
Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 1 -

db4o | The Open Source Object Database | Java and .NET

The Database Behind the Brains
By Rick Grehan | 2nd, Updated Edition | March 2006

Mobile devices, information appliances, intelligent control systems; no
deep investigation is needed to uncover the spreading frontiers of
computer applications. These systems are usually referred to as
“embedded systems,” but that term does not express the growing
sophistication of such applications.
Processors’ clock cycles rise, memory densities grow, hard disks
shrink, prices fall, and the tasks these systems are called upon to
perform become ever more complex. Embedded systems are being
asked to do more than ever – to be ‘smarter’ than ever. This is really
another way of saying that they are being asked to store, retrieve,
and manipulate more and more data; and to do so with a
responsiveness that their users have come to expect in a world of
growing processor horsepower and increasing communication
throughput.
Looked at another way, an intelligent device’s intelligence does not
depend only on the algorithms it executes, but also on the data it
feeds to those algorithms. So, as device sophistication increases,
there follows an increasing need for correspondingly sophisticated
data organization, storage, and retrieval software to meet the
demands placed on the embedded application.

What Is Needed
We could answer the question "What is needed?" quite simply: "A database library that is
small, fast, powerful, and easy to use."
That’s quite a condensation, and tells us little by itself. We should examine the criteria more
closely.

• Minimal consumption of resources. Although ongoing technological advances permit
system designers to purchase more memory for less, optimizing an application's memory
consumption will never go out of fashion. The tradeoff is simple: as our database library
consumes less memory, more is available for other application components, and the designer
can add more features (or boost the performance of existing ones).
Notice that we used the word “optimizing” above. We are not talking of simply reducing the
database library's size – that can easily be done by amputating features. But, exchanging
capabilities for bytes is dangerous: you’ll certainly end up with a smaller product, but it may be
less useful as well.

• High throughput. This requirement is axiomatic. Only in very limited applications are low
database access times tolerated. Put another way, we are unaware of anyone complaining of
a database that returned its results too quickly.

• Easy implementation. In spite of all the improvements in development environments, in
spite of the advances in object-oriented programming, of framework libraries brim-full with
pre-written algorithms and data structures, developers must still design and code the
application’s business logic – a chore that remains difficult. Hence, a database library’s API

Rick Grehan is a QA Engineer at
Compuware/Numega labs, where he
has worked on Java and .NET
projects.

He is also a contributing editor for
InfoWorld Magazine. His work has
appeared in Embedded Systems
Programming, EDN, The
Microprocessor Report, and Computer
Design. Before coming to
Compuware, Rick was on the
Discover DSP Project at Metrowerks,
Inc.

Earlier, Rick was a Senior Editor at
BYTE Magazine, where he was the
Lab Director, and authored BYTE's
JavaTalk column.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 2 -

should not present a learning challenge. It should be “as simple as
possible, but no simpler,” to borrow a well-wrought expression. This
creates a minimal learning curve; developers can concentrate on the
application, rather than studying the database library’s mechanics.
In addition, incorporating a database library into a development
project should be a one-step process. Ideally, the library will be a
single file (for Java, a .JAR file; for .NET, a .DLL file). For command-
line based projects, adding the library should involve modifying a
single line in a build script; for IDE-based projects, the addition should
be a drag-and-drop operation.

• Portable. A database library should be 'platform-agnostic' to
maximize its run-time targets – and thereby maximize the
application's potential customers. Wide portability also gives
programmers the luxury of developing on a major OS – and so take
advantage of state-of-the-art development and debugging tools – with
the assurance that the result is not bound to that OS.
• Reliable. Reliability is another axiomatic requirement – and likely
the most important. An unreliable database library is simply unusable.
For most embedded applications, particularly those employed in
realtime systems, reliability is a non-negotiable property of ALL
components.
Furthermore, the database library must perform according to industry-
recognized criteria. Specifically, the database library must implement
the ACID properties. (See the “ACID” sidebar.)

A Relational Possibility
A relational database is certainly the best known, and possibly the
most widely used database storage paradigm. Its popularity makes a
relational database a likely choice for any database application.
However, in spite of the advantages, incorporating a relational
database into an object-oriented application is not altogether smooth.
Commentaries on the use of a relational database system in an
object-oriented environment often speak of an ‘impedance mismatch’.
The term is borrowed from the electronics world, and expresses the
dissonance between the relational and object-oriented models.
This mismatch arises from the fact that a relational database
management system (RDBMS) stores information in rows within
tables. Consequently, storing the contents of an object into such a
database requires that the object be dissected – pulled apart, and its
pieces distributed into fields within the database’s tables. To retrieve
the object, its disparate parts must be gathered and re-assembled.

