
1

db4o Performance Tuning
Being as fast as possible...

Break Out Session 1
Stefan Edlich, Carl Rosenberger

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

22

Result will differ!

 Handle the following results with
care because:
 Your system differs
 C# and Java will behave different
 Your objects differ
 You general system load will differ
 db4o improves faster (e.g. the marshaller)

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

33

The Performance Tuning Catalog

 Will be inserted and cultivated in the Wiki
 using your experiences

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

44

Performance Tests

 Using a special version of Polepos
 a new classloader can run different db4o.jars
 A new configuration system can hand special configurations over

 Using CarreraBahn for special purposes
 Has a five level deep object tree
 Writes the objects (the amount you want 100, 1000, 10000, etc.)
 Searches and activates 10% of the objects at top level
 Searches and updates 10% of the objects at second level
 Searches and deletes 10% of the objects at fifth level

 All tested on Athlon XP 3000+
 2,1 GHz
 1 GB RAM

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

55

DESIGN / Call Defragment

 Defragment deletes unused references
 Defragment shrinks the filesize

 New fast Defragment is currently being worked on and
available soon. Run it frequently!

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

66

DESIGN / Use In Memory Mode

 Good for temporal data
 In-Memory mode is not so fast as expected
 Carrera Bahn test shows a 1/3 (here 37%) improvement

Db4o.configure().io(new MemoryIoAdapter());
db = Db4o.openFile(filename);
Db4o.configure().io(new MemoryIoAdapter());
db = Db4o.openFile(filename);

MemoryFile file = new MemoryFile();
ObjectContainer db = ExtDb4o.openMemoryFile(file);

MemoryFile file = new MemoryFile();
ObjectContainer db = ExtDb4o.openMemoryFile(file);

TestConfiguration

This is even slower then the default FileIO! So don‘t use this!

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

77

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

88

DESIGN / Split objects

 Group and save objects to different files
 Suitable if the filesize becomes really big
 Open N containers and manage up to N*256 GB
 The difference is really hard to measure…

 Need help here!

 Result:
 Smaller database file, better to backup alone
 Services can be scalable

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

This only works when objects are
NOT interconnected!

99

Example

1010

DESIGN / Separate Logic
OBJECT / Avoid Fields

 Try to think if you should separate persistent classes
from business logic classes

 Avoiding fields or better mark them as transient means
smaller database and faster instantiation

 For example: Let the original object „Person“ have a
method that creates „PersonDTO“ by copying only the
relevant fields out

Person

Person DTO
Might omit e.g.
calculated fields

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

1111

 Each field slows down 17,9% speed in the average
(min 5% max 37%) in this specific example

f1 f2 f3
…

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

The effect is not so big with the
new marshaller

This example mixed basic
types with obejct types.

1212

 Each field increases filesize by 20% in the average for
one class (min 5% max 42%) but this highly depends on
the type of field.

f1 f2 f3
…

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

The effect is not so big with the
new marshaller

This example mixed basic
types with obejct types.

1313

DESIGN / Avoid Interheritance

 Very very big variance but adding one level of inheritance
costs some performance in average. INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

Not relevant for
queries!

1414

DESIGN / Avoid Interhitance

 Filesize increases
INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

1515

Typesafe

 Declare fields typesafe where possible.
INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

not type safe:

class Foo{
Object bar;
Object fly;
Object high;

}

type safe:

class Foo{
int bar;
String fly;
FooBar high;

}

not type safe:

class Foo{
Object bar;
Object fly;
Object high;

}

type safe:

class Foo{
int bar;
String fly;
FooBar high;

}

1616

Use db4o Collections

 Only declare the interfaces in your parent classes:
 java.util.List
 System.Collections.Ulist

 Use the following in your code:
 new ArrayList and
 ExtObjectContainer#collections().newLinkedList()
 ExtObjectContainer#collections().newHashMap()

 2006 will see transparent activation!
 it will optimize more and deliver only the objects necessary

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

1717

 Db4o linked list is mostly at least 50% faster then other
collections (Vector, linkedList or arrays)

 But it needs substantially more initial initialization time!

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

Might be a misleading graphic for
multple access on the collection

1818

Use Index on fields that will be searched
 Search one field in 1000, 10000, 100000, … classes
 Index simply makes log faster

INDEX

NO INDEX

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

1919

One Index makes filesize about 9-12% bigger for one class

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2020

Use class.field.field as index

 Field indexes also work for class.field.field
 Example:

Db4o.configure().objectClass(Address.class)
.objectField(„str").indexed(true);

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2121

Beispiel

Class Person {
field1…
Address ad;
…

Class Address {
field1…
String Street str;
…

Query q = db.query();
q.constrain(Person.class);
q.descend("address").descend("street").
constrain("Ocean Blvd.");

2222

Don‘t serach and+or / Optimize Native Queries

 Joining constraints with #and() and #or() is not perfectly
 optimized at this time. We will work on that still in 2006.
 If you can avoid #and() and #or() do so.

