public bool Mtch(Pilot pilot)
{
foreach (int points in _points)
{
if (pilot.Points == points)
{
return true;
}
}
return pilot.Nane.StartsWth("Rubens");
}
}
}

3.2.6. Native Query Performance

One drawback of native queries has to be pointed out: Under the hood db4o tries to analyze native
queries to convert them to SODA. This is not possible for all queries. For some queries it is very
difficult to analyze the flowgraph. In this case db4o will have to instantiate some of the persistent
objects to actually run the native query code. db4o will try to analyze parts of native query expressions

to keep object instantiation to the minimum.

The development of the native query optimization processor will be an ongoing process in a close
dialog with the db4o community. Feel free to contribute your results and your needs by providing

feedback to our db4o forums.

With the current implementation, all above examples will run optimized, except for the "Arbitrary

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://forums.db4o.com/

Code" example - we are working on it.

3.2.7. Full source

usi ng Db4obj ect s. Db4o;
usi ng Db4obj ects. Db4o. Query;

usi ng Db4obj ects. Db4o. Tutori al ;

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1

{
public class NQExanple : Util
{
public static void Main(string[] args)
{
| Qbj ect Cont ai ner db =
Db4oFactory. OpenFil e(Ui |l . YapFi | eNare) ;
try
{
StorePi | ot s(db);

Ret ri eveConpl exSODA(db) ;
Retri eveConpl exNQ db) ;

Retri eveArbi traryCodeNQ db);
Cl ear Dat abase(db) ;

}
finally

{
db. d ose();

public static void StorePil ots(lQbjectContainer db)

{
db. Set (new Pil ot ("M chael Schumacher", 100));

db. Set (new Pi |l ot ("Rubens Barrichello", 99));

public static void RetrieveConpl exSODA(I Obj ect Cont ai ner db)
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Query query=db. Query();

guery. Constrai n(typeof (Pilot));

| Query poi nt Query=query. Descend(" _poi nts");

qguery. Descend(" _name"). Constrai n("Rubens Barrichello")
. O (poi nt Query. Constrai n(99). Geater()
. And(poi nt Query. Constrai n(199). Snaller()));

| Obj ect Set resul t =query. Execut e();

Li stResult(result);

public static void RetrieveConpl exNQ | Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Query(new Conpl exQuery());

Li stResult(result);

public static void RetrieveArbitraryCodeNQ | Obj ect Cont ai ner

db)

| Obj ect Set result = db. Query(new ArbitraryQuery(new

int[]1{1, 100}));

Li stResult(result);

public static void C ear Dat abase(| Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(typeof (Pilot));
while (result.HasNext())
{
db. Del ete(result. Next());
}
}

usi ng Db4obj ects. Db4o. Query;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1

{
public class Conpl exQuery : Predicate
{
publ i c bool Match(Pilot pilot)
{
return pilot.Points > 99
&& pilot.Points < 199
| | pilot.Nane=="Rubens Barrichello";
}
}
}

usi ng Db4obj ects. Db4o. Query;

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter1

{
public class ArbitraryQuery : Predicate
{
private int[] _points;
public ArbitraryQuery(int[] points)
{
_poi nt s=poi nt s;
}
public bool Mtch(Pilot pilot)
{
foreach (int points in _points)
{
if (pilot.Points == points)
{
return true;
}
}
return pilot.Nane.StartsWth("Rubens");
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.3. SODA Query API

The SODA query API is db4o's low level querying API, allowing direct access to nodes of query graphs.
Since SODA uses strings to identify fields, it is neither perfectly typesafe nor compile-time checked and
it also is quite verbose to write.

For most applications Native Queries will be the better querying interface.

However there can be applications where dynamic generation of queries is required, that's why SODA

is explained here.
3.3.1. Simple queries
Let's see how our familiar QBE queries are expressed with SODA. A new Query object is created

through the #Query() method of the ObjectContainer and we can add Constraint instances to it. To

find all Pilot instances, we constrain the query with the Pilot class object.

[/l retrieveAllPilots

| Query query = db. Query();
query. Constrai n(typeof (Pilot));

| Qbj ect Set result = query. Execute();
Li stResult(result);

Basically, we are exchanging our 'real' prototype for a meta description of the objects we'd like to hunt
down: a query graph made up of query nodes and constraints. A query node is a placeholder for a

candidate object, a constraint decides whether to add or exclude candidates from the result.

Our first simple graph looks like this.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

" O¢——[ctass . pilot |

We're just asking any candidate object (here: any object in the database) to be of type Pilot to
aggregate our result.

To retrieve a pilot by name, we have to further constrain the candidate pilots by descending to their
name field and constraining this with the respective candidate String.

/1 retrievePil ot ByNane

| Query query = db. Query();
guery. Constrai n(typeof (Pilot));

query. Descend(" _nane"). Constrai n("M chael Schumacher");

| Obj ect Set result = query. Execute();
Li st Resul t (result);

What does 'descend' mean here? Well, just as we did in our 'real' prototypes, we can attach constraints
to child members of our candidates.

name

So a candidate needs to be of type Pilot and have a member named 'name’ that is equal to the given
String to be accepted for the result.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Note that the class constraint is not required: If we left it out, we would query for all objects that
contain a 'name' member with the given value. In most cases this will not be the desired behavior,
though.

Finding a pilot by exact points is analogous.

/] retrievePil ot ByExact Poi nt's

| Query query = db. Query();
query. Constrai n(typeof (Pilot));
query. Descend(" _poi nts"). Constrai n(100);

| Qbj ect Set result = query. Execute();
Li stResult(result);

3.3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather for value
ranges, objects not containing given member values, etc. This functionality is provided by the
Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

/] retrieveByNegation

| Query query = db. Query();

query. Constrai n(typeof (Pilot));

query. Descend("_name") . Constrai n("M chael Schumacher"). Not ();
| Qbj ect Set result = query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Where there is negation, the other boolean operators can't be too far.

/] retrieveByConjunction

| Query query = db. Query();
query. Constrai n(typeof (Pilot));

| Constraint constr = query. Descend(" _nane")
. Constrain("M chael Schumacher");
query. Descend(" _poi nts")
. Constrain(99). And(constr);
| Qbj ect Set result = query. Execute();
Li stResult(result);

/] retrieveByDi sjunction

| Query query = db. Query();

query. Constrai n(typeof (Pilot));

| Constraint constr = query. Descend(" _nane")
. Constrai n("M chael Schumacher");

query. Descend(" _poi nts")
.Constrain(99). O (constr);

| Qbj ect Set result = query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We can also constrain to a comparison with a given value.

/] retrieveByConparison

| Query query = db. Query();
query. Constrai n(typeof (Pilot));

query. Descend(" _poi nts")
.Constrain(99). Geater();

| Qbj ect Set result = query. Execute();

Li stResult(result);

The query API also allows to query for field default values.

/1 retrieveByDefaul t Fi el dval ue

Pi | ot sonebody = new Pil ot (" Sonebody el se", 0);
db. Set (sonebody) ;

| Query query = db. Query();

query. Constrai n(typeof (Pilot));

query. Descend(" _points"). Constrain(0);

| Qbj ect Set result = query. Execute();

Li stResult(result);

db. Del et e(sonebody) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

It is also possible to have db4o sort the results.

