
Securing Debian Manual
Javier Fernández-Sanguino Peña <jfs@debian.org>

‘Authors’ on this page

Version: 3.12, Mon, 07 Jan 2008 19:32:39 +0100

Abstract

This document describes security in the Debian project and in the Debian operating system.
Starting with the process of securing and hardening the default Debian GNU/Linux distribu-
tion installation, it also covers some of the common tasks to set up a secure network environ-
ment using Debian GNU/Linux, gives additional information on the security tools available
and talks about how security is enforced in Debian by the security and audit team.



Copyright Notice

Copyright © 2002-2007 Javier Fernández-Sanguino Peña

Copyright © 2001 Alexander Reelsen, Javier Fernández-Sanguino Peña

Copyright © 2000 Alexander Reelsen

Some sections are copyright © their respective authors, for details please refer to ‘Credits and
thanks!’ on page 28.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU General Public License, Version 2 (http://www.gnu.org/copyleft/gpl.html ) or
any later version published by the Free Software Foundation. It is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY.

Permission is granted to make and distribute verbatim copies of this document provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under the
conditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be included in translations approved by the Free Software Foundation instead of in the
original English.

http://www.gnu.org/copyleft/gpl.html


i

Contents

1 Introduction 1

1.1 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Where to get the manual (and available formats) . . . . . . . . . . . . . . . . . . . 2

1.3 Organizational notes/feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Things that need to be written (FIXME/TODO) . . . . . . . . . . . . . . . . . . . . 3

1.6 Changelog/History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Version 3.13 (November 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.2 Version 3.12 (August 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.3 Version 3.11 (January 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.4 Version 3.10 (November 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.5 Version 3.9 (October 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.6 Version 3.8 (July 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.7 Version 3.7 (April 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.8 Version 3.6 (March 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.9 Version 3.5 (November 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.10 Version 3.4 (August-September 2005) . . . . . . . . . . . . . . . . . . . . . 11

1.6.11 Version 3.3 (June 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.12 Version 3.2 (March 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.13 Version 3.1 (January 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.14 Version 3.0 (December 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.15 Version 2.99 (March 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.16 Version 2.98 (December 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . 13



CONTENTS ii

1.6.17 Version 2.97 (September 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.18 Version 2.96 (August 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.19 Version 2.95 (June 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.20 Version 2.94 (April 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.21 Version 2.93 (March 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.22 Version 2.92 (February 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.23 Version 2.91 (January/February 2003) . . . . . . . . . . . . . . . . . . . . . 15

1.6.24 Version 2.9 (December 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.25 Version 2.8 (November 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.26 Version 2.7 (October 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.27 Version 2.6 (September 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.28 Version 2.5 (September 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.29 Version 2.5 (August 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.30 Version 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.31 Version 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.32 Version 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.33 Version 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.34 Version 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.35 Version 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.36 Version 1.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.37 Version 1.98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.38 Version 1.97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.39 Version 1.96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.40 Version 1.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.41 Version 1.94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.42 Version 1.93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.43 Version 1.92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.44 Version 1.91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.45 Version 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.46 Version 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.47 Version 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



CONTENTS iii

1.6.48 Version 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.49 Version 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.50 Version 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.51 Version 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.52 Version 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.53 Version 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6.54 Version 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Credits and thanks! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Before you begin 31

2.1 What do you want this system for? . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Be aware of general security problems . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 How does Debian handle security? . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Before and during the installation 35

3.1 Choose a BIOS password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Partitioning the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Choose an intelligent partition scheme . . . . . . . . . . . . . . . . . . . . 35

3.3 Do not plug to the Internet until ready . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Set a root password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Activate shadow passwords and MD5 passwords . . . . . . . . . . . . . . . . . . 38

3.6 Run the minimum number of services required . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Disabling daemon services . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.2 Disabling inetd or its services . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Install the minimum amount of software required . . . . . . . . . . . . . . . . . . 41

3.7.1 Removing Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Read the Debian security mailing lists . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 After installation 45

4.1 Subscribe to the Debian Security Announce mailing list . . . . . . . . . . . . . . . 45

4.2 Execute a security update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Security update of libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS iv

4.2.2 Security update of the kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Change the BIOS (again) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Set a LILO or GRUB password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Disable root prompt on the initramfs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Remove root prompt on the kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Restricting console login access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Restricting system reboots through the console . . . . . . . . . . . . . . . . . . . . 52

4.9 Mounting partitions the right way . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9.1 Setting /tmp noexec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9.2 Setting /usr read-only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Providing secure user access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10.1 User authentication: PAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10.2 Limiting resource usage: the limits.conf file . . . . . . . . . . . . . . . 57

4.10.3 User login actions: edit /etc/login.defs . . . . . . . . . . . . . . . . . 59

4.10.4 Restricting ftp: editing /etc/ftpusers . . . . . . . . . . . . . . . . . . . 61

4.10.5 Using su . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10.6 Using sudo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10.7 Disallow remote administrative access . . . . . . . . . . . . . . . . . . . . . 61

4.10.8 Restricting users’s access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10.9 User auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10.10 Reviewing user profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10.11 Setting users umasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10.12 Limiting what users can see/access . . . . . . . . . . . . . . . . . . . . . . 65

4.10.13 Generating user passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10.14 Checking user passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10.15 Logging off idle users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Using tcpwrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.12 The importance of logs and alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.12.1 Using and customizing logcheck . . . . . . . . . . . . . . . . . . . . . . . 70

4.12.2 Configuring where alerts are sent . . . . . . . . . . . . . . . . . . . . . . . 71

4.12.3 Using a loghost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS v

4.12.4 Log file permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Adding kernel patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Protecting against buffer overflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14.1 Kernel patch protection for buffer overflows . . . . . . . . . . . . . . . . . 76

4.14.2 Testing programs for overflows . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.15 Secure file transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16 File system limits and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16.1 Using quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16.2 The ext2 filesystem specific attributes (chattr/lsattr) . . . . . . . . . . . . . 77

4.16.3 Checking file system integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.16.4 Setting up setuid check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 Securing network access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.17.1 Configuring kernel network features . . . . . . . . . . . . . . . . . . . . . . 80

4.17.2 Configuring syncookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.17.3 Securing the network on boot-time . . . . . . . . . . . . . . . . . . . . . . . 81

4.17.4 Configuring firewall features . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.17.5 Disabling weak-end hosts issues . . . . . . . . . . . . . . . . . . . . . . . . 85

4.17.6 Protecting against ARP attacks . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.18 Taking a snapshot of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.19 Other recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.19.1 Do not use software depending on svgalib . . . . . . . . . . . . . . . . . . 89

5 Securing services running on your system 91

5.1 Securing ssh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Chrooting ssh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Ssh clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.3 Disallowing file transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.4 Restricing access to file transfer only . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Securing Squid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Securing FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Securing access to the X Window System . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS vi

5.4.1 Check your display manager . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Securing printing access (the lpd and lprng issue) . . . . . . . . . . . . . . . . . . 98

5.6 Securing the mail service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.1 Configuring a Nullmailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6.2 Providing secure access to mailboxes . . . . . . . . . . . . . . . . . . . . . 101

5.6.3 Receiving mail securely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Securing BIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7.1 Bind configuration to avoid misuse . . . . . . . . . . . . . . . . . . . . . . 103

5.7.2 Changing BIND’s user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.3 Chrooting the name server . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Securing Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8.1 Disabling users from publishing web contents . . . . . . . . . . . . . . . . 110

5.8.2 Logfiles permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8.3 Published web files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.9 Securing finger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 General chroot and suid paranoia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10.1 Making chrooted environments automatically . . . . . . . . . . . . . . . . 112

5.11 General cleartext password paranoia . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.12 Disabling NIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.13 Securing RPC services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.13.1 Disabling RPC services completely . . . . . . . . . . . . . . . . . . . . . . . 113

5.13.2 Limiting access to RPC services . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14 Adding firewall capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14.1 Firewalling the local system . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14.2 Using a firewall to protect other systems . . . . . . . . . . . . . . . . . . . 115

5.14.3 Setting up a firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Automatic hardening of Debian systems 125

6.1 Harden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Bastille Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



CONTENTS vii

7 Debian Security Infrastructure 129

7.1 The Debian Security Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Debian Security Advisories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 Vulnerability cross references . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.2 CVE compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Debian Security Build Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.1 Developer’s guide to security updates . . . . . . . . . . . . . . . . . . . . . 133

7.4 Package signing in Debian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4.1 The current scheme for package signature checks . . . . . . . . . . . . . . 136

7.4.2 Secure apt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4.3 Per distribution release check . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.4 Release check of non Debian sources . . . . . . . . . . . . . . . . . . . . . . 151

7.4.5 Alternative per-package signing scheme . . . . . . . . . . . . . . . . . . . 151

8 Security tools in Debian 153

8.1 Remote vulnerability assessment tools . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Network scanner tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 Internal audits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.4 Auditing source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.5 Virtual Private Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.5.1 Point to Point tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.6 Public Key Infrastructure (PKI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.7 SSL Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.8 Antivirus tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.9 GPG agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9 Developer’s Best Practices for OS Security 161

9.1 Best practices for security review and design . . . . . . . . . . . . . . . . . . . . . 161

9.2 Creating users and groups for software daemons . . . . . . . . . . . . . . . . . . . 162



CONTENTS viii

10 Before the compromise 167

10.1 Keep your system secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1.1 Tracking security vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1.2 Continuously update the system . . . . . . . . . . . . . . . . . . . . . . . . 168

10.1.3 Avoid using the unstable branch . . . . . . . . . . . . . . . . . . . . . . . . 171

10.1.4 Security support for the testing branch . . . . . . . . . . . . . . . . . . . . 172

10.1.5 Automatic updates in a Debian GNU/Linux system . . . . . . . . . . . . . 173

10.2 Do periodic integrity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.3 Set up Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3.1 Network based intrusion detection . . . . . . . . . . . . . . . . . . . . . . . 175

10.3.2 Host based intrusion detection . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.4 Avoiding root-kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.4.1 Loadable Kernel Modules (LKM) . . . . . . . . . . . . . . . . . . . . . . . . 176

10.4.2 Detecting root-kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.5 Genius/Paranoia Ideas — what you could do . . . . . . . . . . . . . . . . . . . . . 178

10.5.1 Building a honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11 After the compromise (incident response) 181

11.1 General behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2 Backing up the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.3 Contact your local CERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.4 Forensic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11.4.1 Analysis of malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12 Frequently asked Questions (FAQ) 185

12.1 Security in the Debian operating system . . . . . . . . . . . . . . . . . . . . . . . . 185

12.1.1 Is Debian more secure than X? . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.1.2 There are many Debian bugs in Bugtraq. Does this mean that it is very
vulnerable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

12.1.3 Does Debian have any certification related to security? . . . . . . . . . . . 187

12.1.4 Are there any hardening programs for Debian? . . . . . . . . . . . . . . . 187

12.1.5 I want to run XYZ service, which one should I choose? . . . . . . . . . . . 187



CONTENTS ix

12.1.6 How can I make service XYZ more secure in Debian? . . . . . . . . . . . . 188

12.1.7 How can I remove all the banners for services? . . . . . . . . . . . . . . . . 188

12.1.8 Are all Debian packages safe? . . . . . . . . . . . . . . . . . . . . . . . . . . 188

12.1.9 Why are some log files/configuration files world-readable, isn’t this in-
secure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

12.1.10 Why does /root/ (or UserX) have 755 permissions? . . . . . . . . . . . . . 189

12.1.11 After installing a grsec/firewall, I started receiving many console mes-
sages! How do I remove them? . . . . . . . . . . . . . . . . . . . . . . . . . 189

12.1.12 Operating system users and groups . . . . . . . . . . . . . . . . . . . . . . 190

12.1.13 Why is there a new group when I add a new user? (or Why does Debian
give each user one group?) . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.1.14 Questions regarding services and open ports . . . . . . . . . . . . . . . . . 193

12.1.15 Common security issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

12.1.16 How do I accomplish setting up a service for my users without giving
out shell accounts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

12.2 My system is vulnerable! (Are you sure?) . . . . . . . . . . . . . . . . . . . . . . . 197

12.2.1 Vulnerability assessment scanner X says my Debian system is vulnerable! 197

12.2.2 I’ve seen an attack in my system’s logs. Is my system compromised? . . . 198

12.2.3 I have found strange ’MARK’ lines in my logs: Am I compromised? . . . 198

12.2.4 I found users using ’su’ in my logs: Am I compromised? . . . . . . . . . . 198

12.2.5 I have found ’possible SYN flooding’ in my logs: Am I under attack? . . . 199

12.2.6 I have found strange root sessions in my logs: Am I compromised? . . . . 199

12.2.7 I have suffered a break-in, what do I do? . . . . . . . . . . . . . . . . . . . 200

12.2.8 How can I trace an attack? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12.2.9 Program X in Debian is vulnerable, what do I do? . . . . . . . . . . . . . . 200

12.2.10 The version number for a package indicates that I am still running a vul-
nerable version! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

12.2.11 Specific software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.3 Questions regarding the Debian security team . . . . . . . . . . . . . . . . . . . . 201

12.3.1 What is a Debian Security Advisory (DSA)? . . . . . . . . . . . . . . . . . 201

12.3.2 The signature on Debian advisories does not verify correctly! . . . . . . . 201

12.3.3 How is security handled in Debian? . . . . . . . . . . . . . . . . . . . . . . 202

12.3.4 Why are you fiddling with an old version of that package? . . . . . . . . . 202



CONTENTS x

12.3.5 What is the policy for a fixed package to appear in security.debian.org? . 202

12.3.6 What does “local (remote)” mean? . . . . . . . . . . . . . . . . . . . . . . . 202

12.3.7 The version number for a package indicates that I am still running a vul-
nerable version! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.3.8 How is security handled for testing and unstable ? . . . . . . . . . . . 203

12.3.9 I use an older version of Debian, is it supported by the Debian Security
Team? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

12.3.10 How does testing get security updates? . . . . . . . . . . . . . . . . . . . . 203

12.3.11 How is security handled for contrib and non-free? . . . . . . . . . . . . . . 204

12.3.12 Why are there no official mirrors for security.debian.org? . . . . . . . . . . 204

12.3.13 I’ve seen DSA 100 and DSA 102, now where is DSA 101? . . . . . . . . . . 204

12.3.14 I tried to download a package listed in one of the security advisories, but
I got a ‘file not found’ error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

12.3.15 How can I reach the security team? . . . . . . . . . . . . . . . . . . . . . . . 205

12.3.16 What difference is there between security@debian.org and debian-
security@lists.debian.org? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

12.3.17 I guess I found a security problem, what should I do? . . . . . . . . . . . . 205

12.3.18 How can I contribute to the Debian security team? . . . . . . . . . . . . . . 205

12.3.19 Who is the Security Team composed of? . . . . . . . . . . . . . . . . . . . . 206

12.3.20 Does the Debian Security team check every new package in Debian? . . . 206

12.3.21 How much time will it take Debian to fix vulnerability XXXX? . . . . . . . 206

12.3.22 How long will security updates be provided? . . . . . . . . . . . . . . . . 207

12.3.23 How can I check the integrity of packages? . . . . . . . . . . . . . . . . . . 207

12.3.24 What to do if a random package breaks after a security update? . . . . . . 207

A The hardening process step by step 209

B Configuration checklist 213

C Setting up a stand-alone IDS 217

D Setting up a bridge firewall 219

D.1 A bridge providing NAT and firewall capabilities . . . . . . . . . . . . . . . . . . 219

D.2 A bridge providing firewall capabilities . . . . . . . . . . . . . . . . . . . . . . . . 220

D.3 Basic IPtables rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



CONTENTS xi

E Sample script to change the default Bind installation. 223

F Security update protected by a firewall 227

G Chroot environment for SSH 229

G.1 Chrooting the ssh users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

G.1.1 Using libpam-chroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

G.1.2 Patching the ssh server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

G.2 Chrooting the ssh server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

G.2.1 Setup a minimal system (the really easy way) . . . . . . . . . . . . . . . . . 234

G.2.2 Automatically making the environment (the easy way) . . . . . . . . . . . 234

G.2.3 Manually creating the environment (the hard way) . . . . . . . . . . . . . 239

H Chroot environment for Apache 247

H.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

H.1.1 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

H.2 Installing the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

H.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



CONTENTS xii



1

Chapter 1

Introduction

One of the hardest things about writing security documents is that every case is unique. Two
things you have to pay attention to are the threat environment and the security needs of the
individual site, host, or network. For instance, the security needs of a home user are completely
different from a network in a bank. While the primary threat a home user needs to face is the
script kiddie type of cracker, a bank network has to worry about directed attacks. Additionally,
the bank has to protect their customer’s data with arithmetic precision. In short, every user has
to consider the trade-off between usability and security/paranoia.