An example (in Java): An Intelligent Vending Machine
This effort is easily illustrated by an example.
Suppose we have designed an intelligent vending machine: one that
tracks the kinds and quantities of snacks it dispenses, monitors the
change available in its till, tracks its own sales and – perhaps it is
outfitted with a wireless connection to the internet? – emails the home
office when in need of restocking. (Trust us; this is not as far-fetched
as it sounds.)

ACID
ACID is an acronym for four
characteristics that a database must
provide before it can reasonably be
considered a usable database
system. They are:

Atomicity - The components of a
transaction on the database must
execute in an all-or-nothing fashion.
For example, if a transaction on the
database involves deleting 4 objects,
then those 4 objects must be deleted
as though they were a single object. It
won't do if 3 of the objects are
deleted, but one is somehow left
unremoved.

Consistency - Operations on the
database move it from one well-
defined state to the next, with no
intermediate states visible. If, for
example, a user added Object A to
the database, then it should at no
point be possible for that user (or any
other user) to retrieve a 'partial' Object
A. The database should never appear
to be in a state where operations are
only partially complete.

Isolation - Multiple transactions at
work on the database are unaware of
one another. So, if two users attempt
to modify the same object
simultaneously, the database must
implement some mechanism for
serializing their access to the object,
so that neither user's work interferes
with -- or even 'sees' -- the other's.

Durability - Once a transaction has
been 'committed' to the database, its
work is not lost, even in the face of
hardware or software failure. So, if a
user executes a transaction on the
database to delete 3 objects, and the
system crashes in the process of
deleting the second object, then when
the system is rebooted, the database
will recover not only itself, but the
incomplete transaction. And it will
finish the transaction.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 3 -

Retrieving a Snack object from an RDBMS would require something like the following code:

 ResultSet results = statement.executeQuery("SELECT ID, Name, Cost," +
 " Retail, Supplier FROM Snack WHERE ID = " + searchID);
 if(results.next())
 { snack = new Snack();
 snack.ID = results.getLong("ID");
 snack.name = results.getString("Name");
 snack.cost = results.getLong("Cost");
 snack.retail = results.getLong("Retail");
 snack.manufacturer = result.getString("Supplier");
 // ... Do something with the Snack object ...
 }
}

Listing 1. Retrieving a snack's data from an RDBMS. This code retrieves information for the snack whose ID is
given by the input variable searchID.

The result of the query is first stored in the collection results. Then, assignment operations
copy the contents of individual fields from the results ResultSet into the snack object. In
addition, each field's assignment operation could involve a translation from the format of the
value in the database, to the internal representation used by Java (though this translation
takes place within the specific method, and is not explicitly visible). The reverse of all this
effort is required to put an object into the database. You can imagine what the code would
look like for large, complex object structures.
Notice also that the process begins with the execution of an SQL statement that is expressed
in a string. If the statement is not pre-compiled, yet more CPU cycles are consumed to parse
and execute the SQL that performs the actual query on the back-end database.
The impedance mismatch is somewhat alleviated in object/relational database systems. An
object/relational database system (ORDBMS) handles the translation between objects and
the relational database invisibly. (The relational database is still there, it’s just “hiding” on the
back end.) As a result, the explicit code – shown above – for disassembling and reassembling
objects is not needed.
But, even though the code is not explicit, it’s still there. It is typically veiled in a “mapping
layer”, a collection of classes and methods within the object-relational database library. This
mapping layer accomplishes the translation between the objects in the application and the
tables, rows, and fields in the relational database.
So, while the programmer can manipulate objects as objects, and therefore has less code to
write, the CPU cycles are still consumed in translating between relational database and object
data. And, somewhere in the database library, SQL must execute to extract rows from or
store rows into the database tables.
In summary, an RDBMS adds space and time overhead to the application. Space is
consumed by the presence of the object-to-RDBMS translation code; time is consumed by the
execution of that code. An ORDBMS improves matters some; programmers are at least
relieved of writing translation code. But, though hidden, the translation code is still present,
eating bytes of memory and clock cycles of CPU time.