/! retrieveSorted

| Query query = db. Query();

query. Constrai n(typeof (Pilot));

query. Descend(" _nane"). O der Ascendi ng() ;
| Qbj ect Set result = query. Execute();

Li stResult(result);

query. Descend(" _nane") . O der Descendi ng() ;

result = query. Execute();
Li stResult(result);

All these techniques can be combined arbitrarily, of course. Please try it out. There still may be cases

left where the predefined query API constraints may not be sufficient - don't worry, you can always let
db4o run any arbitrary code that you provide in an Evaluation. Evaluations will be discussed in a later
chapter.

To prepare for the next chapter, let's clear the database.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations
#Evaluations

/] cl ear Dat abase

| Obj ect Set result = db. Get(typeof (Pilot));

foreach (object itemin result)

{

db. Del ete(item;
}
OUTPUT:

3.3.3. Conclusion
Now you have been provided with three alternative approaches to query db4o databases: Query-By-
Example, Native Queries, SODA.

Which one is the best to use? Some hints:

- Native queries are targetted to be the primary interface for db4o, so they should be preferred.

- With the current state of the native query optimizer there may be queries that will execute faster in
SODA style, so it can be used to tune applications. SODA can also be more convenient for constructing
dynamic queries at runtime.

- Query-By-Example is nice for simple one-liners, but restricted in functionality. If you like this

approach, use it as long as it suits your application's needs.

Of course you can mix these strategies as needed.

We have finished our walkthrough and seen the various ways db4o provides to pose queries. But our
domain model is not complex at all, consisting of one class only. Let's have a look at the way db4o

handles object associations in the next chapter .

3.3.4. Full source

usi ng System

usi ng Db4obj ect s. Db4o;
usi ng Db4obj ects. Db4o. Query;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Structured

usi ng Db4obj ects. Db4o. Tutori al ;

nanmespace Db4obj ects. Db4o. Tutori al . F1. Chapterl
{
public class QueryExanmple : Uil
{
public static void Main(string[] args)
{
| Obj ect Cont ai ner db =
Db4oFactory. OpenFil e(Uti | . YapFi | eNane) ;
try
{
StoreFirstPilot(db);
St or eSecondPi | ot (db) ;
RetrieveAl |l Pil ot s(db);
Retri evePi | ot ByNanme(db) ;
Retri evePi | ot ByExact Poi nt s(db) ;
Retri eveByNegati on(db);
Ret ri eveByConj uncti on(db);
Retri eveByDi sj uncti on(db);
Ret ri eveByConpari son(db);
Retri eveByDef aul t Fi el dVal ue(db);
Retri eveSorted(db);
Cl ear Dat abase(db) ;

}
finally

{
db. d ose();

public static void StoreFirstPil ot (lObjectContainer db)

{
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
db. Set (pilot1l);
Consol e. WitelLine("Stored {0}", pilotl);

}

public static void StoreSecondPil ot (I Obj ect Cont ai ner db)

{
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (pil ot 2) ;
Consol e. WitelLine("Stored {0}", pilot2);

public static void RetrieveAllPilots(lObjectContainer db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrievePil ot ByNane(| Qbj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
qguery. Descend(" _name"). Constrain("M chael Schunmacher");
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void

Retri evePi | ot ByExact Poi nt s(1 Obj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
guery. Descend(" _poi nts"). Constrai n(100);
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveByNegation(l Cbject Contai ner db)
{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
guery. Descend(" _nane"). Constrai n("M chae
Schumacher™) . Not () ;
| Obj ect Set result = query. Execute();

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void RetrieveByConjunction(l Object Contai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
| Constraint constr = query.Descend("_nane"
. Constrain("M chael Schumacher");
qguery. Descend(" _poi nts")
. Constrain(99). And(constr);
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveByD sjunction(Il ObjectContai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));
| Constraint constr = query.Descend("_nane"
. Constrain("M chael Schumacher");
qguery. Descend(" _poi nts")
. Constrain(99). Or(constr);
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveByConparison(l Object Cont ai ner db)

| Query query = db. Query();

guery. Constrai n(typeof (Pilot));

guery. Descend(" _poi nts")
.Constrain(99). Geater();

| Obj ect Set result = query. Execute();

Li stResult(result);

public static void
Ret ri eveByDef aul t Fi el dVal ue(1 Obj ect Cont ai ner db)
{
Pil ot sonmebody = new Pil ot (" Sormebody el se", 0);
db. Set (sonebody) ;
| Query query = db. Query();
guery. Constrai n(typeof (Pilot));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

guery. Descend(" _poi nts"). Constrain(0);
| Obj ect Set result = query. Execute();
Li stResult(result);

db. Del et e(sonebody) ;

public static void RetrieveSorted(l CbjectContainer db)

| Query query = db. Query();

guery. Constrai n(typeof (Pilot));

guery. Descend(" _name"). Order Ascendi ng() ;

| Obj ect Set result = query. Execute();

Li stResult(result);

guery. Descend(" _name"). Order Descendi ng() ;
result = query. Execute();

Li stResult(result);

public static void C ear Dat abase(| Obj ect Cont ai ner db)

| Obj ect Set result = db. Get(typeof (Pilot));

foreach (object itemin result)

{
db. Del ete(item;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4. Structured objects

It's time to extend our business domain with another class and see how db4o handles object

interrelations. Let's give our pilot a vehicle.

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter 2

{

public class Car

{

string _nodel;

Pilot _pilot;

public Car(string nodel)

{
_nmodel = nodel;
_pilot = null;
}
public Pilot Pil ot
{
get
{
return _pilot;
}
set
{
_pilot = val ue;
}
}

public string Model

{
get
{
return _nodel;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

override public string ToString()

{
return string. Format ("{0}[{1}]",

4.1. Storing structured objects

_nodel ,

_pilot);

To store a car with its pilot, we just call SET() on our top level object, the car. The pilot will be stored

implicitly.

/] storeFirstCar

Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher",
carl.Pilot = piloti;

db. Set (car1);

100) ;

Of course, we need some competition here. This time we explicitly store the pilot before entering the

car - this makes no difference.

/] storeSecondCar

Pilot pilot2 = new Pil ot ("Rubens Barrichell o",
db. Set (pil ot 2) ;

Car car2 = new Car("BMWV);

car2.Pilot = pilot2;

db. Set (car 2) ;

4.2. Retrieving structured objects

99);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4.2.1. QBE

To retrieve all cars, we simply provide a 'blank' prototype.

/1 retrieveAll CarsQBE

Car proto = new Car(null);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

We can also query for all pilots, of course.

/1 retrieveAllPilotsQBE

Pilot proto = new Pilot(null, 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] retrieveCarByPil ot QBE

Pilot pilotproto = new Pil ot ("Rubens Barrichello", 0);

Car carproto = new Car(null);

carproto. Pilot = pilotproto;
| Qbj ect Set result = db. Get(carproto);
Li stResult(result);

What about retrieving a pilot by car? We simply don't need that - if we already know the car, we can
simply access the pilot field directly.

4.2.2. Native Queries

Using native queries with constraints on deep structured objects is straightforward, you can do it just

like you would in plain other code.