Note that this manual only covers issues relating to software. The best software in the world
can’t protect you if someone can physically access the machine. You can place it under your
desk, or you can place it in a hardened bunker with an army in front of it. Nevertheless the
desktop computer can be much more secure (from a software point of view) than a physically
protected one if the desktop is configured properly and the software on the protected machine
is full of security holes. Obviously, you must consider both issues.

This document just gives an overview of what you can do to increase the security of your
Debian GNU/Linux system. If you have read other documents regarding Linux security, you
will find that there are common issues which might overlap with this document. However,
this document does not try to be the ultimate source of information you will be using, it only
tries to adapt this same information so that it is meaningful to a Debian GNU/Linux system.
Different distributions do some things in different ways (startup of daemons is one example);
here, you will find material which is appropriate for Debian’s procedures and tools.

1.1 Authors

The current maintainer of this document is Javier Fernández-Sanguino Peña (mailto:jfs@
debian.org ). Please forward him any comments, additions or suggestions, and they will be
considered for inclusion in future releases of this manual.

This manual was started as a HOWTO by Alexander Reelsen (mailto:ar@rhwd.de ). After it
was published on the Internet, Javier Fernández-Sanguino Peña (mailto:jfs@debian.org )

mailto:jfs@debian.org
mailto:jfs@debian.org
mailto:ar@rhwd.de
mailto:jfs@debian.org


Chapter 1. Introduction 2

incorporated it into the Debian Documentation Project (http://www.debian.org/doc ). A
number of people have contributed to this manual (all contributions are listed in the changelog)
but the following deserve special mention since they have provided significant contributions
(full sections, chapters or appendices):

• Stefano Canepa

• Era Eriksson

• Carlo Perassi

• Alexandre Ratti

• Jaime Robles

• Yotam Rubin

• Frederic Schutz

• Pedro Zorzenon Neto

• Oohara Yuuma

• Davor Ocelic

1.2 Where to get the manual (and available formats)

You can download or view the latest version of the Securing Debian Manual
from the Debian Documentation Project (http://www.debian.org/doc/manuals/
securing-debian-howto/ ). If you are reading a copy from another site, please check the
primary copy in case it provides new information. If you are reading a translation, please re-
view the version the translation refers to to the latest version available. If you find that the
version is behind please consider using the original copy or review the ‘Changelog/History’
on page 6 to see what has changed.

If you want a full copy of the manual you can either download the text ver-
sion (http://www.debian.org/doc/manuals/securing-debian-howto/
securing-debian-howto.en.txt ) or the PDF version (http://www.debian.org/
doc/manuals/securing-debian-howto/securing-debian-howto.en.pdf ) from
the Debian Documentation Project’s site. These versions might be more useful if you intend
to copy the document over to a portable device for offline reading or you want to print it out.
Be forewarned, the manual is over two hundred pages long and some of the code fragments,
due to the formatting tools used, are not wrapped in the PDF version and might be printed
incomplete.

The document is also provided in text, html and PDF formats in the harden-doc (http://
packages.debian.org/harden-doc ) package. Notice, however, that the package maybe

http://www.debian.org/doc
http://www.debian.org/doc/manuals/securing-debian-howto/
http://www.debian.org/doc/manuals/securing-debian-howto/
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.en.txt
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.en.txt
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.en.pdf
http://www.debian.org/doc/manuals/securing-debian-howto/securing-debian-howto.en.pdf
http://packages.debian.org/harden-doc
http://packages.debian.org/harden-doc


Chapter 1. Introduction 3

not be completely up to date with the document provided on the Debian site (but you can
always use the source package to build an updated version yourself).

You can also check out the changes introduced in the document by reviewing its ver-
sion control logs through its CVS server (http://cvs.debian.org/ddp/manuals.sgml/
securing-howto/?cvsroot=debian-doc ).

1.3 Organizational notes/feedback

Now to the official part. At the moment I (Alexander Reelsen) wrote most paragraphs of this
manual, but in my opinion this should not stay the case. I grew up and live with free soft-
ware, it is part of my everyday use and I guess yours, too. I encourage everybody to send me
feedback, hints, additions or any other suggestions you might have.

If you think, you can maintain a certain section or paragraph better, then write to the document
maintainer and you are welcome to do it. Especially if you find a section marked as FIXME,
that means the authors did not have the time yet or the needed knowledge about the topic.
Drop them a mail immediately.

The topic of this manual makes it quite clear that it is important to keep it up to date, and you
can do your part. Please contribute.

1.4 Prior knowledge

The installation of Debian GNU/Linux is not very difficult and you should have been able
to install it. If you already have some knowledge about Linux or other Unices and you are a
bit familiar with basic security, it will be easier to understand this manual, as this document
cannot explain every little detail of a feature (otherwise this would have been a book instead
of a manual). If you are not that familiar, however, you might want to take a look at ‘Be aware
of general security problems’ on page 31 for where to find more in-depth information.

1.5 Things that need to be written (FIXME/TODO)

This section describes all the things that need to be fixed in this manual. Some paragraphs
include FIXME or TODO tags describing what content is missing (or what kind of work needs
to be done). The purpose of this section is to describe all the things that could be included in
the future in the manual, or enhancements that need to be done (or would be interesting to
add).

If you feel you can provide help in contributing content fixing any element of this list (or the
inline annotations), contact the main author (‘Authors’ on page 1).

http://cvs.debian.org/ddp/manuals.sgml/securing-howto/?cvsroot=debian-doc
http://cvs.debian.org/ddp/manuals.sgml/securing-howto/?cvsroot=debian-doc


Chapter 1. Introduction 4

• Expand the incident response information, maybe add some ideas derived from Red
Hat’s Security Guide’s chapter on incident response (http://www.redhat.com/
docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html ).

• Write about remote monitoring tools (to check for system availability) such as monit ,
daemontools and mon. See http://linux.oreillynet.com/pub/a/linux/
2002/05/09/sysadminguide.html .

• Consider writing a section on how to build Debian-based network appliances (with in-
formation such as the base system, equivs and FAI).

• Check if http://www.giac.org/practical/gsec/Chris_Koutras_GSEC.pdf
has relevant info not yet covered here.

• Add information on how to set up a laptop with Debian http://www.giac.org/
practical/gcux/Stephanie_Thomas_GCUX.pdf .

• Add information on how to set up a firewall using Debian GNU/Linux. The section
regarding firewalling is oriented currently towards a single system (not protecting oth-
ers. . . ) also talk on how to test the setup.

• Add information on setting up a proxy firewall with Debian GNU/Linux stating specif-
ically which packages provide proxy services (like xfwp , ftp-proxy , redir , smtpd ,
dnrd , jftpgw , oops , pdnsd , perdition , transproxy , tsocks ). Should point to the
manual for any other info. Note that zorp is now available as a Debian package and is a
proxy firewall (they also provide Debian packages upstream).

• Information on service configuration with file-rc.

• Check all the reference URLs and remove/fix those no longer available.

• Add information on available replacements (in Debian) for common servers which are
useful for limited functionality. Examples:

– local lpr with cups (package)?

– remote lrp with lpr

– bind with dnrd/maradns

– apache with dhttpd/thttpd/wn (tux?)

– exim/sendmail with ssmtpd/smtpd/postfix

– squid with tinyproxy

– ftpd with oftpd/vsftp

– . . .

• More information regarding security-related kernel patches in Debian, including the ones
shown above and specific information on how to enable these patches in a Debian system.

– Linux Intrusion Detection (kernel-patch-2.4-lids )

http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/security-guide/ch-response.html
http://linux.oreillynet.com/pub/a/linux/2002/05/09/sysadminguide.html
http://linux.oreillynet.com/pub/a/linux/2002/05/09/sysadminguide.html
http://www.giac.org/practical/gsec/Chris_Koutras_GSEC.pdf
http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf
http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf


Chapter 1. Introduction 5

– Linux Trustees (in package trustees )

– NSA Enhanced Linux (http://wiki.debian.org/SELinux )

– linux-patch-openswan

• Details of turning off unnecessary network services (besides inetd ), it is partly in the
hardening procedure but could be broadened a bit.

• Information regarding password rotation which is closely related to policy.

• Policy, and educating users about policy.

• More about tcpwrappers, and wrappers in general?

• hosts.equiv and other major security holes.

• Issues with file sharing servers such as Samba and NFS?

• suidmanager/dpkg-statoverrides.

• lpr and lprng.

• Switching off the GNOME IP things.

• Talk about pam_chroot (see http://lists.debian.org/debian-security/
2002/debian-security-200205/msg00011.html ) and its usefulness to limit
users. Introduce information related to http://online.securityfocus.com/
infocus/1575 . pdmenu, for example is available in Debian (whereas flash is not).

• Talk about chrooting services, some more info on http://www.linuxfocus.org/
English/January2002/article225.shtml , http://www.nuclearelephant.
com/papers/chroot.html , and http://www.linuxsecurity.com/feature_
stories/feature_story-99.html .

• Talk about programs to make chroot jails. compartment and chrootuid are waiting in
incoming. Some others (makejail, jailer) could also be introduced.

• More information regarding log analysis software (i.e. logcheck and logcolorise).

• ’advanced’ routing (traffic policing is security related).

• limiting ssh access to running certain commands.

• using dpkg-statoverride.

• secure ways to share a CD burner among users.

• secure ways of providing networked sound in addition to network display capabilities
(so that X clients’ sounds are played on the X server’s sound hardware).

• securing web browsers.

• setting up ftp over ssh .

http://wiki.debian.org/SELinux
http://lists.debian.org/debian-security/2002/debian-security-200205/msg00011.html
http://lists.debian.org/debian-security/2002/debian-security-200205/msg00011.html
http://online.securityfocus.com/infocus/1575
http://online.securityfocus.com/infocus/1575
http://www.linuxfocus.org/English/January2002/article225.shtml
http://www.linuxfocus.org/English/January2002/article225.shtml
http://www.nuclearelephant.com/papers/chroot.html
http://www.nuclearelephant.com/papers/chroot.html
http://www.linuxsecurity.com/feature_stories/feature_story-99.html
http://www.linuxsecurity.com/feature_stories/feature_story-99.html


Chapter 1. Introduction 6

• using crypto loopback file systems.

• encrypting the entire file system.

• steganographic tools.

• setting up a PKA for an organization.

• using LDAP to manage users. There is a HOWTO of ldap+kerberos for Debian at http:
//www.bayour.com written by Turbo Fredrikson.

• How to remove information of reduced utility in production systems such as /usr
/share/doc , /usr/share/man (yes, security by obscurity).

• More information on lcap based on the packages README file (well, not there
yet, see Bug #169465 (http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=
169465 )) and from the article from LWN: Kernel development (http://lwn.net/
1999/1202/kernel.php3 ).

• Add Colin’s article on how to setup a chroot environment for a full sid system (http:
//people.debian.org/~walters/chroot.html )

• Add information on running multiple snort sensors in a given system (check bug re-
ports sent to snort ).

• Add information on setting up a honeypot (honeyd ).

• Describe situation wrt to FreeSwan (orphaned) and OpenSwan. VPN section needs to be
rewritten.

• Add a specific section about databases, current installation defaults and how to secure
access.

• Add a section about the usefulness of virtual servers (Xen et al)

• Explain how to use some integrity checkers (AIDE, integrit or samhain). The basics are
simple and could even explain some configuration improvements.

1.6 Changelog/History

1.6.1 Version 3.13 (November 2007)

Changes by Javier Fernández-Sanguino Peña.

• Change URLs pointing to Bastille Linux since the domain has been purchased by a cyber-
squatter (http://www.bastille-unix.org/press-release-newname.html ).

http://www.bayour.com
http://www.bayour.com
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=169465
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=169465
http://lwn.net/1999/1202/kernel.php3
http://lwn.net/1999/1202/kernel.php3
http://people.debian.org/~walters/chroot.html
http://people.debian.org/~walters/chroot.html
http://www.bastille-unix.org/press-release-newname.html


Chapter 1. Introduction 7

1.6.2 Version 3.12 (August 2007)

Changes by Javier Fernández-Sanguino Peña.

• Update the information related to security updates. Drop the text talking about Tiger
and include information on the update-notifier and adept tools (for Desktops) as well as
debsecan. Also include some pointers to other tools available.

• Divide the firewall applications based on target users and add fireflier to the Desktop
firewall applications list.

• Remove references to libsafe, it’s not in the archive any loger (was removed january 2006)

• Fix the location of syslog’s configuration, thanks to John Talbut.

1.6.3 Version 3.11 (January 2007)

Changes by Javier Fernández-Sanguino Peña. Thanks go to Francesco Poli for his extensive
review of the document.

• Remove most references to the woody release as it is no longer available (in the archive)
and security support for it is no longer available.

• Describe how to restrict users so that they can only do file transfers.

• Added a note regarding the debian-private declasiffication decission.

• Updated link of incident handling guides.

• Added a note saying that development tools (compilers, etc.) are not installed now in the
default ’etch’ installation.

• Fix references to the master security server.

• Add pointers to additional APT-secure documentation

• Improve the description of APT signatures

• Comment out some things which are not yet final related to the mirror’s official public
keys.

• Fixed name of the Debian Testing Security Team.

• Remove reference to sarge in an example.

• Update the antivirus section, clamav is now available on the release. Also mention the
f-prot installer

• Removes all references to freeswan as it is obsolete



Chapter 1. Introduction 8

• Describe issues related to ruleset changes to the firewall if done remotely and provide
some tips (in footnotes)

• Update the information related to the IDS installation, mention BASE and the need to
setup a logging database.

• Rewrite the “running bind as a non-root user” section as this no longer applies to Bind9.
Also remove the reference to the init.d script since the changes need to be done through
/etc/default.

• Remove the obsolete way to setup iptables rulesets as woody is no longer supported.

• Revert the advice regarding LOG_UNKFAIL_ENAB it should be set to ’no’ (as per de-
fault).

• Added more information related to updating the system with desktop tools (including
update-notifier) and describe aptitude usage to update the system. Also note that dselect
is deprecated.

• Updated the contents of the FAQ and remove redundant paragraphs.

• Review and update the section related to forensic analysis of malware.

• Remove or fix some dead links.

• Fix many typos and gramatical errors reported by Francesco Poli.

1.6.4 Version 3.10 (November 2006)

Changes by Javier Fernández-Sanguino Peña

• Provide examples using apt-cache’s rdepends as suggested by Ozer Sarilar.

• Fix location of Squid’s user’s manual because of its relocation as notified by Oskar Pear-
son (its maintainer).

• Fix information regarding umask, it’s logins.defs (and not limits.conf) where this can
be configured for all login connections. Also state what is Debian’s default and what
would be a more restrictive value for both users and root. Thanks to Reinhard Tartler for
spotting the bug.

1.6.5 Version 3.9 (October 2006)

Changes by Javier Fernández-Sanguino Peña

• Add information on how to track security vulnerabilities and add references to the De-
bian Testing Security Tracker.



Chapter 1. Introduction 9

• Add more information on the security support for testing.

• Fix a large number of typos with a patch provided by Simon Brandmair.

• Added section on how to disable root prompt on initramfs provided by Max Attems.

• Remove references to queso.

• Note that testing is now security-supported in the introduction.

1.6.6 Version 3.8 (July 2006)

Changes by Javier Fernández-Sanguino Peña

• Rewrote the information on how to setup ssh chroots to clarify the different options avail-
able, thank to Bruce Park for bringing up the different mistakes in this appendix.

• Fix lsof call as suggested by Christophe Sahut.

• Include patches for typo fixes from Uwe Hermann.

• Fix typo in reference spotted by Moritz Naumann.

1.6.7 Version 3.7 (April 2006)

Changes by Javier Fernández-Sanguino Peña

• Add a section on Debian Developer’s best practices for security.

• Ammended firewall script with comments from WhiteGhost.

1.6.8 Version 3.6 (March 2006)

Changes by Javier Fernández-Sanguino Peña

• Included a patch from Thomas Sjögren which describes that noexec works as expected
with “new” kernels, adds information regarding tempfile handling, and some new point-
ers to external documentation.

• Add a pointer to Dan Farmer’s and Wietse Venema’s forensic discovery web site, as sug-
gested by Freek Dijkstra, and expanded a little bit the forensic analysis section with more
pointers.

• Fixed URL of Italy’s CERT, thanks to Christoph Auer.

• Reuse Joey Hess’ information at the wiki on secure apt and introduce it in the infrastruc-
ture section.



Chapter 1. Introduction 10

• Review sections referring to old versions (woody or potato)

• Fix some cosmetic issues with patch from Simon Brandmair.

• Included patches from Carlo Perassi: acl patches are obsolete, openwall patches are ob-
solete too, removed fixme notes about 2.2 and 2.4 series kernels, hap is obsolete (and
not present in WNPP), remove references to Immunix (StackGuard is now in Novell’s
hands), and fix a FIXME about the use of bsign or elfsign.