The Solution
The solution to the problems cited above is a purely object-oriented database system. And a
particularly practical object-oriented database is db4o (from db4objects, Inc.). db4o
simultaneously meets the needs outlined in the first section, and sidesteps the difficulties
described in the second section. db4o’s strengths are best illuminated if we explore how it
addresses the issues we have already discussed.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 4 -

• Minimal Consumption of Resources. The db4o library uses only about 400K. As you will
see, however, its memory-frugal footprint does not betoken a deficit of capabilities.
• High Throughput. db4o's execution is on par with the best database systems. The
benchmark results below show db4o’s performance compared to typical SQL databases:

Benchmarking db4o. The above table shows the performance of db4o as compared to typical SQL databases
and O/R mappers for read, write, query and delete operations. The Complex operations involve database
actions on objects with a tree structure involving 5 levels of inheritance.1

• Easy Implementation. The Java version of db4o is a single JAR file; the .NET version is a
single DLL file. You add the library to your application by placing it in your CLASSPATH (if
using command-line tools for Java development) or dropping the file into your project (if using
an IDE for either Java or .NET).
The db4o API is not overrun with elaborate, complex classes and methods. For example, a
db4o programmer works primarily with db4o’s ObjectContainer class (which is a
representation of the database itself). The ObjectContainer interface defines only 10
methods; yet those 10 provide the bulk of database manipulation – adding, searching, and
deleting data.

So, if we assume that an ObjectContainer called vendingmachineDB has already been
opened, and we want to store a Snack object to the database, the Java code is simply:

vendingmachineDB.set(snack);

This same fragment of code can be used to update a Snack object already stored in the
database. (Note that, if the above is the last database operation in the application, it should
be followed by calls to the ObjectContainer commit() and close() methods so that
activity on the database is properly teminated. But, similar commands would be needed with
an RDBMS or ORDBMS.)

• Portable. As already stated, versions of db4o exist for Java and .NET. The Java version
can run on all Java platforms from Java 1.1.x forward (including PersonalJava and the J2ME
CDC configuration). The .NET version is compatible with .NET 1.0, 1.1, and the
CompactFramework. Furthermore, the .NET version can be used with all the .NET languages,
and runs on the open-source Mono framework.

1 More information is available on db4objects’ Website www.db4o.com/about/productinformation/benchmarks/

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 5 -

• Reliable. Finally, db4o supports all of the ACID characteristics. Multiple simultaneous users
of a db4o database are appropriately isolated, their operations invisibly serialized by the db4o
library. Transactions are terminated by the ObjectContainer class's commit() and
rollback() methods. And, in case of a system crash during a database update, when the
db4o ObjectContainer is re-opened, any interrupted transaction is properly completed.

No Impedance Mismatch
db4o is a true object database. Objects are stored 'as-is'; there is no object-to-relational
translation layer, either explicit or invisible. In addition, db4o can handle arbitrarily complex
object structures. And you don’t have to create schema definitions for mapping objects to
relational database tables. Your application's class hierarchy and object relationships
themselves define the database schema:

No Impedance Mismatch. Your application's class hierarchy and object relationships themselves define the
database schema.

The ease with which one employs db4o can best be shown via a series of examples.
Returning to the vending machine database example (that we showed in SQL above),
suppose we create an identical database in db4o. Code to open the database and add a new
snack "record" would look like this:

// Open an ObjectContainer
// (openFile creates it if it does not exist)
ObjectContainer vendingmachingDB = Db4o.opernFile("vmachine.YAP");

// Create a new Snack object and populate
// its fields.
// Constructor fields are:
// ID code; Product name; Cost in pennies; Retail in pennies
// Supplier's Name
snack = new Snack(100,
 "Cheeze Zaps",
 1500, // Cost is 0.15
 5000, // Retail is 0.50
 "Sooper Cheeze Inc.");

// Put the snack into the database
vendingmachineDB.set(snack);

// A transaction is automatically started when
// the ObjectContainer is opened. Before closing,
// we should commit() the transaction that included
// the set() operation
vendingmachineDB.commit();
vendingmachineDB.close();

Listing 2. Storing a Snack object to a db4o database.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 6 -

So, storing an object is simply a matter of issuing a set() method on the
ObjectContainer, passing to that method a reference to the object to be stored. The
commit() method ensures that any modifications since the database was opened (or since
the last commit()) are written to the database. (It also ensures that the operation will not be
lost if interrupted by a system failure.)
Notice the simplicity. The programmer need not manipulate the object’s members in order to
get data into the database. The object is treated like – well, like an object. All the programmer
must do is tell db4o: “Please put this object into the database.” db4o works out the details
invisibly.
Retrieving the snack is just as simple. db4o uses a novel Query By Example (QBE) technique
for locating database objects. We supply db4o with a "template" object, which db4o uses to
locate our search target. The template object is of the same class as the search target, with
elements filled with data that specifies the search criteria..