Let's constrain our query to only those cars driven by a Pilot with a specific name:

public class RetrieveCarsByPil ot NamePredi cate : Predicate

{

readonly string _pil ot Name;

public RetrieveCarsByPil ot NamePredi cat e(string pil ot Nane)

{
_pilotNane = pil ot Nane;

publi ¢ bool Match(Car candi date)
{

return candi date. Pilot. Name == _pil ot Nan®;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1 retrieveCarsByPil ot NaneNati ve

string pilotNane = "Rubens Barrichello";

| Obj ect Set results = db. Query(new

Ret ri eveCar sByPi | ot NamePr edi cat e(pi | ot Nane)) ;
Li stResult(results);

Using .NET 2.0 syntax this is a lot simpler:

C# .NET 2.0

/1 retrieveCarsByPil ot NaneNati ve

string pilotNane = "Rubens Barrichello";

Li st<Car> results = db. Query<Car>(del egate(Car car) {
return car.Pilot.Nane == pil ot Name; });

i st Resul ts(results);

4.2.3. SODA Query API

In order to use SODA for querying for a car given its pilot's name we have to descend two levels into
our query.

/] retrieveCarByPil ot NameQuery

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Query query = db. Query();
query. Constrai n(typeof (Car));

query. Descend(" _pilot"). Descend("_nane")
. Constrain("Rubens Barrichello");

| Qbj ect Set result = query. Execute();

Li stResult(result);

We can also constrain the pilot field with a prototype to achieve the same result.

/1 retrieveCarByPil ot Prot oQuery

| Query query = db. Query();

query. Constrai n(typeof (Car));

Pilot proto = new Pilot("Rubens Barrichello", 0);
query. Descend(" _pilot"). Constrai n(proto);

| Obj ect Set result = query. Execute();
Li stResult(result);

We have seen that descending into a query provides us with another query. Starting out from a query
root we can descend in multiple directions. In practice this is the same as ascending from one child to
a parent and descending to another child. We can conclude that queries turn one-directional references
in our objects into true relations. Here is an example that queries for "a Pilot that is being referenced
by a Car, where the Car model is 'Ferrari'":

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] retrievePil ot ByCar Model Query

| Query carQuery = db. Query();
car Query. Constrain(typeof(Car));

car Query. Descend(" _nodel "). Constrain("Ferrari");

| Query pilotQuery = carQuery. Descend("_pilot");
| Qbj ect Set result = pilotQuery. Execute();
Li stResult(result);

4.3. Updating structured objects

To update structured objects in db4o, we simply call SET() on them again.

/| updat eCar

| Qbj ectSet result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

found. Pil ot = new Pil ot ("Sonebody el se", 0);
db. Set (f ound) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

result = db. Get(new Car("Ferrari"));
Li stResult(result);

Let's modify the pilot, too.

/] updat ePi | ot Si ngl eSessi on

| Qbj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

found. Pi | ot. AddPoi nts(1);

db. Set (f ound) ;

result = db. Get(new Car("Ferrari"));

Li stResult(result);

Nice and easy, isn't it? But wait, there's something evil lurking right behind the corner. Let's see what
happens if we split this task in two separate db4o sessions: In the first we modify our pilot and update
his car:

/| updat ePi | ot Separ at eSessi onsPart 1
| Obj ect Set result = db. Get(new Car("Ferrari"));

Car found = (Car)result. Next();
found. Pi | ot. AddPoi nts(1);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. Set (f ound);

And in the second, we'll double-check our modification:

/1 updat ePi | ot Separ at eSessi onsPart 2

| Coj ect Set result = db. Get(new Car("Ferrari"));
Li stResult(result);

Looks like we're in trouble: Why did the Pilot's points not change? What's happening here and what can
we do to fix it?

4.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When updating
this object, db4o would have to update all its children, grandchildren, etc. This poses a severe

performance penalty and will not be necessary in most cases - sometimes, however, it will.

So, in our previous update example, we were modifying the Pilot child of a Car object. When we saved
the change, we told db4o to save our Car object and asumed that the modified Pilot would be updated.
But we were modifying and saving in the same manner as we were in the first update sample, so why
did it work before? The first time we made the modification, db4o never actually had to retreive the
modified Pilot it returned the same one that was still in memory that we modified, but it never actually
updated the database. The fact that we saw the modified value was, in fact, a bug. Restarting the

application would show that the value was unchanged.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept of update depth
to control how deep an object's member tree will be traversed on update. The default update depth for
all objects is 1, meaning that only primitive and String members will be updated, but changes in object
members will not be reflected.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o provides means to control update depth with very fine granularity. For our current problem we'll
advise db4o to update the full graph for Car objects by setting cascadeOnUpdate() for this class
accordingly.

/| updat ePi | ot Separ at eSessi onsl nprovedPart 1

Db4oFact ory. Confi gure(). Cbjectd ass(typeof (Car))
. CascadeOnUpdat e(true);

/| updat ePi | ot Separ at eSessi onsl| npr ovedPart 2

| Qbj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

found. Pi | ot. AddPoi nts(1);

db. Set (f ound) ;

/| updat ePi | ot Separ at eSessi onsl| npr ovedPart 3

| Cbj ectSet result = db. Get(new Car("Ferrari"));
Li stResult(result);

This looks much better.

Note that container configuration must be set before the container is opened.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We'll cover update depth as well as other issues with complex object graphs and the respective db4o
configuration options in more detail in a later chapter.

4.4. Deleting structured objects

As we have already seen, we call DELETE() on objects to get rid of them.

/1 del et eFl at

| Qbj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

db. Del et e(f ound) ;

result = db. Get(new Car(null));

Li stResult(result);

Fine, the car is gone. What about the pilots?

/1 retrieveAllPilotsQBE

Pilot proto = new Pilot(null, 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is disposed of in real life,

too. But what if we want an object's children to be thrown away on deletion, too?

4.4.1. Recursive deletion

You may already suspect that the problem of recursive deletion (and perhaps its solution, too) is quite

similar to our little update problem, and you're right. Let's configure db4o to delete a car's pilot, too,
when the car is deleted.

/'l del et eDeepPart 1

Db4oFact ory. Confi gure(). Cbjectd ass(typeof (Car))
. CascadeOnDel et e(true);

/'l del et eDeepPart 2

| Cbj ect Set result = db. Get(new Car("BMN));
Car found = (Car)result. Next();

db. Del et e(f ound) ;

result = db. Get(new Car(null));

Li stResult(result);

Again: Note that all configuration must take place before the I0bjectContainer is opened.

Let's have a look at our pilots again.

// retrieveAll Pilots

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pilot proto = new Pilot(null, 0);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);

4.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by other objects?

/| del et eDeepRevi sited

| Qbj ect Set result = db. Get (new Pil ot ("M chael Schumacher", 0));
Pilot pilot = (Pilot)result.Next();
Car carl = new Car("Ferrari");

Car car2 = new Car ("BMV);
carl.Pilot = pilot;

car2.Pilot = pilot;

db. Set (carl);

db. Set (car 2);

db. Del et e(car 2);

result = db. Get(new Car(null));

Li stResult(result);

[/l retrieveAllPilots

Pilot proto = new Pilot(null, 0);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Qbj ect Set result = db. Get(proto);
Li stResult(result);

Houston, we have a problem - and there's no simple solution at hand. Currently db4o does not check
whether objects to be deleted are referenced anywhere else, so please be very careful when using this

feature.

Let's clear our database for the next chapter.

/1 del eteAll

| Qbj ect Set result = db. Get (typeof (Ooj ect));

foreach (object itemin result)

{
db. Del ete(item;

4.5. Conclusion

So much for object associations: We can hook into a root object and climb down its reference graph to
specify queries. But what about multi-valued objects like arrays and collections? We will cover this in

the next chapter .

