
Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 1 -

db4o | The Open Source Object Database | Java and .NET

Agile Techniques for
Object Databases
By Scott Ambler1

Modern software processes – such as Rational Unified Process
(RUP), Extreme Programming (XP), and Scrum – are all evolutionary
in nature, and many are agile. With an evolutionary approach you
work both iteratively and incrementally, with an agile approach you
work evolutionarily in a highly collaborative manner. Working
iteratively, you do a little bit of an activity such as modeling, testing,
coding, or deployment at a time and then do another little bit, then
another, and so on. With an incremental approach you organize your
system into a series of releases instead of one big one. When a
team takes a collaborative approach they actively strive to find ways
to work together effectively; you should even try to ensure that project
stakeholders such as business customers are active team members.

This article overviews a collection of agile techniques for data-
oriented development. Most of my work in this subject, in particular
my books Agile Database Techniques (John Wiley Publishing, 2003)
and the forthcoming Database Refactoring (Prentice Hall PTR,
January 2006), assume that you’re working with object technology
such as Java or C# on the front end and relational database
technology such as Oracle or DB2 on the back end. Unfortunately,
because of the object/relational mismatch and with a current lack of
tool support, your ability to be agile is reduced. As you’ll see it is
much simpler to take an agile approach using ODBMS technology.

First, let’s discuss agile development techniques which should be applied to your database
development efforts. These techniques are:
1. Refactoring
2. Agile modeling
3. Continual regression testing
4. Configuration management
5. Developer sandboxes

1 Portions of this article have been modified from Database Refactoring: Evolutionary Database Design by S. Ambler
and P. Sadalage, to be published in January 2006 by Prentice Hall PTR.

Scott W. Ambler is a Senior
Consultant with Ontario-based
Ambysoft Inc., a software services
consulting firm that specializes in
software process mentoring and
improvement. He is founder and
thought leader of the Agile Modeling
(AM), Agile Data (AD), and Enterprise
Unified Process (EUP) methodologies.

Scott is the (co-)author of several
books, including Agile Modeling (John
Wiley & Sons), Agile Database
Techniques (John Wiley & Sons), The
Object Primer 3rd Edition (Cambridge
University Press), The Enterprise
Unified Process (Prentice Hall), and
The Elements of UML 2.0 Style
(Cambridge University Press). Scott is
also a contributing editor with
Software Development magazine.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 2 -

1. Refactoring
Refactoring (Fowler 1999) is a disciplined way to make small changes to your source code to
improve its design, making it easier to work with. A critical aspect of a refactoring is that it
retains the behavioral semantics of your code – you neither add nor remove anything when
you refactor, you merely improve its quality. An example refactoring would be to rename the
getPersons() operation to getPeople(). To implement this refactoring you must change
the operation definition and then change every single invocation of this operation throughout
your application code. A refactoring isn’t complete until your code runs again as before.

Similarly, a database refactoring (Ambler 2003, Ambler & Sadalage 2006) is a simple change
to a relational database schema that improves its design while retaining both its behavioral
and informational semantics. You could refactor either structural aspects of your database
schema such as table and view definitions or functional aspects such as stored procedures
and triggers. When you refactor your database schema not only must you rework the schema
itself but also the external programs, such as business applications or data extracts, which
are coupled to your schema. Database refactorings are clearly more difficult to implement
than code refactorings due to the need to break neither the data nor the functionality,
therefore you need to be careful.

2. Agile Modeling
Regardless of what you may have heard, evolutionary and agile techniques aren’t simply
“code and fix” with a new name. You still need to explore requirements and to think through
your architecture and design before you build it, and one very good way of doing so is to
model before you code. Figure 1 depicts the lifecycle for Agile Model Driven Development
(AMDD) (Ambler 2004). With AMDD you create initial, high-level models at the beginning of a
project which overview the scope of the problem domain which you are addressing as well as
a potential architecture to build to. One of the models which you typically create is a “slim”
conceptual/domain model which depicts the main business entities and the relationships
between them. Your goal is to think though major issues early in your project without in-
vesting in needless details right away – you can work through the details later on a just-in-
time (JIT) basis via model storming. AMDD is described in greater detail at
http://www.agilemodeling.com/essays/amdd.htm.

Figure 1.