Assuming that our vendingmachineDB ObjectContainer has already been opened, the
following code retrieves the snack just entered:

// Create a template object.
// Retrieve the snack by ID number.
// Other fields are null or 0, and will be
// ignored by the query
snackTemplate = new Snack(100,null,0,0,null);

// Issue the query
ObjectSet result =
 vendingmachineDB.get(snackTemplate);

// Fetch the retrieved snack
if(result.hasNext())
{ Snack snack = (Snack)result.next();
 // Do something with the snack.
 . . .
}

Listing 3. Retrieving a Snack object from a db4o database.

Compare this with the example given for the RDBMS. With db4o, the Snack object is
retrieved wholesale; the programmer need not write a series of assignment statements to
populate the object's fields. (And this is true regardless of the number of fields in the fetched
object.) Nor is there an SQL command string that need be passed to an executeQuery()
method for parsing and processing.
Deleting an object is equally straightforward. Once an object has been retrieved from the
database, you simply pass its reference to the ObjectContainer’s delete() method. The
code follows:

// Create a template object
// This time, query the snack by name
snackTemplate = new Snack(
 0, "Cheeze Zaps", 0, 0, null);

// Issue the query
ObjectSet result =
 vendingmachineDB.get(snackTemplate);

// Get the retrieved object
if(result.hasNext())

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 7 -

{ Snack snack = (Snack)result.next());
 // Delete the snack
 vendingmachineDB.delete(snack);
}

Listing 4. Deleting a Snack object from the database.

Again, operations on the object are wholesale, objects are treated as the indivisible entities
that they are.
It may have escaped the reader's notice that all of the examples given for db4o have involved
more than just a single Snack object. We have defined the Snack class as:

public class Snack {
 private int id;
 private String name;
 private long cost;
 private long retail;
 private String supplier;
 // Constructors and accessors follow
 ...
}

Listing 5. The Snack class.

The second and last elements of the Snack class are String objects. But, Java strings are
implemented as objects, not as primitives. So, storing a Snack object also stores two String
objects, and deleting the Snack also deletes the String objects associated with name and
supplier. db4o does all this storing and deleting behind the scenes without our having to ask.
(As it turns out, db4o treats Strings object and other simple types as second class objects;
they have no identities of their own, and are deleted and updated in conjunction with their
parent object.)
Nevertheless, db4o easily handles arbitrarily complex object hierarchies. Suppose we move
further into the structure of our vending machine's database. We define a class called
SnackSlot that models one of the numerous slots (or posts) in the vending machine that
actually holds snacks. (Each slot can hold multiple instances of a given snack.) The class
might look like this:

public class SnackSlot {
 int slotnum; // Slot number
 Snack thisSnack; // Snack in this slot
 int original; // Original number stocked
 int current; // Number of snacks left
 // Constructors and accessors follow
...
}

Listing 6. The SnackSlot class.

So, a SnackSlot holds a reference to the Snack object that is dispensed by that slot. We
also track the original amount of snacks placed in a given slot, as well as the number of
snacks remaining. That allows the machine to determine how many snacks have been sold
on a given slot.
Assuming that we were expanding the capabilities of our vending machine, adding a new
snack, and a new dispensing slot, one might think that two separate set() operations were
required. That, however, is not so.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 8 -

When an object is first added to a database, db4o explores all that object's references, and
stores all referenced objects to the database as well -- all automatically. So, the code to
simultaneously add a new SnackSlot and an associated new Snack would be:

// Create the Snack object
snack = new Snack(101,
 "Nacho Novas",
 1200, // Cost is 0.12
 7500, // Retail is 0.75
 "Sooper Cheeze Inc.");

// Create the SnackSlot object
snackslot = new SnackSlot(
 10, // Slot number 10
 snack, // Connect the snack to the slot
 10, // 10 bags on this slot...
 10); // ...none sold yet

// Put the new SnackSlot object in the database
// The Snack is stored as well.
vendingmachineDB.set(snackslot);

Listing 7. Adding more complex objects to a database.