4.6. Full source

usi ng System
using System |G

usi ng Db4obj ect s. Db4o;
usi ng Db4obj ects. Db4o. Query;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Collections

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter 2

{
public class StructuredExanple : Util

{
public static void Main(String[] args)

{
File.Delete(Util. YapFil eNane);

| Obj ect Cont ai ner db =
Db4oFact ory. OpenFil e(Ui |l . YapFi | eNare) ;
try

{
St or eFi rst Car (db) ;

St or eSecondCar (db) ;

RetrieveAl | Car sQBE(db);

RetrieveAl | Pi |l ot sQBE(db);

Retri eveCar ByPi | ot QBE(db) ;

Retri eveCar ByPi | ot NaneQuer y(db) ;

Retri eveCar ByPi | ot Pr ot oQuery(db);

Retri evePi | ot ByCar Model Query(db);

Updat eCar (db) ;

Updat ePi | ot Si ngl eSessi on(db) ;

Updat ePi | ot Separ at eSessi onsPart 1(db) ;

db. d ose();

db=Db4oFact ory. OpenFi l e(Uti | . YapFi | eNan®e) ;
Updat ePi | ot Separ at eSessi onsPart 2(db) ;

db. d ose();

Updat ePi | ot Separ at eSessi onsl nprovedPart 1(db) ;
db=Db4oFact ory. OpenFi l e(Uti | . YapFi | eNan®e) ;
Updat ePi | ot Separ at eSessi onsl npr ovedPart 2(db) ;
db. d ose();

db=Db4oFact ory. OpenFi l e(Uti | . YapFi | eNan®e) ;
Updat ePi | ot Separ at eSessi onsl npr ovedPart 3(db) ;
Del et eFl at (db) ;

db. d ose();

Del et eDeepPart 1(db) ;

db=Db4oFact ory. OpenFi l e(Uti | . YapFi | eNan®e) ;

Del et eDeepPart 2(db) ;

Del et eDeepRevi si t ed(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

publ

publ

publ

publ

publ

finally

{
db. d ose();

ic static void StoreFirstCar(lQbjectContainer db)

Car carl = new Car("Ferrari");

Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;

db. Set (carl);

ic static void StoreSecondCar (| Obj ect Cont ai ner db)

Pilot pilot2 = new Pil ot ("Rubens Barrichello", 99);
db. Set (pil ot 2) ;

Car car2 = new Car("BMWV);

car2.Pilot = pilot2;

db. Set (car 2) ;

ic static void RetrieveAl |l CarsBE(I Cbj ect Cont ai ner db)

Car proto = new Car(null);

| Qbj ect Set result = db. Get(proto);

Li stResult(result);

ic static void RetrieveAl lPil ot s@E(I Object Cont ai ner db)

Pilot proto = new Pilot(null, 0);

| Qbj ect Set result = db. Get(proto);

Li stResult(result);

ic static void RetrieveCarByPil ot QBE(| Obj ect Cont ai ner db)

Pilot pilotproto = new Pilot("Rubens Barrichello", 0);

Car carproto = new Car(null);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

carproto. Pilot = pilotproto;
| Obj ect Set result = db. Get(carproto);

Li stResult(result);

public static void

Retri eveCar ByPi | ot NameQuer y(| Obj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Car));
qguery. Descend(" _pilot"). Descend("_nane"
. Constrain("Rubens Barrichello");
| Obj ect Set result = query. Execute();

Li stResult(result);

public static void
Ret ri eveCar ByPi | ot Prot oQuer y(| Cbj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Constrai n(typeof (Car));
Pilot proto = new Pil ot ("Rubens Barrichello", 0);
guery. Descend(" _pilot"). Constrain(proto);
| Obj ect Set result = query. Execute();

Li stResult(result);

public static void

Retri evePi | ot ByCar Mbdel Query(| Cbj ect Cont ai ner db)

{
| Query carQuery = db. Query();
car Query. Constrai n(typeof (Car));
car Query. Descend(" _nodel "). Constrain("Ferrari");
| Query pilotQuery = carQuery. Descend(" _pilot");
| Obj ect Set result = pil ot Query. Execute();
Li stResult(result);

}

public static void RetrieveAllPilots(lObjectContainer db)

{
| Obj ect Set results = db. Get(typeof (Pilot));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li st Result(results);

public static void RetrieveAll Cars(l Object Contai ner db)

{
| Obj ect Set results = db. Get (typeof(Car));

Li st Result(results);

public class RetrieveCarsByPil ot NanePredi cate : Predicate

{
readonly string _pil ot Name;
public RetrieveCarsByPil ot NanePredi cate(string pil ot Nane)
{
_pil ot Nane = pil ot Nane;
}
public bool WMatch(Car candi date)
{
return candi date. Pil ot. Name == _pi |l ot Nane;
}
}

public static void
Retri eveCar sByPi | ot NameNat i ve(| Cbj ect Cont ai ner db)
{
string pilotNane = "Rubens Barrichell o";
| Obj ect Set results = db. Query(new
Retri eveCar sByPi | ot NanmePr edi cat e(pi | ot Nane)) ;

Li stResult(results);

public static void UpdateCar (| Cbject Contai ner db)

{
| Obj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();
found. Pil ot = new Pil ot (" Sonmebody el se", 0);
db. Set (f ound) ;
result = db. Get(new Car("Ferrari"));

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void UpdatePil ot Si ngl eSessi on(1 Cbj ect Cont ai ner

db)

| Obj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();

found. Pi | ot . AddPoi nt s(1);

db. Set (f ound) ;

result = db. Get(new Car("Ferrari"));

Li stResult(result);

public static void

Updat ePi | ot Separ at eSessi onsPart 1(| Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();
found. Pi | ot . AddPoi nt s(1);
db. Set (f ound) ;
}

public static void
Updat ePi | ot Separ at eSessi onsPart 2(| Obj ect Cont ai ner db)
{
| Obj ectSet result = db. Get(new Car("Ferrari"));

Li stResult(result);

public static void
Updat ePi | ot Separ at eSessi onsl nprovedPart 1(| Obj ect Cont ai ner db)
{
Db4oFact ory. Confi gure(). Obj ect d ass(typeof (Car))
. CascadeOnUpdat e(true);

public static void
Updat ePi | ot Separ at eSessi onsl nprovedPart 2(| Obj ect Cont ai ner db)
{
| Obj ectSet result = db. Get(new Car("Ferrari"));
Car found = (Car)result. Next();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

found. Pi | ot . AddPoi nt s(1);
db. Set (f ound) ;

public static void

Updat ePi | ot Separ at eSessi onsl npr ovedPart 3(| Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(new Car("Ferrari"));

Li stResult(result);

public static void Del et eFl at (1 Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(new Car("Ferrari"));
Car found = (Car)result.Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);
}

public static void Del et eDeepPart 1(1 Obj ect Cont ai ner db)

Db4oFact ory. Confi gure(). Obj ect A ass(typeof (Car))
. CascadeOnbDel et e(true);

public static void Del et eDeepPart 2(1 Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(new Car("BMN));
Car found = (Car)result.Next();
db. Del et e(f ound) ;
result = db. Get(new Car(null));
Li stResult(result);
}

public static void Del et eDeepRevi sited(l Qbject Cont ai ner db)

| Obj ect Set result = db. Get(new Pil ot ("M chael
Schumacher”, 0));
Pilot pilot = (Pilot)result. Next();

Car carl = new Car("Ferrari");