The Agile Model Driven Development (AMDD) lifecycle.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 3 -

3. Continual Regression Testing (CTR)
To safely change existing software, either to refactor it or to add new functionality, you need
to be able to verify that you haven’t broken anything once you’ve made the change. In other
words, you need to be able to run a full regression test on your system. If you discover that
you’ve broken something then you must either fix it or roll back your changes. Within the
agile development community it has become increasingly common for programmers to
develop a full unit test suite in parallel with their domain code, and in fact agilists prefer to
write their test code before they write their “real” code. Just like you test your application
source code, shouldn’t you also test your database? Important business logic is implemented
within your database in the form of stored procedures, data validation rules, and referential
integrity (RI) rules, business logic which clearly should be tested thoroughly.

Test-first development (TFD), also known as test-first programming, is an evolutionary
approach to development where you must first write a test that fails before you write new
functional code. The steps of TFD are depicted as a UML activity diagram in Figure 2. Test-
driven development (TDD) (Astels 2003; Beck 2003) is the combination of TFD and
refactoring. You first write your code taking a TFD approach, then once it’s working you
ensure that your design remains of high-quality by refactoring it as needed. As you refactor
you will need to rerun your regression tests to verify that you haven’t broken anything.

Figure 2. A test-first approach to development.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 4 -

4. Configuration Management
Sometimes a change to your system proves to be a very bad idea and you need to roll back
that change to the previous state. For example, renaming the Customer.FName column to
Customer.FirstName might break 50 external programs, and the cost to update those
programs may prove to be too great for now. Just as developers put their assets, such as
source code and design models, under configuration management control, data professionals
should similarly do the same with the following items:

• Data definition language (DDL) scripts to create the database schema

• Data load/extract scripts

• Data model files

• Object/relational mapping meta data

• Reference data

• Stored procedure and trigger definitions

• View definitions

• Referential integrity constraints

• Other database objects like sequences, indexes etc.

• Test data

• Test data generation scripts

• Test scripts

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 5 -

5. Developer Sandboxes
A “sandbox” is a fully functioning environment in which a system may be built, tested, and/or
run. You want to keep your various sandboxes separated for safety reasons – developers
should be able to work within their own sandbox without fear of harming other efforts, your
quality assurance/test group should be able to run their system integration tests safely, and
your end users should be able to run their systems without having to worry about developers
corrupting their source data and/or system functionality.

Figure 3 depicts a logical organization for your sandboxes – a large/complex environment
may have seven or eight physical sandboxes whereas a small/simple environment may only
have two or three physical sandboxes. You will need a developer sandbox for each
developer, or in the cases of teams where you’ve adopted pair programming a sandbox for
each pair of developers.

Figure 3. Logical sandboxes to provide developers with safety.

Developers need to have their own physical sandboxes to work in, a copy of the source code
to evolve, and a copy of the database to work with and evolve. By having their own
environment they can safely make changes, test them, and either adopt or back out of them.
Once they are satisfied that a change is viable they promote it into their shared project
environment, test it, and put it under CM control so that the rest of the team gets it.
Eventually the team promotes their work into any demo and/or pre-production testing
environments. This promotion often occurs once a development cycle although could occur
more or less often depending on your environment (the more often you promote your system,
the greater the chance of receiving valuable feedback). Finally, once your system passes
acceptance and system testing it will be deployed into production.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 6 -

6. Agility with Object Databases
I believe that it is easier to be agile with Object Databaes (ODBMS) technology than it is with
RDBMS technology due to three reasons:

1. The technology impedance mismatch. Object technology and relational
technology are based on different paradigms, and as a result there is an “impedance
mismatch” between them which must be overcome. Figure 4 depicts the application
stacks when using RDBMS and ODBMS technologies. As you can see, with RDBMS
technology the persistence layer must implement the object/relational (O/R)
mappings between the object and data schemas, whereas with ODBMS technology
you do not have this issue. With RDBMS technology you have more work to do, you
must determine your object and data schemas and the mappings between the two,
and then you must evolve all of this as the requirements for your application evolve.
With ODBMS technology you merely determine and then evolve your object schema
over time.