Retrieving and deleting Snack and SnackSlot objects are only slightly more complicated,
but only because db4o lets you fine-tune how objects are managed once they are in the
database.
To retrieve a compound object, we have to tell db4o how far into the object's reference tree
we want db4o to “reach” when the object is fetched (when we call a get()). This is referred
to as the “activation depth.” An activation depth of 0 will retrieve only the root object, So, if we
fetch a SnackSlot object with an activation depth of 1, db4o will retrieve both SnackSlot
and Snack objects.

Because db4o's default activation depth is set to 5, we can retrieve a SnackSlot and its
associated Snack object using the same code as shown above in listing 3. (We will
demonstrate working with db4o’s activation depth in the next section.)
db4o can also delete all objects referenced by a root object. However, we have to explicitly
tell db4o that – when it deletes an object, it should also delete all objects it references –
otherwise, it will only delete the root object. So, if we want the Snack object deleted when we
delete a SnackSlot object, we must associate a 'cascaded delete' flag with the SnackSlot
object. We do this in db4o's 'global configuration object.' The code will look something like
this:

Configuration config = Db4o.configure();
ObjectClass oc = config.objectClass("<package>.SnackSlot");
oc.cascadeOnDelete(true);
…

Listing 8. Setting the cascaded delete flag.

This code tells db4o that whenever a SnackSlot object is deleted, then all member objects
(in this case, those referenced by the Snack object member) are also deleted. With the little
fragment of listing 8 tacked on its front, the code in listing 4 is sufficient to delete a
SnackSlot and associated Snack.

Obviously, cascaded delete is not appropriate in all cases (which is why db4o makes it
optional). In our hypothetical vending machine example, it may well be that a SnackSlot is –

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 9 -

for some reason – removed, but the associated Snack is also provided by a different slot. In
that case, we would not want to enable cascaded delete, because we would want the Snack
object to remain in the database.

Native Queries
The core of db4o's QBE is more or less equivalent to a “WHERE ... IS EQUALS TO ...” filter
within a query. This is adequate for locating the root object in a hierarchy of target objects.
Once the root has been fetched into memory, db4o allows you to use ordinary object
references to navigate to any child or sibling objects required. That is, navigation throughout
an object tree is unperturbed by that object tree's being in a db4o database. The result is a
powerful, uncomplicated query mechanism that is entirely sufficient for a wide array of
querying needs.
There are times, however, when more sophisticated queries are required; when items must
be selected from persistent storage based on criteria other than equivalence. And, you would
think that more complicated queries would demand a more complicated query syntax. For
many databases systems, that's true – but not with db4o.
db4o's Native Query (NQ) API easily tackles those queries that exceed the capabilities of
QBE. And, in keeping with db4o's principle of ease-of-use, Native Queries do not require the
developer to master a separate language, nor struggle through a labyrinthine API. In fact, with
Native Queries, the developer uses nothing more (nor less) than the language in which the
rest of the application is written.

Recall the query we presented in listing 3. In that code snippet, we fetched the Snack object
whose ID equaled 100. That same code, expressed as a Native Query, would look something
like this:

List<Snack> snacks =
 vendingmachineDB.query<Snack>(new Predicate()
 {
 public boolean match(Snack snack)
 { return(snack.id == 100); }
 })

if(snacks.hasNext())
{
 Snack snack = snacks.next();
 // Do something with snack
 ...
}

 Listing 9. A native query equivalent to the example given in listing 3.

Here, we've employed not only db4o's NQ API, but we've also called upon Java's recently-
added generic capabilities to make our query completely type-safe. (Generics were added as
of JDK 5; but db4o's native queries can be used with Java versions even as “far back” as JDK
1.1.)
Peeling apart the above query code, we can discover the salient features of db4o's Native
Query API. First, NQ defines the Predicate class, instantiations of which serve as the
actual engine of the query. Within this class, there is a single abstract method – match() –
which extensions of the Predicate class must implement. The match() method takes a
single object argument. This argument identifies the class of targets that will be queried in the
database. In the case of listing 9, target objects of type Snack will participate in the query.

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 10 -

The match() method returns a boolean, and it's easy to see from this that the fundamental
purpose of match() is to filter the target objects. Put simply, match() returns true if an
object satisfies the search criteria; false otherwise. So, when the query is executed, it passes
to the match() method each Snack object in the database, and uses the returned boolean
to determine whether a given object should be placed in the returned List collection.