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Car car2 = new Car("BMNV);
carl. Pil ot

pil ot;
car 2. Pil ot
db. Set (car1);

db. Set (car 2) ;

db. Del et e(car 2) ;

result = db. Get(new Car(null));
Li stResult(result);

pil ot;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our car and

collecting their output.

usi ng System

usi ng System Text ;

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter3
{

public class Sensor Readout

{

doubl e[] _val ues;
DateTinme _tinme;

Car _car;

publ i c Sensor Readout (doubl e[] val ues, DateTine tine, Car car)

_val ues = val ues;
_time = tine;
_car = car;

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine

{
get
{
return _time;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public int NunVal ues

{
get
{
return _val ues. Lengt h;
}
}

public doubl e[] Val ues

{
get
{
return _val ues;
}
}

publ i c doubl e GetVal ue(int idx)
{

return _val ues[i dx];

override public string ToString()

{
StringBuil der builder = new StringBuilder();
bui | der. Append(_car);
bui | der. Append(" : ");
bui | der. Append(_ti ne. Ti neCf Day) ;
bui | der. Append(" : ");
for (int i=0; i<_values.Length; ++i)
{
if (i >0
{
bui | der. Append(", ");
}
bui | der. Append(_val ues[i]);
}
return builder. ToString();
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

A car may produce its current sensor readout when requested and keep a list of readouts collected
during a race.

usi ng System

usi ng System Col | ecti ons;

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter3
{

public class Car

{

string _nodel
Pilot _pilot;
I List _history;

public Car(string nodel) : this(nmodel, new Arraylist())

{
}

public Car(string nodel, IList history)

{
_nmodel = nodel
_pilot = null
_history = history;
}

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = value

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Model

{
get
{
return _nodel;
}
}

public IList History

{
get
{
return _history;
}
}

public void Shapshot ()
{
_history. Add(new Sensor Readout (Pol | (), DateTi me. Now,
this));

prot ected double[] Poll ()
{
int factor = _history. Count + 1;
return new double[] { 0.1ld*factor, 0.2d*factor,

0. 3d*factor };
}

override public string ToString()

{
return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

_history. Count);
}

We will constrain ourselves to rather static data at the moment and add flexibility during the next

chapters.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5.1. Storing

This should be familiar by now.

/] storeFirstCar

Car carl = new Car("Ferrari");

Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = piloti;

db. Set (carl);

The second car will take two snapshots immediately at startup.

/] storeSecondCar

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);

car2.Pilot = pilot2;

car 2. Snapshot () ;

car 2. Snapshot () ;

db. Set (car 2) ;

5.2. Retrieving

5.2.1. QBE

First let us verify that we indeed have taken snapshots.

/] retrieveAl | Sensor Readout

| Obj ect Set result = db. Get (typeof (Sensor Readout));

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

As a prototype for an array, we provide an array of the same type, containing only the values we
expect the result to contain.

/1 retrieveSensor Readout QBE

Sensor Readout proto = new Sensor Readout (new double[] { 0.3, 0.1},
Dat eTi me. M nVal ue, null);

| Qbj ect Set result = db. Get(proto);

Li stResult(result);

Note that the actual position of the given elements in the prototype array is irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the sought-after values.

/1 retrieveCar QBE

Sensor Readout prot oReadout = new Sensor Readout (new doubl e[] { O.86,
0.2 }, DateTine.MnValue, null);

I List protoHi story = new ArrayList();

pr ot oHi st ory. Add(pr ot oReadout) ;

Car protoCar = new Car(null, protoHistory);

| Qbj ect Set result = db. Get(protoCar);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Li stResult(result);

We can also query for the collections themselves, since they are first class objects.

I/l retrieveCollections

| Qbj ect Set result = db. Get (new ArrayList());
Li stResult(result);

This doesn't work with arrays, though.

/1 retrieveArrays

| Obj ect Set result = db. Get (new double[] { 0.6, 0.4 });
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5.2.2. Native Queries

If we want to use Native Queries to find SensorReadouts with matching values, we simply write this as
if we would check every single instance:

public class RetrieveSensor Readout Predicate : Predicate

{
publi ¢ bool Match(Sensor Readout candi date)
{
return Array. | ndexOf (candi dat e. Val ues, 0.3) > -1
&& Array. | ndexOf (candi dat e. Val ues, 0.1) > -1;
}
}

/1 retrieveSensor Readout Nati ve

| Qbj ect Set results = db. Query(new Retri eveSensor Readout Predi cate());
Li stResult(results);

And here's how we find Cars with matching readout values:

public class RetrieveCarPredicate : Predicate

{
publi ¢ bool Match(Car car)

{

foreach (SensorReadout sensor in car.History)

{
if (Array.|ndexOr (sensor. Values, 0.3) > -1

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

&& Array. | ndexOr (sensor. Val ues, 0.1) > -1)

return true,

}

return false;

[/l retrieveCarNative

| Obj ect Set results = db. Query(new RetrieveCarPredicate());
Li stResult(results);

5.2.3. Query API

Handling of arrays and collections is analogous to the previous example. First, lets retrieve only the
SensorReadouts with specific values:

/] retrieveSensor Readout Query

| Query query = db. Query();

query. Constrai n(typeof (Sensor Readout)) ;

| Query val ueQuery = query. Descend("_val ues");
val ueQuery. Constrain(0. 3);

val ueQuery. Constrai n(0.1);

| Qbj ect Set results = query. Execute();

Li stResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Then let's get some Cars with matching Readout values:

/] retrieveCarQuery

| Query query = db. Query();

query. Constrai n(typeof (Car));

| Query historyQuery = query. Descend("_history");

hi st oryQuery. Constrai n(typeof (Sensor Readout)) ;

| Query val ueQuery = historyQuery. Descend("_val ues");
val ueQuery. Constrai n(0. 3);

val ueQuery. Constrai n(0.1);

| Qbj ect Set results = query. Execute();

Li stResult(results);

5.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth.

/| updateCarPartl

Db4oFact ory. Confi gure(). Obj ect O ass(typeof (Car)).CascadeOnUpdat e(true
)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/| updat eCar Part 2

| Obj ect Set result = db. Get(new Car ("BMN, null));
Car car = (Car)result. Next();

car. Snapshot () ;

db. Set (car);

Retri eveAl | Sensor Readout s(db) ;

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

/1 updat eCol | ection

| Query query = db. Query();

query. Constrai n(typeof (Car));

| Obj ect Set result = query. Descend("_history").Execute();
IList history = (IList)result.Next();

hi st ory. RenoveAt (0) ;

db. Set (hi story);

Car proto = new Car(null, null);

result = db. Get(proto);

foreach (Car car in result)

{
foreach (object readout in car.H story)
{
Consol e. Wit eLi ne(readout);
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(This example also shows that with db4o it is quite easy to access object internals we were never

meant to see. Please keep this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

/1l deleteAllParti1

Db4oFact ory. Confi gure(). Obj ect d ass(typeof (Car)).CascadeOnDel et e(true

)

/1l deleteAllPart?2

| Qbj ectSet result = db. Get(new Car(null, null));
foreach (object car in result)
{
db. Del et e(car);
}
| Obj ect Set readouts = db. Get (new Sensor Readout (nul |,
Dat eTi me. M nVal ue, null));
foreach (object readout in readouts)

{
db. Del et e(readout) ;

5.4. Conclusion

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ok, collections are just objects. But why did we have to specify the concrete ArrayList type all the way?

Was that necessary? How does db4o handle inheritance? We will cover that in the next chapter.