• Updated references to SElinux web pages to point to the Wiki (currently the most up to
date source of information)

• Include file tags and make a more consistent use of “MD5 sum” with a patch from Jens
Seidel.

• Patch from Joost van Baal improving the information on the firewall section (pointing to
the wiki instead of listing all firewall packages available) (Closes: #339865)

• Review the FAQ section on vulnerability stats, thanks to Carlos Galisteo de Cabo for
pointing out that it was out of date.

• Use the quote from the Social Contract 1.1 instead of 1.0 as suggested by Francesco Poli.

1.6.9 Version 3.5 (November 2005)

Changes by Javier Fernández-Sanguino Peña

• Note on the SSH section that the chroot will not work if using the nodev option in the par-
tition and point to the latest ssh packages with the chroot patch, thanks to Lutz Broedel
for pointing these issues out.

• Fix typo spotted by Marcos Roberto Greiner (md5sum should be sha1sum in code snip-
pet)

• Included Jens Seidel’s patch fixing a number of package names and typos.

• Slightly update of the tools section, removed tools no longer available and added some
new ones.

• Rewrite parts of the section related to where to find this document and what formats are
available (the website does provide a PDF version). Also note that copies on other sites
and translations might be obsolete (many of the Google hits for the manual in other sites
are actually out of date).



Chapter 1. Introduction 11

1.6.10 Version 3.4 (August-September 2005)

Changes by Javier Fernández-Sanguino Peña

• Improved the after installation security enhancements related to kernel configuration for
network level protection with a sysctl.conf file provided by Will Moy.

• Improved the gdm section, thanks to Simon Brandmair.

• Typo fixes from Frédéric Bothamy and Simon Brandmair.

• Improvements in the after installation sections related to how to generate the MD5 (or
SHA-1) sums of binaries for periodic review.

• Updated the after installation sections regarding checksecurity configuration (was out of
date).

1.6.11 Version 3.3 (June 2005)

Changes by Javier Fernández-Sanguino Peña

• Added a code snippet to use grep-available to generate the list of packages depending
on Perl. As requested in #302470.

• Rewrite of the section on network services (which ones are installed and how to disable
them)

• Added more information to the honeypot deployment section mentioning useful Debian
packages.

1.6.12 Version 3.2 (March 2005)

Changes by Javier Fernández-Sanguino Peña

• Expanded the PAM configuration limits section.

• Added information on how to use pam_chroot for openssh (based on pam_chroot’s
README)

• Fixed some minor issues reported by Dan Jacobson.

• Updated the kernel patches information partially based on a patch from Carlo Perassi
and also by adding deprecation notes and new kernel patches available (adamantix)

• Included patch from Simon Brandmair that fixes a sentence related to login failures in
terminal.



Chapter 1. Introduction 12

• Added Mozilla/Thunderbird to the valid GPG agents as suggested by Kapolnai Richard.

• Expanded the section on security updates mentioning library and kernel updates and
how to detect when services need to be restarted.

• Rewrote the firewall section, moved the information that applies to woody down and ex-
pand the other sections including some information on how to manually set the firewall
(with a sample script) and how to test the firewall configuration.

• Added some information preparing for the 3.1 release.

• Added more detailed information on kernel upgrades, specifically targeted at those that
used the old installation system.

• Added a small section on the experimental apt 0.6 release which provides package sign-
ing checks. Moved old content to the section and also added a pointer to changes made
in aptitude.

• Typo fixes spotted by Frédéric Bothamy

1.6.13 Version 3.1 (January 2005)

Changes by Javier Fernández-Sanguino Peña

• Added clarification to ro /usr with patch from Joost van Baal

• Apply patch from Jens Seidel fixing many typos.

• FreeSWAN is dead, long live OpenSWAN.

• Added information on restricting access to RPC services (when they cannot be disabled)
also included patch provided by Aarre Laakso.

• Update aj’s apt-check-sigs script.

• Apply patch Carlo Perassi fixing URLs.

• Apply patch from Davor Ocelic fixing many errors, typos, urls, grammar and FIXMEs.
Also adds some additional information to some sections.

• Rewrote the section on user auditing, highlight the usage of script which does not have
some of the issues associated to shell history.

1.6.14 Version 3.0 (December 2004)

Changes by Javier Fernández-Sanguino Peña

• Rewrote the user-auditing information and include examples on how to use script.



Chapter 1. Introduction 13

1.6.15 Version 2.99 (March 2004)

Changes by Javier Fernández-Sanguino Peña

• Added information on references in DSAs and CVE-Compatibility.

• Added information on apt 0.6 (apt-secure merge in experimental)

• Fixed location of Chroot daemons HOWTO as suggested by Shuying Wang.

• Changed APACHECTL line in the Apache chroot example (even if its not used at all) as
suggested by Leonard Norrgard.

• Added a footnote regarding hardlink attacks if partitions are not setup properly.

• Added some missing steps in order to run bind as named as provided by Jeffrey Prosa.

• Added notes about Nessus and Snort out-of-dateness in woody and availability of back-
ported packages.

• Added a chapter regarding periodic integrity test checks.

• Clarified the status of testing regarding security updates. (Debian bug 233955)

• Added more information regarding expected contents in securetty (since it’s kernel spe-
cific).

• Added pointer to snoopylogger (Debian bug 179409)

• Added reference to guarddog (Debian bug 170710)

• apt-ftparchive is in apt-utils , not in apt (thanks to Emmanuel Chantreau for
pointing this out)

• Removed jvirus from AV list.

1.6.16 Version 2.98 (December 2003)

Changes by Javier Fernández-Sanguino Peña

• Fixed URL as suggested by Frank Lichtenheld.

• Fixed PermitRootLogin typo as suggested by Stefan Lindenau.



Chapter 1. Introduction 14

1.6.17 Version 2.97 (September 2003)

Changes by Javier Fernández-Sanguino Peña

• Added those that have made the most significant contributions to this manual (please
mail me if you think you should be in the list and are not).

• Added some blurb about FIXME/TODOs

• Moved the information on security updates to the beginning of the section as suggested
by Elliott Mitchell.

• Added grsecurity to the list of kernel-patches for security but added a footnote on the
current issues with it as suggested by Elliott Mitchell.

• Removed loops (echo to ’all’) in the kernel’s network security script as suggested by
Elliott Mitchell.

• Added more (up-to-date) information in the antivirus section.

• Rewrote the buffer overflow protection section and added more information on patches
to the compiler to enable this kind of protection.

1.6.18 Version 2.96 (August 2003)

Changes by Javier Fernández-Sanguino Peña

• Removed (and then re-added) appendix on chrooting Apache. The appendix is now
dual-licensed.

1.6.19 Version 2.95 (June 2003)

Changes by Javier Fernández-Sanguino Peña

• Fixed typos spotted by Leonard Norrgard.

• Added a section on how to contact CERT for incident handling (#after-compromise )

• More information on setting up a Squid proxy.

• Added a pointer and removed a FIXME thanks to Helge H. F.

• Fixed a typo (save_inactive) spotted by Philippe Faes.

• Fixed several typos spotted by Jaime Robles.

#after-compromise


Chapter 1. Introduction 15

1.6.20 Version 2.94 (April 2003)

Changes by Javier Fernández-Sanguino Peña

• Following Maciej Stachura’s suggestions I’ve expanded the section on limiting users.

• Fixed typo spotted by Wolfgang Nolte.

• Fixed links with patch contributed by Ruben Leote Mendes.

• Added a link to David Wheeler’s excellent document on the footnote about counting
security vulnerabilities.

1.6.21 Version 2.93 (March 2003)

Changes made by Frédéric Schütz.

• rewrote entirely the section of ext2 attributes (lsattr/chattr)

1.6.22 Version 2.92 (February 2003)

Changes by Javier Fernández-Sanguino Peña and Frédéric Schütz.

• Merge section 9.3 (“useful kernel patches”) into section 4.13 (“Adding kernel patches”),
and added some content.

• Added a few more TODOs

• Added information on how to manually check for updates and also about cron-apt. That
way Tiger is not perceived as the only way to do automatic update checks.

• Slightly rewrite of the section on executing a security updates due to Jean-Marc Ranger
comments.

• Added a note on Debian’s installation (which will suggest the user to execute a security
update right after installation)

1.6.23 Version 2.91 (January/February 2003)

Changes by Javier Fernández-Sanguino Peña (me).

• Added a patch contributed by Frédéric Schütz.

• Added a few more references on capabilities thanks to Frédéric.



Chapter 1. Introduction 16

• Slight changes in the bind section adding a reference to BIND’s 9 online documentation
and proper references in the first area (Hi Pedro!)

• Fixed the changelog date - new year :-)

• Added a reference to Colin’s articles for the TODOs.

• Removed reference to old ssh+chroot patches.

• More patches from Carlo Perassi.

• Typo fixes (recursive in Bind is recursion), pointed out by Maik Holtkamp.

1.6.24 Version 2.9 (December 2002)

Changes by Javier Fernández-Sanguino Peña (me).

• Reorganized the information on chroot (merged two sections, it didn’t make much sense
to have them separated)

• Added the notes on chrooting Apache provided by Alexandre Ratti.

• Applied patches contributed by Guillermo Jover.

1.6.25 Version 2.8 (November 2002)

Changes by Javier Fernández-Sanguino Peña (me).

• Applied patches from Carlo Perassi, fixes include: re-wrapping the lines, URL fixes, and
fixed some FIXMEs

• Updated the contents of the Debian security team FAQ.

• Added a link to the Debian security team FAQ and the Debian Developer’s reference, the
duplicated sections might (just might) be removed in the future.

• Fixed the hand-made auditing section with comments from Michal Zielinski.

• Added links to wordlists (contributed by Carlo Perassi)

• Fixed some typos (still many around).

• Fixed TDP links as suggested by John Summerfield.



Chapter 1. Introduction 17

1.6.26 Version 2.7 (October 2002)

Changes by Javier Fernández-Sanguino Peña (me). Note: I still have a lot of pending changes
in my mailbox (which is currently about 5 Mbs in size).

• Some typo fixes contributed by Tuyen Dinh, Bartek Golenko and Daniel K. Gebhart.

• Note regarding /dev/kmem rootkits contributed by Laurent Bonnaud

• Fixed typos and FIXMEs contributed by Carlo Perassi.

1.6.27 Version 2.6 (September 2002)

Changes by Chris Tillman, tillman@voicetrak.com.

• Changed around to improve grammar/spelling.

• s/host.deny/hosts.deny/ (1 place)

• Applied Larry Holish’s patch (quite big, fixes a lot of FIXMEs)

1.6.28 Version 2.5 (September 2002)

Changes by Javier Fernández-Sanguino Peña (me).

• Fixed minor typos submitted by Thiemo Nagel.

• Added a footnote suggested by Thiemo Nagel.

• Fixed an URL link.

1.6.29 Version 2.5 (August 2002)

Changes by Javier Fernández-Sanguino Peña (me). There were many things waiting on my
inbox (as far back as February) to be included, so I’m going to tag this the back from honeymoon
release :)

• Applied a patch contributed by Philipe Gaspar regarding the Squid which also kills a
FIXME.

• Yet another FAQ item regarding service banners taken from the debian-security mailing
list (thread “Telnet information” started 26th July 2002).

• Added a note regarding use of CVE cross references in the How much time does the Debian
security team. . . FAQ item.



Chapter 1. Introduction 18

• Added a new section regarding ARP attacks contributed by Arnaud “Arhuman” Assad.

• New FAQ item regarding dmesg and console login by the kernel.

• Small tidbits of information to the signature-checking issues in packages (it seems to not
have gotten past beta release).

• New FAQ item regarding vulnerability assessment tools false positives.

• Added new sections to the chapter that contains information on package signatures and
reorganized it as a new Debian Security Infrastructure chapter.

• New FAQ item regarding Debian vs. other Linux distributions.

• New section on mail user agents with GPG/PGP functionality in the security tools chap-
ter.

• Clarified how to enable MD5 passwords in woody, added a pointer to PAM as well as a
note regarding the max definition in PAM.

• Added a new appendix on how to create chroot environments (after fiddling a bit with
makejail and fixing, as well, some of its bugs), integrated duplicate information in all the
appendix.

• Added some more information regarding SSHchrooting and its impact on secure file
transfers. Some information has been retrieved from the debian-security mailing list
(June 2002 thread: secure file transfers).

• New sections on how to do automatic updates on Debian systems as well as the caveats
of using testing or unstable regarding security updates.

• New section regarding keeping up to date with security patches in the Before compromise
section as well as a new section about the debian-security-announce mailing list.

• Added information on how to automatically generate strong passwords.

• New section regarding login of idle users.

• Reorganized the securing mail server section based on the Secure/hardened/minimal Debian
(or “Why is the base system the way it is?”) thread on the debian-security mailing list (May
2002).

• Reorganized the section on kernel network parameters, with information provided in the
debian-security mailing list (May 2002, syn flood attacked? thread) and added a new FAQ
item as well.

• New section on how to check users passwords and which packages to install for this.

• New section on PPTP encryption with Microsoft clients discussed in the debian-security
mailing list (April 2002).



Chapter 1. Introduction 19

• Added a new section describing what problems are there when binding any given service
to a specific IP address, this information was written based on the Bugtraq mailing list in
the thread: Linux kernel 2.4 “weak end host” issue (previously discussed on debian-security as
“arp problem”) (started on May 9th 2002 by Felix von Leitner).

• Added information on ssh protocol version 2.

• Added two subsections related to Apache secure configuration (the things specific to
Debian, that is).

• Added a new FAQ related to raw sockets, one related to /root, an item related to users’
groups and another one related to log and configuration files permissions.

• Added a pointer to a bug in libpam-cracklib that might still be open. . . (need to check)

• Added more information regarding forensics analysis (pending more information on
packet inspection tools such as tcpflow ).

• Changed the “what should I do regarding compromise” into a bullet list and included
some more stuff.

• Added some information on how to set up the Xscreensaver to lock the screen automati-
cally after the configured timeout.

• Added a note related to the utilities you should not install in the system. Included a
note regarding Perl and why it cannot be easily removed in Debian. The idea came after
reading Intersect’s documents regarding Linux hardening.

• Added information on lvm and journalling file systems, ext3 recommended. The infor-
mation there might be too generic, however.

• Added a link to the online text version (check).

• Added some more stuff to the information on firewalling the local system, triggered by a
comment made by Hubert Chan in the mailing list.

• Added more information on PAM limits and pointers to Kurt Seifried’s documents (re-
lated to a post by him to Bugtraq on April 4th 2002 answering a person that had “discov-
ered” a vulnerability in Debian GNU/Linux related to resource starvation).

• As suggested by Julián Muñoz, provided more information on the default Debian umask
and what a user can access if he has been given a shell in the system (scary, huh?)

• Included a note in the BIOS password section due to a comment from Andreas Wohlfeld.

• Included patches provided by Alfred E. Heggestad fixing many of the typos still present
in the document.

• Added a pointer to the changelog in the Credits section since most people who contribute
are listed here (and not there).



Chapter 1. Introduction 20

• Added a few more notes to the chattr section and a new section after installation talking
about system snapshots. Both ideas were contributed by Kurt Pomeroy.

• Added a new section after installation just to remind users to change the boot-up se-
quence.

• Added some more TODO items provided by Korn Andras.

• Added a pointer to the NIST’s guidelines on how to secure DNS provided by Daniel
Quinlan.

• Added a small paragraph regarding Debian’s SSL certificates infrastructure.

• Added Daniel Quinlan’s suggestions regarding ssh authentication and exim’s relay con-
figuration.

• Added more information regarding securing bind including changes suggested by
Daniel Quinlan and an appendix with a script to make some of the changes commented
on in that section.

• Added a pointer to another item regarding Bind chrooting (needs to be merged).

• Added a one liner contributed by Cristian Ionescu-Idbohrn to retrieve packages with
tcpwrappers support.

• Added a little bit more info on Debian’s default PAM setup.

• Included a FAQ question about using PAM to provide services without shell accounts.

• Moved two FAQ items to another section and added a new FAQ regarding attack detec-
tion (and compromised systems).

• Included information on how to set up a bridge firewall (including a sample Appendix).
Thanks to Francois Bayart who sent this to me in March.

• Added a FAQ regarding the syslogd’s MARK heartbeat from a question answered by
Noah Meyerhans and Alain Tesio in December 2001.

• Included information on buffer overflow protection as well as some information on ker-
nel patches.

• Added more information (and reorganized) the firewall section. Updated the informa-
tion regarding the iptables package and the firewall generators available.

• Reorganized the information regarding log checking, moved logcheck information from
host intrusion detection to that section.

• Added some information on how to prepare a static package for bind for chrooting
(untested).

• Added a FAQ item regarding some specific servers/services (could be expanded with
some of the recommendations from the debian-security list).