Native Queries are appealing for a number of reasons, not the least of
which is the fact that the language of the application is the query
language. Suppose, for example, we wanted to determine which
snacks are selling particularly well (say, 5 or more items).
Using the NQ API, this is trivial:

// Fetch list of snacks that have sold
// 5 items or more.
// The list is returned in
// popularSnacks ArrayList

List<SnackSlot> slots =
 vendingmachineDB.query<SnackSlot>(new Predicate()
{
 public boolean match(SnackSlot snackslot)
 { if(snackslot.original == 0)
 return false;
 return((snackslot.original -
 snackslot.current) > 4);
 }
}
while(slots.hasNext())
{
 SnackSlot goodSlot = slots.next();

 // Read the snack object in, too
 vendingmachineDB.activate(goodSlot,2);
 popularSnacks.add(goodSlot.thisSnack);
}
... process popularSnacks...

Listing 10. A more complex query with db4o’s NQ

Using a native query, we can perform mathematics on the candidate objects' fields and
determine which SnackSlots have sold 5 or more items. In the while loop, we examine the
matches, and use db4o's activate() method to read the Snack objects into memory. (As
we hinted at earlier, the activate() method tells db4o to fetch an object's members into
memory from the database, up to a specified “depth”. So, a depth of 2 ensures that, not only
is the SnackSlot object in memory, but the Snack object is as well.)

After this query has executed, the application can process the popularSnacks ArrayList,
perhaps alerting the vending machine's owner to which snacks will need to be re-stocked in
the near future.

Of course, we could have made the comparison portion of the query arbitrarily complex. We
could have used activate() to fetch other member objects into memory. The beauty of NQ
is that we can use whatever Java code is necessary to implement the query. (There are some
minor restrictions, all of which have to do with the avoidance of unwanted side-effects. You
should read the documentation on the db4o website for more information.)

Best of all, our querying is entirely type-safe, and completely re-factorable. If we had used a
string-based query language like SQL, any mistakes we made in an object's field references

Whitepaper

Download and evaluate db4o for free | www.db4o.com
- 11 -

(typos, incorrect field names, etc.) would not be caught until runtime. With Native Queries, the
compiler keeps us in line. In addition, if – as we continued to develop our application – we had
changed the name of a class, class member, field, etc., our integrated development
environment's re-factoring capabilities would be able to safely make the name changes
wholesale. With a relational, SQL-based system, we would be forced to manually locate and
make changes to the query strings.

A Surface Scratched
We have only scratched the surface of db4o’s features. While we have only shown a small
subset of db4o’s capabilities, we have at least demonstrated that it satisfies the requirements
for a small-footprint, reliable, responsive database. Furthermore, we’ve shown that the
impedance mismatch problems of RDBMS and ORDBMS solutions in an object-oriented
environment are completely absent when db4o is applied. And, db4o’s Native Query
capabilities give us arbitrarily complex queries that are easy to create, easy to maintain, and
sidestep many of the development pitfalls that programmers tumble into when working with
RDBMS queries.

Still, there is much we have not shown:

• Changes in Object Versions. For example, we have not shown how easily db4o deals with
changes in object versions. Suppose we want to modify the structure of our Snack class,
adding a snackType member that permits us to distinguish between, say, candy-bars and
chips. We can make that change with a db4o database already created and populated with
“old” Snack objects. And we can do that with no disruption in the use of the database. db4o
allows us – with a single method call – to rename a class already stored in a database. (So,
the old Snack objects could be renamed to OldSnack objects.) By contrast, a solution
employing a relational database backend would require wholesale changes to the database
tables, as well as alterations to the querying code.

• Easy Object Replication and Synchronization. Software running on intelligent, but
intermittently-connected devices (e.g., handheld organizers or scanners) must possess the
means to accept a “subset” of persistent objects from a master database, allow the user
application to work with that derived database (disconnected from the master), and then re-
connect to the master database and synchronize the changes made. db4o has such a
capability built right into the database, called the db4o’s Replication System (dRS)2.

• Zero Administration. In addition, we have not said much about db4o’s administration
facilities – though for good reason: db4o requires virtually no administration, and that pretty
much says it all. Hence, it is ideal for handheld mobile device applications, information
appliances, intelligent medical systems, and all applications where the database is invisible to
the user.

• Available with open sources and free under the GPL. We have also left for last perhaps
the most attractive of db4o’s qualities: both Java and .NET versions are open-source. And if
you want to include db4o in your next commercial application, the low cost of ownership puts
db4o in a class by itself.

But all these attributes would be nothing if not for db4o’s essence: it is a lean, powerful, no-
nonsense object-oriented database for Java and .NET.

2 More information on the db4o Replication System: www.db4o.com/about/productinformation/features/drs.aspx