5.5. Full source

usi ng System
usi ng System Col | ecti ons;

using System |1 Q

usi ng Db4obj ect s. Db4o;
usi ng Db4obj ects. Db4o. Query;

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter3

{
public class CollectionsExanple : Uil

{
public static void Main(string[] args)

{
File.Delete(Util. YapFil eNane);
| Qbj ect Cont ai ner db =
Db4oFactory. OpenFil e(Ui |l . YapFi | eNare) ;
try
{
St or eFi r st Car (db) ;

St or eSecondCar (db) ;

Retri eveAl | Sensor Readout s(db) ;
Retri eveSensor Readout QBE(db) ;
Ret ri eveCar QBE(db) ;

RetrieveCol | ecti ons(db);
RetrieveArrays(db);

Ret ri eveSensor Readout Quer y(db) ;
Ret ri eveCar Quer y(db) ;

db. d ose();

Updat eCar Part 1() ;

db = Db4oFactory. OpenFile(Uil. YapFil eNane);
Updat eCar Part 2(db) ;

Updat eCol | ecti on(db);

db. d ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Inheritance

Del eteAl | Part 1();

db=Db4oFact ory. OpenFi l e(Uti | . YapFi | eNan®e) ;
Del et eAl | Part 2(db);

Retri eveAl | Sensor Readout s(db) ;

}
finally

{
db. d ose();

public static void StoreFirstCar (Il ObjectContainer db)

{
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (carl);
}

public static void StoreSecondCar (| Cbject Cont ai ner db)

{
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);
car2.Pilot = pilot2;
car 2. Snapshot () ;
car 2. Snapshot () ;
db. Set (car 2) ;
}

public static void RetrieveAl |l Sensor Readout s(1 Obj ect Cont ai ner

db)
{
| Obj ect Set result = db. Get (typeof (Sensor Readout));
Li stResult(result);
}
public static void RetrieveSensor Readout BE(| Cbj ect Cont ai ner
db)

Sensor Readout proto = new Sensor Readout (new doubl e[] {

0.3, 0.1}, DateTime.MnValue, null);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Obj ect Set result = db. Get(proto);

Li stResult(result);

public static void RetrieveCar QBE(I Cbj ect Cont ai ner db)
{

Sensor Readout prot oReadout = new Sensor Readout (new

double[] { 0.6, 0.2 }, DateTime.MnValue, null);

I List protoHi story = new Arraylist();

pr ot oHi st ory. Add(pr ot oReadout) ;

Car protoCar = new Car(null, protoH story);

| Obj ect Set result = db. Get(protoCar);

Li stResult(result);

public static void RetrieveCollections(lQbjectContainer db)
{
| Obj ect Set result = db. Get(new ArrayList());

Li stResult(result);

public static void RetrieveArrays(l Qbject Contai ner db)
{
| Obj ect Set result = db. Get(new double[] { 0.6, 0.4 });

Li stResult(result);

public static void
Ret ri eveSensor Readout Quer y(| Obj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Const rai n(typeof (Sensor Readout)) ;
| Query val ueQuery = query. Descend(" _val ues");
val ueQuery. Constrain(0. 3);
val ueQuery. Constrai n(0.1);
| Obj ect Set results = query. Execute();

Li st Result(results);

public static void RetrieveCarQuery(Il Object Contai ner db)
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Query query = db. Query();

guery. Constrai n(typeof (Car));

| Query historyQuery = query.Descend("_history");

hi st oryQuery. Constrai n(typeof (Sensor Readout)) ;

| Query val ueQuery = historyQuery. Descend("_val ues");
val ueQuery. Constrain(0. 3);

val ueQuery. Constrain(0.1);

| Obj ect Set results = query. Execute();

Li st Result(results);

public class RetrieveSensor Readout Predi cate : Predicate

{
public bool WMatch(SensorReadout candi date)
{
return Array. | ndexXf (candi date. Values, 0.3) > -1
&& Array. | ndexXf (candi date. Val ues, 0.1) > -1;
}
}

public static void
Retri eveSensor Readout Nat i ve(| Obj ect Cont ai ner db)
{
| Obj ect Set results = db. Query(new
Retri eveSensor Readout Predi cate());

Li st Result(results);

public class RetrieveCarPredicate : Predicate

{
public bool WMatch(Car car)
{
foreach (Sensor Readout sensor in car.Hi story)
{
if (Array.IndexOf (sensor. Values, 0.3) > -1
&& Array. | ndexXf (sensor. Val ues, 0.1) > -1)
{
return true;
}
}

return false;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void RetrieveCarNative(l Cbject Contai ner db)

{
| Obj ect Set results = db. Query(new

RetrieveCarPredicate());

Li st Result(results);

public static void UpdateCarPart1()

{
Db4oFact ory. Confi gure(). Qbj ect C ass(typeof (Car)). CascadeOnUpdat e(true

)

public static void UpdateCarPart2(1 Cbject Contai ner db)

{
| Obj ect Set result = db. Get(new Car("BMN, null));
Car car = (Car)result. Next();
car. Snapshot () ;
db. Set (car);
Retri eveAl | Sensor Readout s(db) ;
}

public static void UpdateCollection(lObjectContainer db)

| Query query = db. Query();

guery. Constrai n(typeof (Car));

| Obj ect Set result = query. Descend(" _history"). Execute();
IList history = (lIList)result.Next();

hi st ory. RenoveAt (0) ;

db. Set (hi story);

Car proto = new Car(null, null);

result = db. Get(proto);

foreach (Car car in result)

{
foreach (object readout in car.History)
{
Consol e. Wi telLi ne(readout);
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void Del eteAll Part1()

{
Db4oFact ory. Confi gure(). Qbj ect G ass(typeof (Car)). CascadeOnDel ete(true

)

public static void Del eteAll Part2(1 Cbject Contai ner db)
{
| Obj ect Set result = db. Get(new Car(null, null));
foreach (object car in result)

{
db. Del ete(car);

}
| bj ect Set readouts = db. Get (new Sensor Readout (nul I,

Dat eTi me. M nVal ue, null));
foreach (object readout in readouts)

{
db. Del et e(readout) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

6. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an object. What about

subclassing and interfaces?

To explore this, we will differentiate between different kinds of sensors.

usi ng System

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter4
{

public class Sensor Readout
{

DateTinme _tinme;

Car _car;

string _description;

publ i c Sensor Readout (DateTinme time, Car car, string

descri ption)

{

_time = tine;

_car = car;

_description = description;
}

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine

{
get

{

return _time;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Description

{
get
{
return _description;
}
}

override public string ToString()

{
return string. Format ("{0}:{1}:{2}", _car, _tinme,
_description);

}

usi ng System

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter4
{

public class TenperatureSensor Readout : Sensor Readout

{

doubl e _tenperature;
publ i c Tenperat ur eSensor Readout (Dat eTi me time, Car car
string description, double tenperature)

base(tinme, car, description)

_tenperature = tenperature;

public doubl e Tenperature

{
get

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return _tenperature;

override public string ToString()

{
return string. Format ("{0} tenp: {1}", base.ToString(),

_temperature);

}

usi ng System

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter4
{

public class PressureSensor Readout : Sensor Readout

{
doubl e _pressure;
public PressureSensor Readout (DateTime time, Car car, string
descri ption, doubl e pressure)

base(tinme, car, description)

_pressure = pressure,;

public doubl e Pressure

{
get
{
return _pressure;
}
}

override public string ToString()