Chapter 1. Introduction 21

• Added some information on RPC services (and when it’s necessary).

• Added some more information on capabilities (and what lcap does). Is there any good
documentation on this? I haven’t found any documentation on my 2.4 kernel.

• Fixed some typos.

1.6.30 Version 2.4

Changes by Javier Fernández-Sanguino Peña.

• Rewritten part of the BIOS section.

1.6.31 Version 2.3

Changes by Javier Fernández-Sanguino Peña.

• Wrapped most file locations with the file tag.

• Fixed typo noticed by Edi Stojicevi.

• Slightly changed the remote audit tools section.

• Added some todo items.

• Added more information regarding printers and cups config file (taken from a thread on
debian-security).

• Added a patch submitted by Jesus Climent regarding access of valid system users to
Proftpd when configured as anonymous server.

• Small change on partition schemes for the special case of mail servers.

• Added Hacking Linux Exposed to the books section.

• Fixed directory typo noticed by Eduardo Pérez Ureta.

• Fixed /etc/ssh typo in checklist noticed by Edi Stojicevi.

1.6.32 Version 2.3

Changes by Javier Fernández-Sanguino Peña.

• Fixed location of dpkg conffile.

• Remove Alexander from contact information.



Chapter 1. Introduction 22

• Added alternate mail address.

• Fixed Alexander mail address (even if commented out).

• Fixed location of release keys (thanks to Pedro Zorzenon for pointing this out).

1.6.33 Version 2.2

Changes by Javier Fernández-Sanguino Peña.

• Fixed typos, thanks to Jamin W. Collins.

• Added a reference to apt-extracttemplate manpage (documents the
APT::ExtractTemplate config).

• Added section about restricted SSH. Information based on that posted by Mark Janssen,
Christian G. Warden and Emmanuel Lacour on the debian-security mailing list.

• Added information on antivirus software.

• Added a FAQ: su logs due to the cron running as root.

1.6.34 Version 2.1

Changes by Javier Fernández-Sanguino Peña.

• Changed FIXME from lshell thanks to Oohara Yuuma.

• Added package to sXid and removed comment since it *is* available.

• Fixed a number of typos discovered by Oohara Yuuma.

• ACID is now available in Debian (in the acidlab package) thanks to Oohara Yuuma for
noticing.

• Fixed LinuxSecurity links (thanks to Dave Wreski for telling).

1.6.35 Version 2.0

Changes by Javier Fernández-Sanguino Peña. I wanted to change to 2.0 when all the FIXMEs
were fixed but I ran out of 1.9X numbers :(

• Converted the HOWTO into a Manual (now I can properly say RTFM)

• Added more information regarding tcp wrappers and Debian (now many services are
compiled with support for them so it’s no longer an inetd issue).



Chapter 1. Introduction 23

• Clarified the information on disabling services to make it more consistent (rpc info still
referred to update-rc.d)

• Added small note on lprng.

• Added some more info on compromised servers (still very rough)

• Fixed typos reported by Mark Bucciarelli.

• Added some more steps in password recovery to cover the cases when the admin has set
paranoid-mode=on.

• Added some information to set paranoid-mode=on when login in console.

• New paragraph to introduce service configuration.

• Reorganized the After installation section so it is more broken up into several issues and
it’s easier to read.

• Wrote information on how to set up firewalls with the standard Debian 3.0 setup (iptables
package).

• Small paragraph explaining why installing connected to the Internet is not a good idea
and how to avoid this using Debian tools.

• Small paragraph on timely patching referencing to IEEE paper.

• Appendix on how to set up a Debian snort box, based on what Vladimir sent to the
debian-security mailing list (September 3rd 2001)

• Information on how logcheck is set up in Debian and how it can be used to set up HIDS.

• Information on user accounting and profile analysis.

• Included apt.conf configuration for read-only /usr copied from Olaf Meeuwissen’s post
to the debian-security mailing list

• New section on VPN with some pointers and the packages available in Debian (needs
content on how to set up the VPNs and Debian-specific issues), based on Jaroslaw Tabor’s
and Samuli Suonpaa’s post to debian-security.

• Small note regarding some programs to automatically build chroot jails

• New FAQ item regarding identd based on a discussion in the debian-security mailing list
(February 2002, started by Johannes Weiss).

• New FAQ item regarding inetd based on a discussion in the debian-security mailing
list (February 2002).

• Introduced note on rcconf in the “disabling services” section.

• Varied the approach regarding LKM, thanks to Philipe Gaspar

• Added pointers to CERT documents and Counterpane resources



Chapter 1. Introduction 24

1.6.36 Version 1.99

Changes by Javier Fernández-Sanguino Peña.

• Added a new FAQ item regarding time to fix security vulnerabilities.

• Reorganized FAQ sections.

• Started writing a section regarding firewalling in Debian GNU/Linux (could be broad-
ened a bit)

• Fixed typos sent by Matt Kraai

• Fixed DNS information

• Added information on whisker and nbtscan to the auditing section.

• Fixed some wrong URLs

1.6.37 Version 1.98

Changes by Javier Fernández-Sanguino Peña.

• Added a new section regarding auditing using Debian GNU/Linux.

• Added info regarding finger daemon taken from the security mailing list.

1.6.38 Version 1.97

Changes by Javier Fernández-Sanguino Peña.

• Fixed link for Linux Trustees

• Fixed typos (patches from Oohara Yuuma and Pedro Zorzenon)

1.6.39 Version 1.96

Changes by Javier Fernández-Sanguino Peña.

• Reorganized service installation and removal and added some new notes.

• Added some notes regarding using integrity checkers as intrusion detection tools.

• Added a chapter regarding package signatures.



Chapter 1. Introduction 25

1.6.40 Version 1.95

Changes by Javier Fernández-Sanguino Peña.

• Added notes regarding Squid security sent by Philipe Gaspar.

• Fixed rootkit links thanks to Philipe Gaspar.

1.6.41 Version 1.94

Changes by Javier Fernández-Sanguino Peña.

• Added some notes regarding Apache and Lpr/lpng.

• Added some information regarding noexec and read-only partitions.

• Rewrote how users can help in Debian security issues (FAQ item).

1.6.42 Version 1.93

Changes by Javier Fernández-Sanguino Peña.

• Fixed location of mail program.

• Added some new items to the FAQ.

1.6.43 Version 1.92

Changes by Javier Fernández-Sanguino Peña.

• Added a small section on how Debian handles security

• Clarified MD5 passwords (thanks to ‘rocky’)

• Added some more information regarding harden-X from Stephen van Egmond

• Added some new items to the FAQ

1.6.44 Version 1.91

Changes by Javier Fernández-Sanguino Peña.

• Added some forensics information sent by Yotam Rubin.

• Added information on how to build a honeynet using Debian GNU/Linux.

• Added some more TODOS.

• Fixed more typos (thanks Yotam!)



Chapter 1. Introduction 26

1.6.45 Version 1.9

Changes by Javier Fernández-Sanguino Peña.

• Added patch to fix misspellings and some new information (contributed by Yotam Ru-
bin)

• Added references to other online (and offline) documentation both in a section (see ‘Be
aware of general security problems’ on page 31) by itself and inline in some sections.

• Added some information on configuring Bind options to restrict access to the DNS server.

• Added information on how to automatically harden a Debian system (regarding the
harden package and bastille).

• Removed some done TODOs and added some new ones.

1.6.46 Version 1.8

Changes by Javier Fernández-Sanguino Peña.

• Added the default user/group list provided by Joey Hess to the debian-security mailing
list.

• Added information on LKM root-kits (‘Loadable Kernel Modules (LKM)’ on page 176)
contributed by Philipe Gaspar.

• Added information on Proftp contributed by Emmanuel Lacour.

• Recovered the checklist Appendix from Era Eriksson.

• Added some new TODO items and removed other fixed ones.

• Manually included Era’s patches since they were not all included in the previous version.

1.6.47 Version 1.7

Changes by Era Eriksson.

• Typo fixes and wording changes

Changes by Javier Fernández-Sanguino Peña.

• Minor changes to tags in order to keep on removing the tt tags and substitute
prgn/package tags for them.



Chapter 1. Introduction 27

1.6.48 Version 1.6

Changes by Javier Fernández-Sanguino Peña.

• Added pointer to document as published in the DDP (should supersede the original in
the near future)

• Started a mini-FAQ (should be expanded) with some questions recovered from my mail-
box.

• Added general information to consider while securing.

• Added a paragraph regarding local (incoming) mail delivery.

• Added some pointers to more information.

• Added information regarding the printing service.

• Added a security hardening checklist.

• Reorganized NIS and RPC information.

• Added some notes taken while reading this document on my new Visor :)

• Fixed some badly formatted lines.

• Fixed some typos.

• Added a Genius/Paranoia idea contributed by Gaby Schilders.

1.6.49 Version 1.5

Changes by Josip Rodin and Javier Fernández-Sanguino Peña.

• Added paragraphs related to BIND and some FIXMEs.

1.6.50 Version 1.4

• Small setuid check paragraph

• Various minor cleanups

• Found out how to use sgml2txt -f for the txt version



Chapter 1. Introduction 28

1.6.51 Version 1.3

• Added a security update after installation paragraph

• Added a proftpd paragraph

• This time really wrote something about XDM, sorry for last time

1.6.52 Version 1.2

• Lots of grammar corrections by James Treacy, new XDM paragraph

1.6.53 Version 1.1

• Typo fixes, miscellaneous additions

1.6.54 Version 1.0

• Initial release

1.7 Credits and thanks!

• Alexander Reelsen wrote the original document.

• Javier Fernández-Sanguino added more info to the original doc.

• Robert van der Meulen provided the quota paragraphs and many good ideas.

• Ethan Benson corrected the PAM paragraph and had some good ideas.

• Dariusz Puchalak contributed some information to several chapters.

• Gaby Schilders contributed a nice Genius/Paranoia idea.

• Era Eriksson smoothed out the language in a lot of places and contributed the checklist
appendix.

• Philipe Gaspar wrote the LKM information.

• Yotam Rubin contributed fixes for many typos as well as information regarding bind
versions and MD5 passwords.

• Francois Bayart provided the appendix describing how to set up a bridge firewall.

• Joey Hess wrote the section describing how Secure Apt works on the Debian Wiki (http:
//wiki.debian.org/SecureApt ).

http://wiki.debian.org/SecureApt
http://wiki.debian.org/SecureApt


Chapter 1. Introduction 29

• Martin F. Krafft wrote some information on his blog regarding fingerprint verification
which was also reused for the Secure Apt section.

• Francesco Poli did an extensive review of the manual and provided quite a lot of bug
reports and typo fixes which improved and helped update the document.

• All the people who made suggestions for improvements that (eventually) were included
here (see ‘Changelog/History’ on page 6).

• (Alexander) All the folks who encouraged me to write this HOWTO (which was later
turned into a manual).

• The whole Debian project.



Chapter 1. Introduction 30



31

Chapter 2

Before you begin

2.1 What do you want this system for?

Securing Debian is not very different from securing any other system; in order to do it properly,
you must first decide what you intend to do with it. After this, you will have to consider that
the following tasks need to be taken care of if you want a really secure system.

You will find that this manual is written from the bottom up, that is, you will read some infor-
mation on tasks to do before, during and after you install your Debian system. The tasks can
also be thought of as:

• Decide which services you need and limit your system to those. This includes deactivat-
ing/uninstalling unneeded services, and adding firewall-like filters, or tcpwrappers.

• Limit users and permissions in your system.

• Harden offered services so that, in the event of a service compromise, the impact to your
system is minimized.

• Use appropriate tools to guarantee that unauthorized use is detected so that you can take
appropriate measures.

2.2 Be aware of general security problems

The following manual does not (usually) go into the details on why some issues are consid-
ered security risks. However, you might want to have a better background regarding general
UNIX and (specific) Linux security. Take some time to read over security related documents
in order to make informed decisions when you are encountered with different choices. Debian
GNU/Linux is based on the Linux kernel, so much of the information regarding Linux, as well
as from other distributions and general UNIX security also apply to it (even if the tools used,
or the programs available, differ).

Some useful documents include:



Chapter 2. Before you begin 32

• The Linux Security HOWTO (http://www.tldp.org/HOWTO/Security-HOWTO/ )
(also available at LinuxSecurity (http://www.linuxsecurity.com/docs/LDP/
Security-HOWTO.html )) is one of the best references regarding general Linux secu-
rity.

• The Security Quick-Start HOWTO for Linux (http://www.tldp.org/HOWTO/
Security-Quickstart-HOWTO/ ) is also a very good starting point for novice users
(both to Linux and security).

• The Linux Security Administrator’s Guide (http://seifried.org/lasg/ ) is a com-
plete guide that touches all the issues related to security in Linux, from kernel security
to VPNs. Note that it has not been updated since 2001, but some information is still
relevant. 1

• Kurt Seifried’s Securing Linux Step by Step (http://seifried.org/security/os/
linux/20020324-securing-linux-step-by-step.html ).

• In Securing and Optimizing Linux: RedHat Edition (http://www.tldp.org/links/
p_books.html#securing_linux ) you can find a similar document to this manual
but related to Red Hat, some of the issues are not distribution-specific and also apply to
Debian.

• Another Red Hat related document is EAL3 Evaluated Configuration
Guide for Red Hat Enterprise (http://ltp.sourceforge.net/docs/
RHEL-EAL3-Configuration-Guide.pdf ).

• IntersectAlliance has published some documents that can be used as reference cards on
how to harden Linux servers (and their services), the documents are available at their site
(http://www.intersectalliance.com/projects/index.html ).

• For network administrators, a good reference for building a secure network is the
Securing your Domain HOWTO (http://www.linuxsecurity.com/docs/LDP/
Securing-Domain-HOWTO/ ).

• If you want to evaluate the programs you are going to use (or want to build up
some new ones) you should read the Secure Programs HOWTO (http://www.tldp.
org/HOWTO/Secure-Programs-HOWTO/ ) (master copy is available at http://www.
dwheeler.com/secure-programs/ , it includes slides and talks from the author,
David Wheeler)

• If you are considering installing firewall capabilities, you should read the Fire-
wall HOWTO (http://www.tldp.org/HOWTO/Firewall-HOWTO.html ) and the
IPCHAINS HOWTO (http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html ) (for
kernels previous to 2.4).

• Finally, a good card to keep handy is the Linux Security ReferenceCard (http://www.
linuxsecurity.com/docs/QuickRefCard.pdf ).

1At a given time it was superseded by the “Linux Security Knowledge Base”. This documentation is also
provided in Debian through the lskb package. Now it’s back as the Lasg again.

http://www.tldp.org/HOWTO/Security-HOWTO/
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO.html
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO.html
http://www.tldp.org/HOWTO/Security-Quickstart-HOWTO/
http://www.tldp.org/HOWTO/Security-Quickstart-HOWTO/
http://seifried.org/lasg/
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.tldp.org/links/p_books.html#securing_linux
http://www.tldp.org/links/p_books.html#securing_linux
http://ltp.sourceforge.net/docs/RHEL-EAL3-Configuration-Guide.pdf
http://ltp.sourceforge.net/docs/RHEL-EAL3-Configuration-Guide.pdf
http://www.intersectalliance.com/projects/index.html
http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/
http://www.linuxsecurity.com/docs/LDP/Securing-Domain-HOWTO/
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/
http://www.dwheeler.com/secure-programs/
http://www.dwheeler.com/secure-programs/
http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.linuxsecurity.com/docs/QuickRefCard.pdf
http://www.linuxsecurity.com/docs/QuickRefCard.pdf


Chapter 2. Before you begin 33

In any case, there is more information regarding the services explained here (NFS, NIS, SMB. . . )
in many of the HOWTOs of the The Linux Documentation Project (http://www.tldp.
org/ ). Some of these documents speak on the security side of a given service, so be sure
to take a look there too.

The HOWTO documents from the Linux Documentation Project are available in De-
bian GNU/Linux through the installation of the doc-linux-text (text version) or
doc-linux-html (HTML version). After installation these documents will be available
at the /usr/share/doc/HOWTO/en-txt and /usr/share/doc/HOWTO/en-html directo-
ries, respectively.

Other recommended Linux books:

• Maximum Linux Security : A Hacker’s Guide to Protecting Your Linux Server and Net-
work. Anonymous. Paperback - 829 pages. Sams Publishing. ISBN: 0672313413. July
1999.

• Linux Security By John S. Flowers. New Riders; ISBN: 0735700354. March 1999.

• Hacking Linux Exposed (http://www.linux.org/books/ISBN_0072127732.
html ) By Brian Hatch. McGraw-Hill Higher Education. ISBN 0072127732. April, 2001

Other books (which might be related to general issues regarding UNIX and security and not
Linux specific):

• Practical Unix and Internet Security (2nd Edition) (http://www.ora.com/catalog/
puis/noframes.html ) Garfinkel, Simpson, and Spafford, Gene; O’Reilly Associates;
ISBN 0-56592-148-8; 1004pp; 1996.