 It‘s clear that you should optimize queries for
performance.

 The performance gain depends on the query
 The wiki will show some example and performance

results…

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2323

BTrees

 Btree settings affect RAM consumption versus
performance

 You can change:
 bTreeCachHeight
 bTreeNodeSize

 Used for Class Indexes
 Will be used for Field indexes, Freespace Management,

Collections and Collection Indexes in later versions

 First polepos results show mixed results.
 A bigger node size will improve performance mostly

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2424

Activation (update / delete issues)

 Activation can be a bottleneck. For now there are three
viable strategies:

1. constant depth 5 as is, configurable to more or less
2. activation depth to zero, only activate manually when you really

need an object
3. activate partial graphs fully in one go, using
#activate(object, Integer.MAX_VALUE)

 Use db4o Collections to avoid activation
newHashMap / newLinkedList

 Use Transparent activation (completed second half of
2006) will activate when objects are accessed through
public or package methods.

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2525

Does Blocksize have a reasonable performance effect?

 Db4o.configuration().blockSize(16)
 The standard setting is 1 allowing for a maximum

database file size of 2GB. This value can be increased
up to 127 (=254 GB) to allow larger database files,
although some space will be lost to padding because
the size of some stored objects will not be an exact
multiple of the block size.

 Let‘s run polepos with blocksize 1, 8, 32, 64 and 127

 First results:
 Blocksize should be the highest size needed to account for the
 anticipated number of objects stored.
 8 is a good setting, since it corresponds to internal pointer length.

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2626

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2727

Result

 Blocksize does really not have a big effect! Example:

Barcelona:delete

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2828

 A recommended setting for large database files is 8, since
internal pointers have this length.

 Mostly 8 and 16 are on the top (but the difference is small!)

Melbourne:read_hot

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

2929

But of course the filesize changes…

Blocksize

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3030

callConstructors()
testConstructors()
detectSchemaChanges()

 These tuning features are for a production
environment

 They are only relevant during the startup
phase!

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3131

Freespace Management

 Db4o.configure().freespace().discardSmallerThan(…);
 Default is zero.

 Free slots have to be managed which costs time and RAM
 The Byte Argument sets the level when slots smaller are discarded

 Increasing the value gains performance but increases
the filesize

 According to Carl, everything bigger then 50 will be a
fiasco

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3232

weakReferences()
weakReferenceCollectionInterval()
purge()

 If you just write in one specific conponent and
don‘t search, you can turn weakReferences off

 Test the weakReferenceCollectionInterval to
determine the best value

 If you really need the weakReference
Management System but not for some objects, the
you can purge the object in your code.

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3333

Results on Polepos

 It‘s clear that a larger collection time needs more RAM
 It shows that 1000 is a good setting
 The additional RAM amount for polepos not notable

(Some 10-20 MB).
 In general, there is no big performance effect if you

change the weak reference collection interval (e.g. from
100 to 1,000 to 10,000 in polepos).

 It‘s clear that a larger collection time needs more RAM
 It shows that 1000 is a good setting
 The additional RAM amount for polepos not notable

(Some 10-20 MB).
 In general, there is no big performance effect if you

change the weak reference collection interval (e.g. from
100 to 1,000 to 10,000 in polepos).

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

weakReferenceCollectionInterval()

3434

But it can be useful to test…
to get the last 1% performance out of your system …

Sepang:readSepang:read

Barcelona:queryBarcelona:query

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3535

(A) Write a new native file adapter
Db4o.configure().io(…your
FileAdapter()…)

Native code sample in the
db4o SVN.
Can also be used to mirror to
two files

FILE: native Adapter

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3636

flushFileBuffers

(B)Db4o.configure().flushFileBuffers()
 File flushing: Turning off improves speed slightly, but is

no longer recommended. db4o only does 4 flushes on
commit and the performance loss is negligible.

 Can jeopardize ACID behaviour!
 In more then 80% of the cases, the gain is smaller then

6%

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3737

Summary

 The global advice for the 24 db4o performance tuning
tricks follows this algorithm:

 Rules of thumb: Invest in OO-Design is easy and gives
huge performance boosts.

 Writing tests for your specific data, RAM and access /
operation modes and remaining configurations with
db4o is easy.

But!

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

3838

Thanks for listening!

 Please visit the catalog:
http://developer.db4o.com/ProjectSpaces/view.
aspx/Performance_Catalog/Performance_Catal
og

INTRODUCTION

DESIGN

OBJECT

SEARCH

CASCADE

CONFIGURATION

REFERENCES

FILE

SUMMARY

 Performance is most important
accordingly to the user survey. So if a
customer thinks db4o is too slow in this
specific case, then db4o accepts code
to optimize against it!