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return string. Format ("{0} pressure: {1}",

base. ToString(), _pressure);

}

Our car's snapshot mechanism is changed accordingly.

usi ng System

usi ng System Col | ecti ons;

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter4
{

public class Car

{

string _nodel;
Pilot _pilot;
I List _history;

public Car(string nodel)

{

_nmodel = nodel;

_pilot = null;

_history = new ArraylList();
}

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = val ue;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public string Mde

{
get
{
return _nodel
}
}

publ i c Sensor Readout[] GetHistory()
{
Sensor Readout [] history = new
Sensor Readout [_hi story. Count];
_history. CopyTo(hi story, 0);

return history;

public void Shapshot ()

{
_hi story. Add(new Tenper at ur eSensor Readout (Dat eTi me. Now,

this, "oil", Poll QI Tenperature()));

_hi story. Add(new Tenper at ur eSensor Readout (Dat eTi me. Now,
this, "water", PollWaterTenperature()));

_history. Add(new PressureSensor Readout (Dat eTi me. Now,

this, "oil", Poll Gl Pressure()));
}

prot ected double Poll Q| Tenperat ure()

{
return 0.1* history. Count;

prot ect ed doubl e Pol | Wt er Tenper at ur e()

{
return 0.2* history. Count;

prot ected double Poll G| Pressure()
{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return 0.3* _history. Count;

override public string ToString()

{
return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

_history. Count);
}

6.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

/] storeFirstCar

Car carl = new Car("Ferrari");

Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = piloti;

db. Set (car1);

/] storeSecondCar

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);

car2.Pilot = pilot2;

car 2. Snapshot () ;

car 2. Snapshot () ;

db. Set (car 2) ;

6.2. Retrieving

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db4o will provide us with all objects of the given type. To collect all instances of a given class, no

matter whether they are subclass members or direct instances, we just provide a corresponding
prototype.

/1 retrieveTenperat ur eReadout sQBE

Sensor Readout proto = new Tenper at ur eSensor Readout (Dat eTi me. M nVal ue,
null, null, 0.0);

| Qbj ect Set result = db. Get(proto);

Li stResult(result);

/'l retrieveAl | Sensor Readout sQBE

Sensor Readout proto = new Sensor Readout (Dat eTi ne. M nVal ue, nul |,
nul I');

| Qbj ect Set result = db. Get(proto);

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

This is one more situation where QBE might not be applicable: What if the given type is an interface or
an abstract class? Well, there's a little trick to keep in mind: Type objects receive special handling with
QBE.

/1 retrieveAl | Sensor Readout sQBEAl t ernati ve

| Obj ect Set result = db. Get (typeof (Sensor Readout));
Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

And of course there's our SODA API:

/] retrieveAl |l Sensor Readout sQuery

| Query query = db. Query();
query. Constrai n(typeof (Sensor Readout)) ;

| Qbj ect Set result = query. Execute();
Li stResult(result);

6.3. Updating and deleting

is just the same for all objects, no matter where they are situated in the inheritance tree.

Just like we retrieved all objects from the database above, we can delete all stored objects to prepare
for the next chapter.

/1 del eteAll

| Qbj ect Set result = db. Get (typeof (Ooject));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

foreach (object

{

itemin result)

db. Del ete(item;

6.4. Conclusion

Now we have covered all basic OO features and the way they are handled by db4o. We will complete

the first part of our db4o walkthrough in the next chapter

recursive structures.

6.5. Full source

usi ng System
using System |1 Q

usi ng Db4obj ect s. Db4o;

usi ng Db4obj ects. Db4o. Query;

nanespace Db4obj ects. Db4o. Tutorial . F1. Chapter4

{

public class InheritanceExanple :

{

public static void Main(string[] args)

{

File.Delete(Util. YapFil eNane);

| Obj

ect Cont ai ner db =

Db4oFactory. OpenFil e(Ui |l . YapFi | eNare) ;

try
{

St or eFi r st Car (db) ;
St or eSecondCar (db) ;

Util

by looking at deep object graphs, including

Retri eveTenper at ur eReadout sQBE(db) ;

Retri eveAl | Sensor Readout sQBE(db) ;

Retri eveAl | Sensor Readout sSQBEAI t er nati ve(db);
Retri eveAl | Sensor Readout sQuery(db);

RetrieveAl | bj ect s(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Deep

}
finally

{
db. d ose();

public static void StoreFirstCar (| ObjectContainer db)

{
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.Pilot = pilot1;
db. Set (carl);
}

public static void StoreSecondCar (| Cbject Cont ai ner db)

{
Pilot pilot2 = new Pil ot ("Rubens Barrichello", 99);
Car car2 = new Car ("BWV);
car2.Pilot = pilot2;
car 2. Snapshot () ;
car 2. Snapshot () ;
db. Set (car 2) ;
}

public static void

Retri eveAl | Sensor Readout sQBE(| Obj ect Cont ai ner db)

{
Sensor Readout proto = new
Sensor Readout (Dat eTi ne. M nVal ue, null, null);
| Qbj ect Set result = db. Get(proto);
Li stResult(result);
}

public static void
Ret ri eveTenper at ur eReadout sQBE(| Obj ect Cont ai ner db)
{
Sensor Readout proto = new
Tenper at ur eSensor Readout (Dat eTi me. M nVal ue, null, null, 0.0);
| Qbj ect Set result = db. Get(proto);

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void
Retri eveAl | Sensor Readout sSQBEAI t er nati ve(l Obj ect Cont ai ner db)
{
| Obj ect Set result = db. Get (typeof (Sensor Readout));

Li stResult(result);

public static void

Retri eveAl | Sensor Readout sQuery(| Qbj ect Cont ai ner db)

{
| Query query = db. Query();
guery. Const rai n(typeof (Sensor Readout)) ;
| Obj ect Set result = query. Execute();
Li stResult(result);
}

public static void RetrieveAl |l Cbjects(lObjectContainer db)

{
| Obj ect Set result = db. Get (new object());

Li stResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

7. Deep graphs

We have already seen how db4o handles object associations, but our running example is still quite flat
and simple, compared to real-world domain models. In particular we haven't seen how db4o behaves
in the presence of recursive structures. We will emulate such a structure by replacing our history list

with a linked list implicitely provided by the SensorReadout class.

usi ng System

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter5
{

public abstract class SensorReadout
{

DateTinme _tinme;

Car _car;

string _description;

Sensor Readout _next;

prot ect ed Sensor Readout (DateTime time, Car car, string

descri ption)

{
_time = tine;
_car = car;
_description = description;
_next = null
}

public Car Car

{
get
{
return _car;
}
}

public DateTine Tine

{
get

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

return _time;

publ i c Sensor Readout Next

{
get
{
return _next;
}
}

public void Append(Sensor Readout sensor Readout)

{
if (_next == null)
{
_next = sensor Readout ;
}
el se
{
_next . Append(sensor Readout) ;
}
}

public int CountEl ements()
{

return (_next == null ? 1 : _next.CountEl ements() + 1);

override public string ToString()

{
return string. Format ("{0} : {1} : {2}", _car, _tine,
_description);

}

Our car only maintains an association to a 'head' sensor readout now.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

usi ng System

nanespace Db4obj ects. Db4o. Tutori al . F1. Chapter5
{

public class Car

{

string _nodel;
Pilot _pilot;

Sensor Readout _hi story;

public Car(string nodel)