• Firewalls and Internet Security Cheswick, William R. and Bellovin, Steven M.; Addison-
Wesley; 1994; ISBN 0-201-63357-4; 320pp.

Some useful web sites to keep up to date regarding security:

• NIST Security Guidelines (http://csrc.nist.gov/fasp/index.html ).

• Security Focus (http://www.securityfocus.com ) the server that hosts the Bugtraq
vulnerability database and list, and provides general security information, news and re-
ports.

• Linux Security (http://www.linuxsecurity.com/ ). General information regarding
Linux security (tools, news. . . ). Most useful is the main documentation (http://www.
linuxsecurity.com/resources/documentation-1.html ) page.

• Linux firewall and security site (http://www.linux-firewall-tools.com/
linux/ ). General information regarding Linux firewalls and tools to control and ad-
ministrate them.

http://www.tldp.org/
http://www.tldp.org/
http://www.linux.org/books/ISBN_0072127732.html
http://www.linux.org/books/ISBN_0072127732.html
http://www.ora.com/catalog/puis/noframes.html
http://www.ora.com/catalog/puis/noframes.html
http://csrc.nist.gov/fasp/index.html
http://www.securityfocus.com
http://www.linuxsecurity.com/
http://www.linuxsecurity.com/resources/documentation-1.html
http://www.linuxsecurity.com/resources/documentation-1.html
http://www.linux-firewall-tools.com/linux/
http://www.linux-firewall-tools.com/linux/


Chapter 2. Before you begin 34

2.3 How does Debian handle security?

Just so you have a general overview of security in Debian GNU/Linux you should take note
of the different issues that Debian tackles in order to provide an overall secure system:

• Debian problems are always handled openly, even security related. Security issues are
discussed openly on the debian-security mailing list. Debian Security Advisories (DSAs)
are sent to public mailing lists (both internal and external) and are published on the
public server. As the Debian Social Contract (http://www.debian.org/social_
contract ) states:

We will not hide problems

We will keep our entire bug report database open for public view at all times. Reports that people
file online will promptly become visible to others.

• Debian follows security issues closely. The security team checks many security re-
lated sources, the most important being Bugtraq (http://www.securityfocus.com/
cgi-bin/vulns.pl ), on the lookout for packages with security issues that might be in-
cluded in Debian.

• Security updates are the first priority. When a security problem arises in a Debian pack-
age, the security update is prepared as fast as possible and distributed for our stable,
testing and unstable releases, including all architectures.

• Information regarding security is centralized in a single point, http://security.
debian.org/ .

• Debian is always trying to improve the overall security of the distribution by starting
new projects, such as automatic package signature verification mechanisms.

• Debian provides a number of useful security related tools for system administration and
monitoring. Developers try to tightly integrate these tools with the distribution in order
to make them a better suite to enforce local security policies. Tools include: integrity
checkers, auditing tools, hardening tools, firewall tools, intrusion detection tools, etc.

• Package maintainers are aware of security issues. This leads to many “secure by default”
service installations which could impose certain restrictions on their normal use. Debian
does, however, try to balance security and ease of administration - the programs are not
de-activated when you install them (as it is the case with say, the BSD family of operating
systems). In any case, prominent security issues (such as setuid programs) are part of
the Debian Policy (http://www.debian.org/doc/debian-policy/ ).

By publishing security information specific to Debian and complementing other information-
security documents related to Debian (see ‘Be aware of general security problems’ on page 31),
this document aims to produce better system installations security-wise.

http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://www.securityfocus.com/cgi-bin/vulns.pl
http://www.securityfocus.com/cgi-bin/vulns.pl
http://security.debian.org/
http://security.debian.org/
http://www.debian.org/doc/debian-policy/


35

Chapter 3

Before and during the installation

3.1 Choose a BIOS password

Before you install any operating system on your computer, set up a BIOS password. After
installation (once you have enabled bootup from the hard disk) you should go back to the BIOS
and change the boot sequence to disable booting from floppy, CD-ROM and other devices that
shouldn’t boot. Otherwise a cracker only needs physical access and a boot disk to access your
entire system.

Disabling booting unless a password is supplied is even better. This can be very effective if you
run a server, because it is not rebooted very often. The downside to this tactic is that rebooting
requires human intervention which can cause problems if the machine is not easily accessible.

Note: many BIOSes have well known default master passwords, and applications also exist
to retrieve the passwords from the BIOS. Corollary: don’t depend on this measure to secure
console access to system.

3.2 Partitioning the system

3.2.1 Choose an intelligent partition scheme

An intelligent partition scheme depends on how the machine is used. A good rule of thumb is
to be fairly liberal with your partitions and to pay attention to the following factors:

• Any directory tree which a user has write permissions to, such as e.g. /home , /tmp
and /var/tmp/ , should be on a separate partition. This reduces the risk of a user DoS
by filling up your “/” mount point and rendering the system unusable (Note: this is
not strictly true, since there is always some space reserved for root which a normal user
cannot fill), and it also prevents hardlink attacks. 1

1A very good example of this kind of attacks using /tmp is detailed in The mysteriously persistently exploitable



Chapter 3. Before and during the installation 36

• Any partition which can fluctuate, e.g. /var (especially /var/log ) should also be on a
separate partition. On a Debian system, you should create /var a little bit bigger than on
other systems, because downloaded packages (the apt cache) are stored in /var/cache
/apt/archives .

• Any partition where you want to install non-distribution software should be on a sepa-
rate partition. According to the File Hierarchy Standard, this is /opt or /usr/local .
If these are separate partitions, they will not be erased if you (have to) reinstall Debian
itself.

• From a security point of view, it makes sense to try to move static data to its own par-
tition, and then mount that partition read-only. Better yet, put the data on read-only
media. See below for more details.

In the case of a mail server it is important to have a separate partition for the mail spool.
Remote users (either knowingly or unknowingly) can fill the mail spool (/var/mail and/or
/var/spool/mail ). If the spool is on a separate partition, this situation will not render the
system unusable. Otherwise (if the spool directory is on the same partition as /var ) the system
might have important problems: log entries will not be created, packages cannot be installed,
and some programs might even have problems starting up (if they use /var/run ).

Also, for partitions in which you cannot be sure of the needed space, installing Logical Volume
Manager (lvm-common and the needed binaries for your kernel, this might be either lvm10 ,
lvm6 , or lvm5 ). Using lvm , you can create volume groups that expand multiple physical
volumes.

Selecting the appropriate file systems

During the system partitioning you also have to decide which file system you want to use. The
default file system selected in the Debian installation for Linux partitions is ext2 . However,
it is recommended you switch to a journalling file system, such as ext3 , reiserfs , jfs or
xfs , to minimize the problems derived from a system crash in the following cases:

• for laptops in all the file systems installed. That way if you run out of battery unexpect-
edly or the system freezes due to a hardware issue (such as X configuration which is
somewhat common) you will be less likely to lose data during a hardware reboot.

• for production systems which store large amounts of data (like mail servers, ftp servers,
network file systems. . . ) it is recommended on these partitions. That way, in the event of
a system crash, the server will take less time to recover and check the file systems, and
data loss will be less likely.

program (contest) (http://www.hackinglinuxexposed.com/articles/20031111.html ) and The myste-
riously persistently exploitable program explained (http://www.hackinglinuxexposed.com/articles/
20031214.html ) (notice that the incident is Debian-related). It is basicly an attack in which a local user stashes
away a vulnerable setuid application by making a hard link to it, effectively avoiding any updates (or removal)
of the binary itself made by the system administrator. Dpkg was recently fixed to prevent this (see 225692
(http://bugs.debian.org/225692 )) but other setuid binaries (not controlled by the package manager) are
at risk if partitions are not setup correctly.

http://www.hackinglinuxexposed.com/articles/20031111.html
http://www.hackinglinuxexposed.com/articles/20031214.html
http://www.hackinglinuxexposed.com/articles/20031214.html
http://bugs.debian.org/225692


Chapter 3. Before and during the installation 37

Leaving aside the performance issues regarding journalling file systems (since this can some-
times turn into a religious war), it is usually better to use the ext3 file system. The reason for
this is that it is backwards compatible with ext2 , so if there are any issues with the journalling
you can disable it and still have a working file system. Also, if you need to recover the sys-
tem with a bootdisk (or CD-ROM) you do not need a custom kernel. If the kernel is 2.4 or 2.6
ext3 support is already available, if it is a 2.2 kernel you will be able to boot the file system
even if you lose journalling capabilities. If you are using other journalling file systems you will
find that you might not be able to recover unless you have a 2.4 or 2.6 kernel with the needed
modules built-in. If you are stuck with a 2.2 kernel on the rescue disk, it might be even more
difficult to have it access reiserfs or xfs .

In any case, data integrity might be better under ext3 since it does file-data journalling while
others do only meta-data journalling, see http://lwn.net/2001/0802/a/ext3-modes.
php3 .

3.3 Do not plug to the Internet until ready

The system should not be immediately connected to the Internet during installation. This could
sound stupid but network installation is a common method. Since the system will install and
activate services immediately, if the system is connected to the Internet and the services are not
properly configured you are opening it to attack.

Also note that some services might have security vulnerabilities not fixed in the packages you
are using for installation. This is usually true if you are installing from old media (like CD-
ROMs). In this case, the system could even be compromised before you finish installation!

Since Debian installation and upgrades can be done over the Internet you might think it is a
good idea to use this feature on installation. If the system is going to be directly connected to
the Internet (and not protected by a firewall or NAT), it is best to install without connection
to the Internet, using a local packages mirror for both the Debian package sources and the
security updates. You can set up package mirrors by using another system connected to the
Internet with Debian-specific tools (if it’s a Debian system) like apt-move or apt-proxy , or
other common mirroring tools, to provide the archive to the installed system. If you cannot
do this, you can set up firewall rules to limit access to the system while doing the update (see
‘Security update protected by a firewall’ on page 227).

3.4 Set a root password

Setting a good root password is the most basic requirement for having a secure system. See
passwd(1) for some hints on how to create good passwords. You can also use an automatic
password generation program to do this for you (see ‘Generating user passwords’ on page 67).

Plenty of information on choosing good passwords can be found on the Internet; two that pro-
vide a decent summary and rationale are Eric Wolfram’s How to: Pick a Safe Password (http:

http://lwn.net/2001/0802/a/ext3-modes.php3
http://lwn.net/2001/0802/a/ext3-modes.php3
http://wolfram.org/writing/howto/password.html
http://wolfram.org/writing/howto/password.html


Chapter 3. Before and during the installation 38

//wolfram.org/writing/howto/password.html ) and Walter Belgers’ Unix Password
Security (http://www.belgers.com/write/pwseceng.txt )

3.5 Activate shadow passwords and MD5 passwords

At the end of the installation, you will be asked if shadow passwords should be enabled. An-
swer yes to this question, so passwords will be kept in the file /etc/shadow . Only the root
user and the group shadow have read access to this file, so no users will be able to grab a
copy of this file in order to run a password cracker against it. You can switch between shadow
passwords and normal passwords at any time by using shadowconfig .

Read more on shadow passwords in Shadow Password (http://www.tldp.
org/HOWTO/Shadow-Password-HOWTO.html ) (/usr/share/doc/HOWTO/en-txt
/Shadow-Password.txt.gz ).

Furthermore, the installation uses MD5 hashed passwords per default. This is generally a very
good idea since it allows longer passwords and better encryption. MD5 allows for passwords
longer than 8 characters. This, if used wisely, can make it more difficult for attackers to brute-
force the system’s passwords. Regarding MD5 passwords, this is the default option when
installing the latest passwd package. You can recognize MD5 passwords in the /etc/shadow
file by their $1$ prefix.

This, as a matter of fact, modifies all files under /etc/pam.d by substituting the password
line and include md5 in it:

password required pam_unix.so md5 nullok obscure min=6 max=16

If max is not set over 8 the change will not be useful at all. For more information on this read
‘User authentication: PAM’ on page 55.

Note: the default configuration in Debian, even when activating MD5 passwords, does not
modify the previously set max value.

3.6 Run the minimum number of services required

Services are programs such as ftp servers and web servers. Since they have to be listening
for incoming connections that request the service, external computers can connect to yours.
Services are sometimes vulnerable (i.e. can be compromised under a given attack) and hence
present a security risk.

You should not install services which are not needed on your machine. Every installed service
might introduce new, perhaps not obvious (or known), security holes on your computer.

As you may already know, when you install a given service the default behavior is to activate
it. In a default Debian installation, with no services installed, the number of running services

http://wolfram.org/writing/howto/password.html
http://wolfram.org/writing/howto/password.html
http://www.belgers.com/write/pwseceng.txt
http://www.tldp.org/HOWTO/Shadow-Password-HOWTO.html
http://www.tldp.org/HOWTO/Shadow-Password-HOWTO.html


Chapter 3. Before and during the installation 39

is quite low and the number of network-oriented services is even lower. In a default Debian
3.1 standard installation you will end up with OpenSSH, Exim (depending on how you config-
ured it) and the RPC portmapper available as network services2. If you did not go through a
standard installation but selected an expert installation you can end up with no active network
services. The RPC portmapper is installed by default because it is needed for many services,
for example NFS, to run on a given system. However, it can be easily removed, see ‘Securing
RPC services’ on page 113 for more information on how to secure or disable RPC services.

When you install a new network-related service (daemon) in your Debian GNU/Linux system
it can be enabled in two ways: through the inetd superdaemon (i.e. a line will be added to
/etc/inetd.conf ) or through a standalone program that binds itself to your network inter-
faces. Standalone programs are controlled through the /etc/init.d files, which are called at
boot time through the SysV mechanism (or an alternative one) by using symlinks in /etc
/rc?.d/* (for more information on how this is done read /usr/share/doc/sysvinit
/README.runlevels.gz ).

If you want to keep some services but use them rarely, use the update-* commands, e.g.
update-inetd and update-rc.d to remove them from the startup process. For more in-
formation on how to disable network services read ‘Disabling daemon services’ on the cur-
rent page. If you want to change the default behaviour of starting up services on installation
of their associated packages3 use policy-rc.d , please read /usr/share/doc/sysv-rc
/README.policy-rc.d.gz for more information.

invoke-rc.d support is mandatory in Debian, which means that for Debian 4.0 etch and
later releases you can write a policy-rc.d file that forbids starting new daemons before you
configure them. Although no such scripts are packaged yet, they are quite simple to write. See
policyrcd-script-zg2 .

3.6.1 Disabling daemon services

Disabling a daemon service is quite simple. You either remove the package providing
the program for that service or you remove or rename the startup links under /etc
/rc${runlevel}.d/ . If you rename them make sure they do not begin with ’S’ so that
they don’t get started by /etc/init.d/rc . Do not remove all the available links or the
package management system will regenerate them on package upgrades, make sure you
leave at least one link (typically a ’K’, i.e. kill, link). For more information read Cus-
tomizing runlevels (http://www.debian.org/doc/manuals/reference/ch-system.
en.html#s-custombootscripts ) section of the Debian Reference (Chapter 2 - Debian fun-
damentals).

You can remove these links manually or using update-rc.d (see update-rc.d(8) ). For
example, you can disable a service from executing in the multi-user runlevels by doing:

# update-rc.d stop XX 2 3 4 5 .

2The footprint in Debian 3.0 and earlier releases wasn’t as tight, since some inetd services were enabled by
default. Also standard installations of Debian 2.2 installed the NFS server as well as the telnet server.

3This is desirable if you are setting up a development chroot, for example.

http://www.debian.org/doc/manuals/reference/ch-system.en.html#s-custombootscripts
http://www.debian.org/doc/manuals/reference/ch-system.en.html#s-custombootscripts


Chapter 3. Before and during the installation 40

Where XX is a number that determines when the stop action for that service will be executed.
Please note that, if you are not using file-rc , update-rc.d -f service remove will
not work properly, since all links are removed, upon re-installation or upgrade of the package
these links will be re-generated (probably not what you wanted). If you think this is not intu-
itive you are probably right (see Bug 67095 (http://bugs.debian.org/67095 )). From the
manpage:

If any files /etc/rcrunlevel.d/[SK]??name already exist then
update-rc.d does nothing. This is so that the system administrator
can rearrange the links, provided that they leave at least one
link remaining, without having their configuration overwritten.

If you are using file-rc all the information regarding services bootup is handled by a com-
mon configuration file and is maintained even if packages are removed from the system.