2. The cultural impedance mismatch. The cultural impedance mismatch refers to the
cultural differences between object developers and data professional. Object
developers, including those working with ODBMS technology, have worked in an
evolutionary manner for years and are easily moving into agile methodologies. Data
professionals, on the other hand, tend to work in a traditional approach which is
typically serial in nature and often prescriptive (i.e. bureaucratic). Worse yet, as you
see in Table 1, the data community has mostly missed new development techniques
such as AMDD and TDD, whereas object developers have readily adopted them.
These cultural differences often manifest themselves in arguments over which way to
work, excessive meetings, additional work on the part of data professionals who just
have to do things their way, and even double work because the object and data
groups each develop their own version of the conceptual and design schemas. See
http://www.agiledata.org/essays/impedanceMismatch.html#CulturalImpedanceMismatch for a detailed
discussion.

3. Tool support. Tool support, particularly for refactoring RDBMS schemas and to a
lesser extent for RDBMS unit testing, is currently lacking. Refactoring and unit testing
tools for object technology are quite mature, increasing the productivity of object
developers. I fully expect that tool support for agile RDBMS development to improve
over the next few years, but at the time of this writing things could clearly be better.

Figure 4. Comparing the RDBMS and ODBMS application stacks.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 7 -

Agile Techniques with the Non-Intrusive db4o Object Database
A fundamental concept is that the less intrusive your persistence strategy, the easier it will be
to develop, evolve, and maintain. db4objects, an open source ODBMS, available under the
GPL license at www.db4o.com, is a great example of a non-intrusive persistence strategy for
the Java and .NET platforms. Its native queries approach is an open API which is easy to use
and to evolve – as the name implies you simply access the data store via native source code,
code which you can refactor and test using your existing development tools. There’s no
technical or cultural impedance mismatch to overcome, and the tools you need to quickly
evolve your schema already exist.

At a Glance: Applying Agile Techniques with the Two DBMS Technologies

Technique

With RDBMS Technology

With ODBMS Technology

1. Refactoring Database refactoring tools do
not exist yet
RDBMS technology does not
support schema evolution
easily because it is often built
under the assumption of a
serial approach to
development

Use existing code refactoring
tools
ODBMS technology supports
schema evolution much more
readily because it is often built
under the assumption that
developers will take an
evolutionary approach

2. Agile Modeling You need to model both your
object and data schemas, then
map between the two.
Significant opportunities for
conflict if this is done be
separate groups (which often
happens)

You just need to model the
object schema

3. Continual Regression
Testing

RDBMS testing tools still
evolving, although open
source community is quickly
catching up
Test data tools very mature,
but often expensive
TDD is a new concept for
many data professionals

Unit testing tools for object
technology, such as JUnit or
CSUnit, are very mature
TDD is well accepted within
the agile programming
community

4. Configuration
Management

Need to put all development
artifacts under CM control

Need to put all development
artifacts under CM control

5. Developer Sandboxes Need all of the development
tools, object code, and an
instance of the database

Need all of the development
tools and the object code

Table 1. Applying agile techniques with the two technologies.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 8 -

7. Summary
Modern software development processes are evolutionary in nature, and more often than not
agile. If your organization has adopted an agile method then the IT professionals within your
organization must adopt the appropriate techniques which enable them to work in an agile
manner. These techniques include refactoring, agile modeling, continual regression testing,
configuration management of all development assets, and separate sandboxes for de-
velopers to work in. The use of RDBMS technology complicates the adoption of these
techniques due to the technical impedance mismatch, the cultural impedance mismatch, and
the current lack of tool support.

8. References

Ambler, S.W. (2002). Agile Modeling: Best Practices for the Unified Process and Extreme
Programming. New York: John Wiley & Sons.
www.ambysoft.com/agileModeling.html

Ambler, S.W. (2003). Agile Database Techniques: Effective Strategies for the Agile Software
Developer. New York: John Wiley & Sons.
www.ambysoft.com/agileDatabaseTechniques.html

Ambler, S.W. (2004). The Object Primer 3rd Edition: Agile Model Driven Development with
UML 2. New York: Cambridge University Press.
www.ambysoft.com/theObjectPrimer.html

Ambler, S.W. and Sadalage, P. (2006). Database Refactoring: Evolutionary Database
Design. Boston: Prentice Hall PTR.
www.ambysoft.com/databaseRefactoring.html

Astels D. (2003). Test Driven Development: A Practical Guide. Upper Saddle River, NJ:
Prentice Hall.

Beck, K. (2003). Test Driven Development: By Example. Boston, MA: Addison-Wesley.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Menlo Park, CA:
Addison-Wesley Longman.