{
_nmodel = nodel;
_pilot = null;
_history = null;
}

public Pilot Pil ot

{
get

{

return _pilot;

set

_pilot = val ue;

public string Model

{
get
{
return _nodel;
}
}

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

publ i c Sensor Readout Get Hi story()
{

return _history;

public void Shapshot ()

{
AppendToHi st ory(new Tenper at ur eSensor Readout (

Dat eTi me. Now, this, "oil", Poll G| Tenperature()));
AppendToHi st ory(new Tenper at ur eSensor Readout (
Dat eTi me. Now, this, "water",
Pol | Wat er Tenperature()));
AppendToHi st ory(new PressureSensor Readout (

Dat eTi me. Now, this, "oil", Poll G| Pressure()));

prot ected double Poll Q| Tenperat ure()

{
return 0.1*Count Hi st oryEl enent s();

prot ect ed doubl e Pol | Wt er Tenper at ur e()

{
return 0.2*Count Hi st oryEl enent s();

prot ected double Poll G| Pressure()

{
return 0. 3*Count Hi storyEl enent s();

override public string ToString()

{
return string. Format ("{O0}[{1}]/{2}", _nodel, _pilot,

Count Hi st oryEl enents());
}

private int CountHi storyEl ements()
{

return (_history == null ? 0 : _history. CountEl ements());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

private void AppendToH st ory(Sensor Readout readout)

{
if (_history == null)
{
_history = readout;
}
el se
{
_hi story. Append(r eadout) ;
}
}

7.1. Storing and updating

No surprises here.

/] storeCar

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.Pilot = pilot;

db. Set (car);

Now we would like to build a sensor readout chain. We already know about the update depth trap, so
we configure this first.

/1 set CascadeOnUpdat e

Db4oFact ory. Confi gure(). Qbj ect G ass(typeof (Car)). CascadeOnUpdat e(true
)i

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Let's collect a few sensor readouts.

/| takeManySnapshot s

| Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result.Next();

for (int i=0; i<5; i++)

{

car. Snapshot () ;
}
db. Set (car);

7.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and traverse it.

First let's verify that we indeed have taken lots of snapshots.

/1 retrieveAll Snapshots

| Obj ect Set result = db. Get (typeof (Sensor Readout));
while (result.HasNext())

{

Consol e. WiteLine(result.Next());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

All these readouts belong to one linked list, so we should be able to access them all by just traversing

our list structure.

/] retrieveSnapshot sSequentially

| Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
while (readout != null)
{

Consol e. Wit eLi ne(readout);

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ouch! What's happening here?

7.2.1. Activation depth

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Deja vu - this is just the other side of the update depth issue.

db4o cannot track when you are traversing references from objects retrieved from the database. So it
would always have to return 'complete' object graphs on retrieval - in the worst case this would boil
down to pulling the whole database content into memory for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give the client fine-
grained control over how much he wants to pull out of the database when asking for an object. This
mechanism is called activation depthand works quite similar to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls after traversing 5

references.

We can dynamically ask objects to activate their member references. This allows us to retrieve each
single sensor readout in the list from the database just as needed.

/] retrieveSnapshot sSequenti al |l yl nproved

| Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
while (readout != null)
{

db. Acti vate(readout, 1);

Consol e. Wit eLi ne(readout) ;

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Note that 'cut' references may also influence the behavior of your objects: In this case the length of
the list is calculated dynamically, and therefor constrained by activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth statically, too.
We can tell our SensorReadout class objects to cascade activation automatically, for example.

/] setActivationDepth

Db4oFact ory. Confi gure(). Obj ect A ass(typeof (Tenper at ur eSensor Readout))
. CascadeOnActi vate(true);

/] retrieveSnapshot sSequentially

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

| Obj ect Set result = db. Get (typeof (Car));
Car car = (Car)result.Next();

Sensor Readout readout = car.GetH story();
while (readout != null)

{

Consol e. Wit eLi ne(readout);

readout = readout. Next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide range of
configuration features to control activation depth at a very fine-grained level. You'll find those triggers
in Db4objects.Db4o.Config.Configuration and the associated I10bjectClass and IObjectField classes.

Don't forget to clean up the database.

/1 del eteAll

| Obj ect Set result = db. Get (typeof (Ooj ect));

foreach (object itemin result)

{
db. Del ete(item;

7.3. Conclusion

Now we should have the tools at hand to work with arbitrarily complex object graphs. But so far we
have only been working forward, hoping that the changes we apply to our precious data pool are
correct. What if we have to roll back to a previous state due to some failure? In the next chapter we
will introduce the db4o transaction concept.

7.4. Full source

usi ng System
using System |G
usi ng Db4obj ect s. Db4o;

nanespace Db4objects. Db4o. Tutorial . F1l. Chapter5

{
public class DeepExanmple : Util

{

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Transactions

public static void Main(string[] args)
{
File.Delete(Util. YapFil eNane);
| Qbj ect Cont ai ner db =
Db4oFactory. OpenFil e(Ui |l . YapFi | eNare) ;
try
{
St or eCar (db) ;

db. d ose();

Set CascadeOnUpdat e() ;

db = Db4oFactory. OpenFile(Uil. YapFil eName);
TakeManySnapshot s(db) ;

db. d ose();

db = Db4oFactory. OpenFile(Uil. YapFil eNane);
Retri eveAl | Snapshot s(db);

db. d ose();

db = Db4oFactory. OpenFile(Uil. YapFi | eNane);
Retri eveSnapshot sSequenti al | y(db);

Retri eveSnapshot sSequenti al | yl npr oved(db) ;
db. d ose();

Set Acti vati onDept h() ;

db = Db4oFactory. OpenFile(Uil. YapFil eNane);
Retri eveSnapshot sSequenti al | y(db);

}
finally

{
db. d ose();

public static void StoreCar (| ObjectContainer db)

{
Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.Pilot = pilot;
db. Set (car);
}

public static void Set CascadeOnUpdat e()

{
Db4oFact ory. Confi gure(). Qbj ect G ass(typeof (Car)). CascadeOnUpdat e(true

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void TakeManySnapshot s(1 Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(typeof (Car));
Car car = (Car)result. Next();
for (int i=0; i<5; i++)
{
car. Snapshot () ;
}
db. Set (car);
}

public static void RetrieveAll Shapshot s(| Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get (typeof (Sensor Readout));
while (result.HasNext())
{
Consol e. WitelLine(result. Next());
}
}

public static void
Ret ri eveSnapshot sSequenti al | y(I Obj ect Cont ai ner db)

{
| Obj ect Set result = db. Get(typeof (Car));
Car car = (Car)result. Next();
Sensor Readout readout = car.GetH story();
whil e (readout != null)
{

Consol e. Wi telLi ne(readout);

readout = readout. Next;

public static void
Retri eveSnapshot sSequenti al | yl mpr oved(| Obj ect Cont ai ner db)
{
| Obj ectSet result = db. Get (typeof (Car));
Car car = (Car)result.Next();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Sensor Readout readout = car.GetH story();
whil e (readout != null)
{

db. Acti vat e(readout, 1);

Consol e. Wi telLi ne(readout);

readout = readout. Next;

public static void SetActivati onDepth()

{
Db4oFact ory. Confi gure(). Qbj ect A ass(typeof (Tenper at ur eSensor Readout))

. CascadeOnActi vat e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

8. Transactions

Probably you have already wondered how db4o handles concurrent access to a single database. Ju