You can use the TUI (Text User Interface) provided by sysv-rc-conf to do all these changes
easily (sysv-rc-conf works both for file-rc and normal System V runlevels). You will
also find similar GUIs for desktop systems. You can also use the command line interface of
sysv-rc-conf :

# sysv-rc-conf foobar off

The advantage of using this utility is that the rc.d links are returned to the status they had
before the ’off’ call if you re-enable the service with:

# sysv-rc-conf foobar on

Other (not recommended) methods of disabling services are:

• move the script file (/etc/init.d/ service_name ) to another name (for example
/etc/init.d/OFF. service_name ) or remove it. However, that will leave dangling
symlinks under /etc/rc${runlevel}.d/ and will generate error messages when
booting.

• remove the execute permission from the /etc/init.d/ service_name file. That will
also generate error messages when booting.

• edit the /etc/init.d/ service_name script to have it stop immediately once it
is executed (by adding an exit 0 line at the beginning or commenting out the
start-stop-daemon part in it). If you do this, you will not be able to use the script
to startup the service manually later on.

Nevertheless the files under /etc/init.d are configuration files and should not get over-
written due to package upgrades if you have made local changes to them.

Unlike other (UNIX) operating systems, services in Debian cannot be disabled by modifying
files in /etc/default/ service_name .

FIXME: Add more information on handling daemons using file-rc .

http://bugs.debian.org/67095


Chapter 3. Before and during the installation 41

3.6.2 Disabling inetd or its services

You should check if you really need the inetd daemon nowadays. Inetd was always a way
to compensate for kernel deficiencies, but those have been taken care of in modern Linux ker-
nels. Denial of Service possibilities exist against inetd (which can increase the machine’s load
tremendously), and many people always preferred using stand-alone daemons instead of call-
ing services via inetd . If you still want to run some kind of inetd service, then at least switch
to a more configurable Inet daemon like xinetd , rlinetd or openbsd-inetd .

You should stop all unneeded Inetd services on your system, like echo , chargen , discard ,
daytime , time , talk , ntalk and r-services (rsh , rlogin and rcp ) which are considered
HIGHLY insecure (use ssh instead).

You can disable services by editing /etc/inetd.conf directly, but Debian provides a better
alternative: update-inetd (which comments the services in a way that it can easily be turned
on again). You could remove the telnet daemon by executing this commands to change the
config file and to restart the daemon (in this case the telnet service is disabled):

/usr/sbin/update-inetd --disable telnet

If you do want services listening, but do not want to have them listen on all IP addresses of
your host, you might want to use an undocumented feature on inetd (replace service name
with service@ip syntax) or use an alternative inetd daemon like xinetd .

3.7 Install the minimum amount of software required

Debian comes with a lot of software, for example the Debian 3.0 woody release includes 6 or 7
(depending on architecture) CD-ROMs of software and thousands of packages, and the Debian
3.1 sarge release ships with around 13 CD-ROMs of software. With so much software, and even
if the base system installation is quite reduced 4 you might get carried away and install more
than is really needed for your system.

Since you already know what the system is for (don’t you?) you should only install software
that is really needed for it to work. Any unnecessary tool that is installed might be used by
a user that wants to compromise the system or by an external intruder that has gotten shell
access (or remote code execution through an exploitable service).

The presence, for example, of development utilities (a C compiler) or interpreted languages
(such as perl - but see below -, python , tcl . . . ) may help an attacker compromise the system
even further:

4For example, in Debian woody it is around 400-500 Mbs, try this:

$ size=0 $ for i in ‘grep -A 1 -B 1 "^Section: base" /var/lib/dpkg/available |
grep -A 2 "^Priority: required" |grep "^Installed-Size" |cut -d : -f 2 ‘; do
size=$(($size+$i)); done $ echo $size 47762



Chapter 3. Before and during the installation 42

• allowing him to do privilege escalation. It’s easier, for example, to run local exploits in
the system if there is a debugger and compiler ready to compile and test them!

• providing tools that could help the attacker to use the compromised system as a base of
attack against other systems. 5

Of course, an intruder with local shell access can download his own set of tools and execute
them, and even the shell itself can be used to make complex programs. Removing unnecessary
software will not help prevent the problem but will make it slightly more difficult for an attacker
to proceed (and some might give up in this situation looking for easier targets). So, if you
leave tools in a production system that could be used to remotely attack systems (see ‘Remote
vulnerability assessment tools’ on page 153) you can expect an intruder to use them too if
available.

Please notice that a default installation of Debian sarge (i.e. an installation where no individual
packages are selected) will install a number of development packages that are not usually
needed. This is because some development packages are of Standard priority. If you are not
going to do any development you can safely remove the following packages from your system,
which will also help free up some space:

Package Size
------------------------+--------
gdb 2,766,822
gcc-3.3 1,570,284
dpkg-dev 166,800
libc6-dev 2,531,564
cpp-3.3 1,391,346
manpages-dev 1,081,408
flex 257,678
g++ 1,384 (Note: virtual package)
linux-kernel-headers 1,377,022
bin86 82,090
cpp 29,446
gcc 4,896 (Note: virtual package)
g++-3.3 1,778,880
bison 702,830
make 366,138
libstdc++5-3.3-dev 774,982

This is something that is fixed in releases post-sarge, see Bug #301273 (http://
bugs.debian.org/cgi-bin/bugreport.cgi?bug=301273 ) and Bug #301138 (http:
//bugs.debian.org/cgi-bin/bugreport.cgi?bug=301138 ). Due to a bug in the in-
stallation system this did not happen when installing with the installation system of the Debian
3.0 woody release.

5Many intrusions are made just to get access to resources to do illegitimate activity (denial of service attacks,
spam, rogue ftp servers, dns pollution. . . ) rather than to obtain confidential data from the compromised system.

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301273
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301273
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301138
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=301138


Chapter 3. Before and during the installation 43

3.7.1 Removing Perl

You must take into account that removing perl might not be too easy (as a matter of fact it
can be quite difficult) in a Debian system since it is used by many system utilities. Also, the
perl-base is Priority: required (that about says it all). It’s still doable, but you will not be able
to run any perl application in the system; you will also have to fool the package management
system to think that the perl-base is installed even if it’s not. 6

Which utilities use perl ? You can see for yourself:

$ for i in /bin/* /sbin/* /usr/bin/* /usr/sbin/*; do [ -f $i ] && {
type=‘file $i | grep -il perl‘; [ -n "$type" ] && echo $i; }; done

These include the following utilities in packages with priority required or important:

• /usr/bin/chkdupexe of package util-linux .

• /usr/bin/replay of package bsdutils .

• /usr/sbin/cleanup-info of package dpkg .

• /usr/sbin/dpkg-divert of package dpkg .

• /usr/sbin/dpkg-statoverride of package dpkg .

• /usr/sbin/install-info of package dpkg .

• /usr/sbin/update-alternatives of package dpkg .

• /usr/sbin/update-rc.d of package sysvinit .

• /usr/bin/grog of package groff-base .

• /usr/sbin/adduser of package adduser .

• /usr/sbin/debconf-show of package debconf .

• /usr/sbin/deluser of package adduser .

• /usr/sbin/dpkg-preconfigure of package debconf .

• /usr/sbin/dpkg-reconfigure of package debconf .

• /usr/sbin/exigrep of package exim .

• /usr/sbin/eximconfig of package exim .

• /usr/sbin/eximstats of package exim .

• /usr/sbin/exim-upgrade-to-r3 of package exim .

6You can make (on another system) a dummy package with equivs .



Chapter 3. Before and during the installation 44

• /usr/sbin/exiqsumm of package exim .

• /usr/sbin/keytab-lilo of package lilo .

• /usr/sbin/liloconfig of package lilo .

• /usr/sbin/lilo_find_mbr of package lilo .

• /usr/sbin/syslogd-listfiles of package sysklogd .

• /usr/sbin/syslog-facility of package sysklogd .

• /usr/sbin/update-inetd of package netbase .

So, without Perl and, unless you remake these utilities in shell script, you will probably not
be able to manage any packages (so you will not be able to upgrade the system, which is not a
Good Thing).

If you are determined to remove Perl from the Debian base system, and you have spare time,
submit bug reports to the previous packages including (as a patch) replacements for the utili-
ties above written in shell script.

If you wish to check out which Debian packages depend on Perl you can use

$ grep-available -s Package,Priority -F Depends perl

or

$ apt-cache rdepends perl

3.8 Read the Debian security mailing lists

It is never wrong to take a look at either the debian-security-announce mailing list, where
advisories and fixes to released packages are announced by the Debian security team, or
at mailto:debian-security@lists.debian.org , where you can participate in discus-
sions about things related to Debian security.

In order to receive important security update alerts, send an email to debian-security-
announce-request@lists.debian.org (mailto:debian-security-announce-request@
lists.debian.org ) with the word “subscribe” in the subject line. You can also subscribe to
this moderated email list via the web page at http://www.debian.org/MailingLists/
subscribe .

This mailing list has very low volume, and by subscribing to it you will be immediately alerted
of security updates for the Debian distribution. This allows you to quickly download new
packages with security bug fixes, which is very important in maintaining a secure system (see
‘Execute a security update’ on page 46 for details on how to do this).

mailto:debian-security@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
mailto:debian-security-announce-request@lists.debian.org
http://www.debian.org/MailingLists/subscribe
http://www.debian.org/MailingLists/subscribe


45

Chapter 4

After installation

Once the system is installed you can still do more to secure the system; some of the steps
described in this chapter can be taken. Of course this really depends on your setup but for
physical access prevention you should read ‘Change the BIOS (again)’ on page 49,‘Set a LILO
or GRUB password’ on page 49,‘Remove root prompt on the kernel’ on page 51, ‘Restrict-
ing console login access’ on page 51, and ‘Restricting system reboots through the console’ on
page 52.

Before connecting to any network, especially if it’s a public one you should, at the very least,
execute a security update (see ‘Execute a security update’ on the next page). Optionally, you
could take a snapshot of your system (see ‘Taking a snapshot of the system’ on page 87).

4.1 Subscribe to the Debian Security Announce mailing list

In order to receive information on available security updates you should subscribe yourself to
the debian-security-announce mailing list in order to receive the Debian Security Advisories
(DSAs). See ‘The Debian Security Team’ on page 129 for more information on how the Debian
security team works. For information on how to subscribe to the Debian mailing lists read
http://lists.debian.org .

DSAs are signed with the Debian Security Team’s signature which can be retrieved from http:
//security.debian.org .

You should consider, also, subscribing to the debian-security mailing list (http://lists.
debian.org/debian-security ) for general discussion on security issues in the Debian
operating system. You will be able to contact other fellow system administrators in the list as
well as Debian developers and upstream developers of security tools who can answer your
questions and offer advice.

FIXME: Add the key here too?

http://lists.debian.org
http://security.debian.org
http://security.debian.org
http://lists.debian.org/debian-security
http://lists.debian.org/debian-security


Chapter 4. After installation 46

4.2 Execute a security update

As soon as new security bugs are detected in packages, Debian maintainers and upstream
authors generally patch them within days or even hours. After the bug is fixed, a new package
is provided on http://security.debian.org .

If you are installing a Debian release you must take into account that since the release was made
there might have been security updates after it has been determined that a given package is
vulnerable. Also, there might have been minor releases (there have been four for the Debian
3.0 sarge release) which include these package updates.

You need to note down the date the removable media (if you are using it) was made and
check the security site in order to see if there are security updates. If there are and you cannot
download the packages from the security site on another system (you are not connected to the
Internet yet? are you?) before connecting to the network you could consider (if not protected
by a firewall for example) adding firewall rules so that your system could only connect to
security.debian.org and then run the update. A sample configuration is shown in ‘Security
update protected by a firewall’ on page 227.

Note: Since Debian woody 3.0, after installation you are given the opportunity to add security
updates to the system. If you say ’yes’ to this, the installation system will take the appropriate
steps to add the source for security updates to your package sources and your system, if you
have an Internet connection, will download and install any security updates that might have
been produced after your media was created. If you are upgrading a previous version of
Debian, or you asked the installation system not to do this, you should take the steps described
here.

To manually update the system, put the following line in your sources.list and you will
get security updates automatically, whenever you update your system.

deb http://security.debian.org/ stable/updates main contrib non-free

Note: If you are using the testing branch use the security testing mirror sources as described in
‘Security support for the testing branch’ on page 172.

Once you’ve done this you can use multiple tools to upgrade your system. If you are running
a desktop system you will have1 an application called update-notifier that will make it
easy to check if new updates are available, by selecting it you can make a system upgrade
from the desktop (using update-manager ). For more information see ‘Checking for updates
at the Desktop’ on page 169. In desktop environments you can also use synaptic (GNOME),
kpackage or adept (KDE) for more advanced interfaces. If you are running a text-only ter-
minal you can use aptitude , apt or dselect (deprecated) to upgrade:

• If you want to use aptitude ’s text interface you just have to press u (update) followed
by g (to upgrade). Or just do the following from the command line (as root):

1In etch and later releases

http://security.debian.org


Chapter 4. After installation 47

# aptitude update
# aptitude upgrade

• If you want to use apt do just like with aptitude but substitute the aptitude lines above
with apt-get .

• If you want to use dselect then first [U]pdate, then [I]nstall and finally, [C]onfigure the
installed/upgraded packages.

If you like, you can add the deb-src lines to /etc/apt/sources.list as well. See apt(8)
for further details.

Note: You do not need to add the following line:

deb http://security.debian.org/debian-non-US stable/non-US main contrib non-free

this is because security.debian.org is hosted in a non-US location and doesn’t have a separate
non-US archive.

4.2.1 Security update of libraries

Once you have executed a security update you might need to restart some of the system ser-
vices. If you do not do this, some services might still be vulnerable after a security upgrade.
The reason for this is that daemons that are running before an upgrade might still be using the
old libraries before the upgrade 2. In order to detect which daemons might need to be restarted
you can use the checkrestart program (available in the debian-goodies package) or use
this one liner3 (as root):

# lsof | grep <the_upgraded_library> | awk ’{print $1, $9}’ | uniq | sort +0

Some packages (like libc6 ) will do this check in the postinst phase for a limited set of ser-
vices specially since an upgrade of essential libraries might break some applications (until
restarted)4.

Bringing the system to run level 1 (single user) and then back to run level 3 (multi user) should
take care of the restart of most (if not all) system services. But this is not an option if you are
executing the security upgrade from a remote connection (like ssh) since it will be severed.

Excercise caution when dealing with security upgrades if you are doing them over a remote
connection like ssh. A suggested procedure for a security upgrade that involves a service
restart is to restart the SSH daemon and then, inmediately, attempt a new ssh connection with-
out breaking the previous one. If the connection fails, revert the upgrade and investigate the
issue.

2Even though the libraries have been removed from the filesystem the inodes will not be cleared up until no
program has an open file descriptor pointing to them.

3Depending on your lsof version you might need to use $8 instead of $9
4This happened, for example, in the upgrade from libc6 2.2.x to 2.3.x due to NSS authentication issues, see

http://lists.debian.org/debian-glibc/2003/debian-glibc-200303/msg00276.html .

http://lists.debian.org/debian-glibc/2003/debian-glibc-200303/msg00276.html


Chapter 4. After installation 48

4.2.2 Security update of the kernel

First, make sure your kernel is being managed through the packaging system. If you have
installed using the installation system from Debian 3.0 or previous releases, your kernel is not
integrated into the packaging system and might be out of date. You can easily confirm this by
running:

$ dpkg -S ‘readlink -f /vmlinuz‘
kernel-image-2.4.27-2-686: /boot/vmlinuz-2.4.27-2-686

If your kernel is not being managed you will see a message saying that the package
manager did not find the file associated to any package instead of the message above,
which says that the file associated to the current running kernel is being provided by the
kernel-image-2.4.27-2-686 . So first, you will need to manually install a kernel image
package. The exact kernel image you need to install depends on your architecture and your
prefered kernel version. Once this is done, you will be able to manage the security updates
of the kernel just like those of any other package. In any case, notice that the kernel updates
will only be done for kernel updates of the same kernel version you are using, that is, apt will
not automatically upgrade your kernel from the 2.4 release to the 2.6 release (or from the 2.4.26
release to the 2.4.27 release5).

The installation system of the Debian 3.1 release will handle the selected kernel (either 2.4
or 2.6) as part of the package system. You can review which kernels you have installed by
running:

$ COLUMNS=150 dpkg -l ’kernel-image*’ | awk ’$1 ~ /ii/ { print $0 }’

To see if your kernel needs to be updated run:

$ kernfile=‘readlink -f /vmlinuz‘
$ kernel=‘dpkg -S $kernfile | awk -F : ’{print $1}’‘
$ apt-cache policy $kernel
kernel-image-2.4.27-2-686:

Installed: 2.4.27-9
Candidate: 2.4.27-9
Version Table:

*** 2.4.27-9 0
(...)

If you are doing a security update which includes the kernel image you need to reboot the
system in order for the security update to be useful. Otherwise, you will still be running the
old (and vulnerable) kernel image.

5Unless you have installed a kernel metapackage like kernel-image-2.4-686 which will always pull in the
latest kernel minor revision for a kernel release and a given architecture.



Chapter 4. After installation 49

If you need to do a system reboot (because of a kernel upgrade) you should make sure
that the kernel will boot up correctly and network connectivity will be restored, specially
if the security upgrade is done over a remote connection like ssh. For the former you can
configure your boot loader to reboot to the original kernel in the event of a failure (for
more detailed information read Remotely rebooting Debian GNU/Linux machines (http:
//www.debian-administration.org/?article=70 )). For the later you have to intro-
duce a network connectivity test script that will check if the kernel has started up the network
subsystem properly and reboot the system if it did not6. This should prevent nasty surprises
like updating the kernel and then realizing, after a reboot, that it did not detect or configure
the network hardware properly and you need to travel a long distance to bring the system up
again. Of course, having the system serial console 7 in the system connected to a console or
terminal server should also help debug reboot issues remotely.

4.3 Change the BIOS (again)

Remember ‘Choose a BIOS password’ on page 35? Well, then you should now, once you do
not need to boot from removable media, to change the default BIOS setup so that it only boots
from the hard drive. Make sure you will not lose the BIOS password, otherwise, in the event
of a hard disk failure you will not be able to return to the BIOS and change the setup so you
can recover it using, for example, a CD-ROM.

Another less secure but more convenient way is to change the setup to have the system boot up
from the hard disk and, if it fails, try removable media. By the way, this is often done because
most people don’t use the BIOS password that often; it’s easily forgotten.

4.4 Set a LILO or GRUB password

Anybody can easily get a root-shell and change your passwords by entering
<name-of-your-bootimage> init=/bin/sh at the boot prompt. After changing
the passwords and rebooting the system, the person has unlimited root-access and can do
anything he/she wants to the system. After this procedure you will not have root access to
your system, as you do not know the root password.

To make sure that this cannot happen, you should set a password for the boot loader. You can
choose between a global password or a password for a certain image.

For LILO you need to edit the config file /etc/lilo.conf and add a password and
restricted line as in the example below.

6A sample script called testnet (http://www.debian-administration.org/articles/70/testnet ) is
available in the Remotely rebooting Debian GNU/Linux machines (http://www.debian-administration.
org/?article=70 ) article. A more elaborate network connectivity testing script is available in the Testing net-
work connectivity (http://www.debian-administration.org/?article=128 ) article.

7Setting up a serial console is beyond the scope of this document, for more information read the Serial
HOWTO (http://www.tldp.org/HOWTO/Serial-HOWTO.html ) and the Remote Serial Console HOWTO
(http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/index.html ).

http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/articles/70/testnet
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=70
http://www.debian-administration.org/?article=128
http://www.tldp.org/HOWTO/Serial-HOWTO.html
http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/index.html


Chapter 4. After installation 50

image=/boot/2.2.14-vmlinuz
label=Linux
read-only
password=hackme
restricted

Then, make sure that the configuration file is not world readable to prevent local users from
reading the password. When done, rerun lilo. Omitting the restricted line causes lilo to
always prompt for a password, regardless of whether LILO was passed parameters. The de-
fault permissions for /etc/lilo.conf grant read and write permissions to root, and enable
read-only access for lilo.conf ’s group, root.

If you use GRUB instead of LILO, edit /boot/grub/menu.lst and add the following two
lines at the top (substituting, of course hackme with the desired password). This prevents
users from editing the boot items. timeout 3 specifies a 3 second delay before grub boots
the default item.

timeout 3
password hackme

To further harden the integrity of the password, you may store the password in an encrypted
form. The utility grub-md5-crypt generates a hashed password which is compatible with
GRUB’s encrypted password algorithm (MD5). To specify in grub that an MD5 format pass-
word will be used, use the following directive:

timeout 3
password --md5 $1$bw0ez$tljnxxKLfMzmnDVaQWgjP0

The –md5 parameter was added to instruct grub to perform the MD5 authentication process.
The provided password is the MD5 encrypted version of hackme. Using the MD5 password
method is preferable to choosing its clear-text counterpart. More information about grub pass-
words may be found in the grub-doc package.

4.5 Disable root prompt on the initramfs

Note: This applies to the default kernels provided for releases after Debian 3.1

Linux 2.6 kernels provide a way to access a root shell while booting which will be presented
during loading the initramfs on error. This is helpful to permit the administrator to enter an
rescue shell with root permissions. This shell can be used to manually load modules when
autodetection fails. This behavior is the default for initramfs-tools generated initramfs.
The following message will appear:

"ALERT! /dev/sda1 does not exist. Dropping to a shell!



Chapter 4. After installation 51

In order to remove this behavior you need to set the following boot argument:panic=0. Ei-
ther add it to the kopt section of /boot/grub/menu.lst and issue update-grub or to the
append section of /etc/lilo.conf .

4.6 Remove root prompt on the kernel

Note: This does not apply to the kernels provided for Debian 3.1 as the timeout for the kernel
delay has been changed to 0.

Linux 2.4 kernels provide a way to access a root shell while booting which will be presented
just after loading the cramfs file system. A message will appear to permit the administrator
to enter an executable shell with root permissions, this shell can be used to manually load
modules when autodetection fails. This behavior is the default for initrd ’s linuxrc . The
following message will appear:

Press ENTER to obtain a shell (waits 5 seconds)

In order to remove this behavior you need to change /etc/mkinitrd/mkinitrd.conf and
set:

# DELAY The number of seconds the linuxrc script should wait to
# allow the user to interrupt it before the system is brought up
DELAY=0

Then regenerate your ramdisk image. You can do this for example with:

# cd /boot
# mkinitrd -o initrd.img-2.4.18-k7 /lib/modules/2.4.18-k7

or (preferred):

# dpkg-reconfigure -plow kernel-image-2.4.x-yz

4.7 Restricting console login access

Some security policies might force administrators to log in to the system through the console
with their user/password and then become superuser (with su or sudo ). This policy is imple-
mented in Debian by editing the /etc/login.defs file or /etc/securetty when using
PAM. In:

• login.defs , editing the CONSOLE variable which defines a file or list of terminals on
which root logins are allowed



Chapter 4. After installation 52

• securetty 8 by adding/removing the terminals to which root access will be allowed.
If you wish to allow only local console access then you need console, ttyX9 and vc/X
(if using devfs devices), you might want to add also ttySX10 if you are using a se-
rial console for local access (where X is an integer, you might want to have mul-
tiple instances11 depending on the number of virtual consoles you have enabled in
/etc/inittab 12). For more information on terminal devices read the Text-Terminal-
HOWTO (http://tldp.org/HOWTO/Text-Terminal-HOWTO-6.html ).

When using PAM, other changes to the login process, which might include restrictions to users
and groups at given times, can be configured in /etc/pam.d/login . An interesting feature
that can be disabled is the possibility to login with null (blank) passwords. This feature can be
limited by removing nullok from the line:

auth required pam_unix.so nullok

4.8 Restricting system reboots through the console

If your system has a keyboard attached to it anyone (yes anyone) can reboot the system through
it without login to the system. This might, or might not, adhere to your security policy. If
you want to restrict this, you must check the /etc/inittab so that the line that includes
ctrlaltdel calls shutdown with the -a switch (remember to run init q after making any
changes to this file). The default in Debian includes this switch:

ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

Now, in order to allow some users to shutdown the system, as the manpage shutdown(8)
describes, you must create the file /etc/shutdown.allow and include there the name of
users which can boot the system. When the three finger salute (a.k.a. ctrl+alt+del) is given the
program will check if any of the users listed in the file are logged in. If none of them is,
shutdown will not reboot the system.

4.9 Mounting partitions the right way

When mounting an ext2 partition, there are several additional options you can apply to the
mount call or to /etc/fstab . For instance, this is my fstab entry for the /tmp partition:

8The /etc/securetty is a configuration file that belongs to the login package.
9Or ttyvX in GNU/FreeBSD, and ttyE0 in GNU/KNetBSD.

10Or comX in GNU/Hurd, cuaaX in GNU/FreeBSD, and ttyXX in GNU/KNetBSD.
11The default configuration in woody includes 12 local tty and vc consoles, as well as the console device but does

not allow remote logins. In sarge the default configuration provides 64 consoles for tty and vc consoles. You can
safely remove this if you are not using that many consoles.

12Look for the getty calls.

http://tldp.org/HOWTO/Text-Terminal-HOWTO-6.html


Chapter 4. After installation 53

/dev/hda7 /tmp ext2 defaults,nosuid,noexec,nodev 0 2

You see the difference in the options sections. The option nosuid ignores the setuid and setgid
bits completely, while noexec forbids execution of any program on that mount point, and
nodev ignores device files. This sounds great, but it:

• only applies to ext2 file systems

• can be circumvented easily

The noexec option prevents binaries from being executed directly, but was easily circum-
vented in earlier versions of the kernel:

alex@joker:/tmp# mount | grep tmp
/dev/hda7 on /tmp type ext2 (rw,noexec,nosuid,nodev)
alex@joker:/tmp# ./date
bash: ./date: Permission denied
alex@joker:/tmp# /lib/ld-linux.so.2 ./date
Sun Dec 3 17:49:23 CET 2000

Newer versions of the kernel do however handle the noexec flag properly:

angrist:/tmp# mount | grep /tmp
/dev/hda3 on /tmp type ext3 (rw,noexec,nosuid,nodev)
angrist:/tmp# ./date
bash: ./tmp: Permission denied
angrist:/tmp# /lib/ld-linux.so.2 ./date
./date: error while loading shared libraries: ./date: failed to map segment
from shared object: Operation not permitted

However, many script kiddies have exploits which try to create and execute files in /tmp . If
they do not have a clue, they will fall into this pit. In other words, a user cannot be tricked into
executing a trojanized binary in /tmp e.g. when he incidentally adds /tmp into his PATH.

Also be forewarned, some script might depend on /tmp being executable. Most notably, De-
bconf has (had?) some issues regarding this, for more information see Bug 116448 (http:
//bugs.debian.org/116448 ).

The following is a more thorough example. A note, though: /var could be set noexec, but
some software 13 keeps its programs under in /var . The same applies to the nosuid option.

13Some of this includes the package manager dpkg since the installation (post,pre) and removal (post,pre) scripts
are at /var/lib/dpkg/ and Smartlist

http://bugs.debian.org/116448
http://bugs.debian.org/116448


Chapter 4. After installation 54

/dev/sda6 /usr ext3 defaults,ro,nodev 0 2
/dev/sda12 /usr/share ext3 defaults,ro,nodev,nosuid 0 2
/dev/sda7 /var ext3 defaults,nodev,usrquota,grpquota 0 2
/dev/sda8 /tmp ext3 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda9 /var/tmp ext3 defaults,nodev,nosuid,noexec,usrquota,grpquota 0 2
/dev/sda10 /var/log ext3 defaults,nodev,nosuid,noexec 0 2
/dev/sda11 /var/account ext3 defaults,nodev,nosuid,noexec 0 2
/dev/sda13 /home ext3 rw,nosuid,nodev,exec,auto,nouser,async,usrquota,grpquota 0 2
/dev/fd0 /mnt/fd0 ext3 defaults,users,nodev,nosuid,noexec 0 0
/dev/fd0 /mnt/floppy vfat defaults,users,nodev,nosuid,noexec 0 0
/dev/hda /mnt/cdrom iso9660 ro,users,nodev,nosuid,noexec 0 0

4.9.1 Setting /tmp noexec

Be careful if setting /tmp noexec when you want to install new software, since some
programs might use it for installation. apt is one such program (see http://bugs.
debian.org/116448 ) if not configured properly APT::ExtractTemplates::TempDir
(see apt-extracttemplates(1) ). You can set this variable in /etc/apt/apt.conf to
another directory with exec privileges other than /tmp .

4.9.2 Setting /usr read-only

If you set /usr read-only you will not be able to install new packages on your Debian
GNU/Linux system. You will have to first remount it read-write, install the packages and
then remount it read-only. apt can be configured to run commands before and after installing
packages, so you might want to configure it properly.

To do this modify /etc/apt/apt.conf and add:

DPkg
{

Pre-Invoke { "mount /usr -o remount,rw" };
Post-Invoke { "mount /usr -o remount,ro" };

};

Note that the Post-Invoke may fail with a “/usr busy” error message. This happens mainly
when you are using files during the update that got updated. You can find these programs by
running

# lsof +L1

Stop or restart these programs and run the Post-Invoke manually. Beware! This means
you’ll likely need to restart your X session (if you’re running one) every time you do a
major upgrade of your system. You might want to reconsider whether a read-only /usr
is suitable for your system. See also this discussion on debian-devel about read-only /usr
(http://lists.debian.org/debian-devel/2001/11/threads.html#00212 ).

http://bugs.debian.org/116448
http://bugs.debian.org/116448
http://lists.debian.org/debian-devel/2001/11/threads.html#00212


Chapter 4. After installation 55

4.10 Providing secure user access

4.10.1 User authentication: PAM

PAM (Pluggable Authentication Modules) allows system administrators to choose how ap-
plications authenticate users. Note that PAM can do nothing unless an application is com-
piled with support for PAM. Most of the applications that are shipped with Debian have this
support built in (Debian did not have PAM support before 2.2). The current default config-
uration for any PAM-enabled service is to emulate UNIX authentication (read /usr/share
/doc/libpam0g/Debian-PAM-MiniPolicy.gz for more information on how PAM ser-
vices should work in Debian).

Each application with PAM support provides a configuration file in /etc/pam.d/ which can
be used to modify its behavior:

• what backend is used for authentication.

• what backend is used for sessions.

• how do password checks behave.

The following description is far from complete, for more information you might want to
read the The Linux-PAM System Administrator’s Guide (http://www.kernel.org/pub/
linux/libs/pam/Linux-PAM-html/pam.html ) (at the primary PAM distribution site
(http://www.kernel.org/pub/linux/libs/pam/ )). This document is also provided in
the libpam-doc Debian package.

PAM offers you the possibility to go through several authentication steps at once, without
the user’s knowledge. You could authenticate against a Berkeley database and against the
normal passwd file, and the user only logs in if he authenticates correct in both. You can
restrict a lot with PAM, just as you can open your system doors very wide. So be careful. A
typical configuration line has a control field as its second element. Generally it should be set
to requisite , which returns a login failure if one module fails.

The first thing I like to do, is to add MD5 support to PAM applications, since this helps protect
against dictionary cracks (passwords can be longer if using MD5). The following two lines
should be added to all files in /etc/pam.d/ that grant access to the machine, like login and
ssh .

# Be sure to install libpam-cracklib first or you will not be able to log in
password required pam_cracklib.so retry=3 minlen=12 difok=3
password required pam_unix.so use_authtok nullok md5

So, what does this incantation do? The first line loads the cracklib PAM module, which pro-
vides password strength-checking, prompts for a new password with a minimum length of
12 characters, a difference of at least 3 characters from the old password, and allows 3 retries.

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html
http://www.kernel.org/pub/linux/libs/pam/


Chapter 4. After installation 56

Cracklib depends on a wordlist package (such as wenglish , wspanish , wbritish , . . . ), so
make sure you install one that is appropriate for your language or cracklib might not be useful
to you at all. 14 The second line introduces the standard authentication module with MD5
passwords and allows a zero length password. The use_authtok directive is necessary to
hand over the password from the previous module.

To make sure that the user root can only log into the system from local terminals, the following
line should be enabled in /etc/pam.d/login :

auth requisite pam_securetty.so

Then you should modify the list of terminals on which direct root login is allowed in /etc
/securetty . Alternatively, you could enable the pam_access module and modify /etc
/security/access.conf which allows for a more general and fine-tuned access control,
but (unfortunately) lacks decent log messages (logging within PAM is not standardized and is
particularly unrewarding problem to deal with). We’ll return to access.conf a little later.

Last but not the least, the following line should be enabled in /etc/pam.d/login to set up
user resource limits.

session required pam_limits.so

This restricts the system resources that users are allowed (see below in ‘Limiting resource us-
age: the limits.conf file’ on the facing page). For example, you could restrict the number of
concurrent logins (of a given group of users, or system-wide), number of processes, memory
size etc.

Now edit /etc/pam.d/passwd and change the first line. You should add the option “md5”
to use MD5 passwords, change the minimum length of password from 4 to 6 (or more) and set
a maximum length, if you desire. The resulting line will look something like:

password required pam_unix.so nullok obscure min=6 max=11 md5

If you want to protect su, so that only some people can use it to become root on your system,
you need to add a new group “wheel” to your system (that is the cleanest way, since no file
has such a group permission yet). Add root and the other users that should be able to su to
the root user to this group. Then add the following line to /etc/pam.d/su :

auth requisite pam_wheel.so group=wheel debug

This makes sure that only people from the group “wheel” can use su to become root. Other
users will not be able to become root. In fact they will get a denied message if they try to
become root.

14This dependency is not fixed, however, in the Debian 3.0 package. Please see Bug #112965 (http://bugs.
debian.org/112965 ).

http://bugs.debian.org/112965
http://bugs.debian.org/112965


Chapter 4. After installation 57

If you want only certain users to authenticate at a PAM service, this is quite easy to achieve
by using files where the users who are allowed to login (or not) are stored. Imagine you only
want to allow user ’ref’ to log in via ssh . So you put him into /etc/sshusers-allowed
and write the following into /etc/pam.d/ssh :

auth required pam_listfile.so item=user sense=allow file=/etc/sshusers-allowed onerr=fail

Since there have been a number of so called insecure tempfile vulnerabilities, thttpd is
one example (see DSA-883-1 (http://www.debian.org/security/2005/dsa-883 )), the
libpam-tmpdir is a good package to install. All you have to do is add the following to /etc
/pam.d/common-session :

session optional pam_tmpdir.so

There has also been a discussion about adding this by default in etch. See http://lists.
debian.org/debian-devel/2005/11/msg00297.html for more information.

Last, but not least, create /etc/pam.d/other and enter the following lines:

auth required pam_securetty.so
auth required pam_unix_auth.so
auth required pam_warn.so
auth required pam_deny.so
account required pam_unix_acct.so
account required pam_warn.so
account required pam_deny.so
password required pam_unix_passwd.so
password required pam_warn.so
password required pam_deny.so
session required pam_unix_session.so
session required pam_warn.so
session required pam_deny.so

These lines will provide a good default configuration for all applications that support PAM
(access is denied by default).

4.10.2 Limiting resource usage: the limits.conf file

You should really take a serious look into this file. Here you can define user resource limits.
In old releases this configuration file was /etc/limits.conf , but in newer releases (with
PAM) the /etc/security/limits.conf configuration file should be used instead.

If you do not restrict resource usage, any user with a valid shell in your system (or even an
intruder who compromised the system through a service or a daemon going awry) can use up

http://www.debian.org/security/2005/dsa-883
http://lists.debian.org/debian-devel/2005/11/msg00297.html
http://lists.debian.org/debian-devel/2005/11/msg00297.html


Chapter 4. After installation 58

as much CPU, memory, stack, etc. as the system can provide. This resource exhaustion problem
can be fixed by the use of PAM.

There is a way to add resource limits to some shells (for example, bash has ulimit , see
bash(1) ), but since not all of them provide the same limits and since the user can change
shells (see chsh(1) ) it is better to place the limits on the PAM modules as they will apply
regardless of the shell used and will also apply to PAM modules that are not shell-oriented.

Resource limits are imposed by the kernel, but they need to be configured through the
limits.conf and the PAM configuration of the different services need to load the appro-
priate PAM. You can check which services are enforcing limits by running:

$ find /etc/pam.d/ \! -name "*.dpkg*" | xargs -- grep limits |grep -v ":#"

Commonly, login , ssh and the graphic session managers (gdm, kdm or xdm) should enforce
user limits but you might want to do this in other PAM configuration files, such as cron , to
prevent system daemons from taking over all system resources.

The specific limits settings you might want to enforce depend on your system’s resources,
that’s one of the main reasons why no limits are enforced in the default installation.

For example, the configuration example below enforces a 100 process limit for all users (to
prevent fork bombs) as well as a limit of 10MB of memory per process and a limit of 10 simul-
taneous logins. Users in the adm group have higher limits and can produce core files if they
want to (there is only a soft limit).

* soft core 0
* hard core 0
* hard rss 1000
* hard memlock 1000
* hard nproc 100
* - maxlogins 1
* hard data 102400
* hard fsize 2048
@adm hard core 100000
@adm hard rss 100000
@adm soft nproc 2000
@adm hard nproc 3000
@adm hard fsize 100000
@adm - maxlogins 10

These would be the limits a default user (including system daemons) would have:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) 102400



Chapter 4. After installation 59

file size (blocks, -f) 2048
max locked memory (kbytes, -l) 10000
max memory size (kbytes, -m) 10000
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 100
virtual memory (kbytes, -v) unlimited

And these are the limits for an administrative user:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) 102400
file size (blocks, -f) 100000
max locked memory (kbytes, -l) 100000
max memory size (kbytes, -m) 100000
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 2000
virtual memory (kbytes, -v) unlimited

For more information read:

• PAM reference guide for available modules (http://www.kernel.org/pub/linux/
libs/pam/Linux-PAM-html/pam-6.html )

• PAM configuration article (http://www.samag.com/documents/s=1161/
sam0009a/0009a.htm ).

• Seifried’s Securing Linux Step by Step (http://seifried.org/security/os/
linux/20020324-securing-linux-step-by-step.html ) on the Limiting users
overview section.

• LASG (http://seifried.org/lasg/users/ ) in the Limiting and monitoring users
section.

4.10.3 User login actions: edit /etc/login.defs

The next step is to edit the basic configuration and action upon user login. Note that this
file is not part of the PAM configuration, it’s a configuration file honored by login and su
programs, so it doesn’t make sense tuning it for cases where neither of the two programs are
at least indirectly called (the getty program which sits on the consoles and offers the initial
login prompt does invoke login ).

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-6.html
http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
http://www.samag.com/documents/s=1161/sam0009a/0009a.htm
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/lasg/users/


Chapter 4. After installation 60

FAIL_DELAY 10

This variable should be set to a higher value to make it harder to use the terminal to log in
using brute force. If a wrong password is typed in, the possible attacker (or normal user!) has
to wait for 10 seconds to get a new login prompt, which is quite time consuming when you
test passwords. Pay attention to the fact that this setting is useless if using program other than
getty , such as mingetty for example.

FAILLOG_ENAB yes

If you enable this variable, failed logins will be logged. It is important to keep track of them to
catch someone who tries a brute force attack.

LOG_UNKFAIL_ENAB no

If you set this variable to ’yes’ it will record unknown usernames if the login failed. It is best if
you use ’no’ (the default) since, otherwise, user passwords might be inadvertenly logged here
(if a user mistypes and they enter their password as the username). If you set it to ’yes’, make
sure the logs have the proper permissions (640 for example, with an appropriate group setting
such as adm).

SYSLOG_SU_ENAB yes

This one enables logging of su attempts to syslog . Quite important on serious machines but
note that this can create privacy issues as well.

SYSLOG_SG_ENAB yes

The same as SYSLOG_SU_ENAB but applies to the sg program.

MD5_CRYPT_ENAB yes

As stated above, MD5 sum passwords greatly reduce the problem of dictionary attacks, since
you can use longer passwords. If you are using slink, read the docs about MD5 before enabling
this option. Otherwise this is set in PAM.

PASS_MAX_LEN 50

If MD5 passwords are activated in your PAM configuration, then this variable should be set to
the same value as used there.



Chapter 4. After installation 61

4.10.4 Restricting ftp: editing /etc/ftpusers

The /etc/ftpusers file contains a list of users who are not allowed to log into the host using
ftp. Only use this file if you really want to allow ftp (which is not recommended in general,
because it uses clear-text passwords). If your daemon supports PAM, you can also use that to
allow and deny users for certain services.

FIXME (BUG): Is it a bug that the default ftpusers in Debian does not include all the admin-
istrative users (in base-passwd ).

A convenient way to add all system accounts to the /etc/ftpusers is to run

$ awk -F : ’{if ($3<1000) print $1}’ /etc/passwd > /etc/ftpusers

4.10.5 Using su

If you really need users to become the super user on your system, e.g. for installing packages
or adding users, you can use the command su to change your identity. You should try to avoid
any login as user root and instead use su . Actually, the best solution is to remove su and switch
to the sudo mechanism which has a broader logic and more features than su . However, su is
more common as it is used on many other Unices.

4.10.6 Using sudo

sudo allows the user to execute defined commands under another user’s identity, even as
root. If the user is added to /etc/sudoers and authenticates himself correctly, he is able
to run commands which have been defined in /etc/sudoers . Violations, such as incorrect
passwords or trying to run a program you don’t have permission for, are logged and mailed to
root.

4.10.7 Disallow remote administrative access

You should also modify /etc/security/access.conf to disallow remote logins to ad-
ministrative accounts. This way users need to invoke su (or sudo ) to use any administrative
powers and the appropriate audit trace will always be generated.

You need to add the following line to /etc/security/access.conf , the default Debian
configuration file has a sample line commented out:

-:wheel:ALL EXCEPT LOCAL

Remember to enable the pam_access module for every service (or default configuration) in
/etc/pam.d/ if you want your changes to /etc/security/access.conf honored.



Chapter 4. After installation 62

4.10.8 Restricting users’s access

Sometimes you might think you need to have users created in your local system in order to
provide a given service (pop3 mail service or ftp). Before doing so, first remember that the
PAM implementation in Debian GNU/Linux allows you to validate users with a wide variety
of external directory services (radius, ldap, etc.) provided by the libpam packages.

If users need to be created and the system can be accessed remotely take into account that users
will be able to log in to the system. You can fix this by giving users a null (/dev/null ) shell (it
would need to be listed in /etc/shells ). If you want to allow users to access the system but
limit their movements, you can use the /bin/rbash , equivalent to adding the -r option in
bash (RESTRICTED SHELL see bash(1) ). Please note that even with restricted shell, a user
that access an interactive program (that might allow execution of a subshell) could be able to
bypass the limits of the shell.

Debian currently provides in the unstable release (and might be included in the next stable
releases) the pam_chroot module (in the libpam-chroot ). An alternative to it is to chroot
the service that provides remote logging (ssh , telnet ). 15

If you wish to restrict when users can access the system you will have to customize /etc
/security/access.conf for your needs.

Information on how to chroot users accessing the system through the ssh service is described
in ‘Chroot environment for SSH’ on page 229.

4.10.9 User auditing

If you are really paranoid you might want to add a system-wide configuration to audit what
the users are doing in your system. This sections presents some tips using diverse utilities you
can use.

Input and output audit with script

You can use the script command to audit both what the users run and what are the results
of those commands. You cannot setup script as a shell (even if you add it to /etc/shells ).
But you can have the shell initialization file run the following:

umask 077
exec script -q -a "/var/log/sessions/$USER"

Of course, if you do this system wide it means that the shell would not continue reading per-
sonal initialization files (since the shell gets overwritten by script ). An alternative is to do
this in the user’s initialization files (but then the user could remove this, see the comments
about this below)

15libpam-chroot has not been yet thoroughly tested, it does work for login but it might not be easy to set
up the environment for other programs



Chapter 4. After installation 63

You also need to setup the files in the audit directory (in the example /var/log/sessions
/ ) so that users can write to it but cannot remove the file. This could be done, for example,
by creating the user session files in advance and setting them with the append-only flag using
chattr .

A useful alternative for sysadmins, which includes date information would be:

umask 077
exec script -q -a "/var/log/sessions/$USER-‘date +%Y%m%d‘"

Using the shell history file

If you want to review what does the user type in the shell (but not what the result of that
is) you can setup a system-wide /etc/profile that configures the environment so that all
commands are saved into a history file. The system-wide configuration needs to be setup in
such a way that users cannot remove audit capabilities from their shell. This is somewhat shell
specific so make sure that all users are using a shell that supports this.

For example, for bash, the /etc/profile could be set as follows 16 :

HISTFILE=~/.bash_history
HISTSIZE=10000
HISTFILESIZE=999999
# Don’t let the users enter commands that are ignored
# in the history file
HISTIGNORE=""
HISTCONTROL=""
readonly HISTFILE
readonly HISTSIZE
readonly HISTFILESIZE
readonly HISTIGNORE
readonly HISTCONTROL
export HISTFILE HISTSIZE HISTFILESIZE HISTIGNORE HISTCONTROL

For this to work, the user can only append information to .bash_history file. You need also
to set the append-only option using chattr program for .bash_history for all users. 17.

Note that you could introduce the configuration above in the user’s .profile . But then
you would need to setup permissions properly in such a way that prevents the user from
modifying this file. This includes: having the user’s home directories not belong to the user
(since he would be able to remove the file otherwise) but at the same time enable them to read
the .profile configuration file and write on the .bash_history . It would be good to set
the immutable flag (also using chattr ) for .profile too if you do it this way.

16Setting HISTSIZE to a very large number can cause issues under some shells since the history is kept in mem-
ory for every user session. You might be safer if you set this to a high-enough value and backup user’s history files
(if you need all of the user’s history for some reason)

17Without the append-only flag users would be able to empty the contents of the history file running >
.bash_history



Chapter 4. After installation 64

Complete user audit with accounting utilities

The previous example is a simple way to configure user auditing but might be not useful for
complex systems or for those in which users do not run shells at all (or exclusively). If this
is your case, you need to look at acct , the accounting utilities. These utilities will log all the
commands run by users or processes in the system, at the expense of disk space.

When activating accounting, all the information on processes and users is kept under /var
/account/ , more specifically in the pacct . The accounting package includes some tools (sa ,
ac and lastcomm ) to analyse this data.

Other user auditing methods

If you are completely paranoid and want to audit every user’s command, you could take
bash source code, edit it and have it send all that the user typed into another file. Or have
ttysnoop constantly monitor any new ttys 18 and dump the output into a file. Other use-
ful program is snoopy (see also the project page (http://sourceforge.net/projects/
snoopylogger/ )) which is a user-transparent program that hooks in as a library provid-
ing a wrapper around execve() calls, any command executed is logged to syslogd using the
authpriv facility (usually stored at /var/log/auth.log ).

4.10.10 Reviewing user profiles

If you want to see what users are actually doing when they logon to the system you can use the
wtmp database that includes all login information. This file can be processed with several util-
ities, amongst them sac which can output a profile on each user showing in which timeframe
they usually log on to the system.

In case you have accounting activated, you can also use the tools provided by it in order to
determine when the users access the system and what do they execute.

4.10.11 Setting users umasks

Depending on your user policy you might want to change how information is shared between
users, that is, what the default permissions of new files created by users are.

Debian’s default umask setting is 022 this means that files (and directories) can be read and
accessed by the user’s group and by any other users in the system. This definition is set in the
standard configuration file /etc/profile which is used by all shells.

If Debian’s default value is too permissive for your system you will have to change the umask
setting for all the shells. More restrictive umask settings include 027 (no access is allowed to
new files for the other group, i.e. to other users in the system) or 077 (no access is allowed to

18Ttys are spawned for local logins and remote logins through ssh and telnet

http://sourceforge.net/projects/snoopylogger/
http://sourceforge.net/projects/snoopylogger/


Chapter 4. After installation 65

new files to the members the user’s group). Debian (by default19) creates one group per user
so that only the user is included in its group. Consequently 027 and 077 are equivalent as the
user’s group contains only the user himself.

This change is set by defining a proper umask setting for all users. You can change this by
introducing an umask call in the shell configuration files: /etc/profile (source by all
Bourne-compatible shells), /etc/csh.cshrc , /etc/csh.login , /etc/zshrc and prob-
ably some others (depending on the shells you have installed on your system). You can also
change the UMASK setting in /etc/login.defs , Of all of these the last one that gets loaded
by the shell takes precedence. The order is: the default system configuration for the user’s
shell (i.e. /etc/profile and other system-wide configuration files) and then the user’s
shell (his ~/.profile , ~/.bash_profile , etc. . . ). Some shells, however, can be executed
with a nologin value which might skip sourcing some of those files. See your shell’s manpage
for additional information.

For connections that make use of login the UMASK definition in /etc/login.defs is used
before any of the others. However, that value does not apply to user executed programs that
do not use login such as those run through su , cron or ssh .

Don’t forget to review and maybe modify the dotfiles under /etc/skel/ since these will be
new user’s defaults when created with the adduser command. Debian default dotfiles do not
include any umask call but if there is any in the dotfiles newly created users might a different
value.

Note, however that users can modify their own umask setting if they want to, making it more
permissive or more restricted, by changing their own dotfiles.

The libpam-umask package adjusts the users’ default umask using PAM. Add the following,
after installing the package, to /etc/pam.d/common-session :

session optional pam_umask.so umask=077

Finally, you should consider changing root’s default 022 umask (as defined in /root
/.bashrc ) to a more strict umask. That will prevent the system administrator from inad-
vertenly dropping sensitive files when working as root to world-readable directories (such as
/tmp ) and having them available for your average user.

4.10.12 Limiting what users can see/access

FIXME: Content needed. Describe the consequences of changing packages permissions
when upgrading (an admin this paranoid should chroot his users BTW) if not using
dpkg-statoverride .

If you need to grant users access to the system with a shell think about it very carefully. A user
can, by default unless in a severely restricted environment (like a chroot jail), retrieve quite a
lot of information from your system including:

19As defined in /etc/adduser.conf (USERGROUPS=yes). You can change this behaviour if you set this
value to no, although it is not recommended



Chapter 4. After installation 66

• some configuration files in /etc . However, Debian’s default permissions for some sen-
sitive files (which might, for example, contain passwords), will prevent access to critical
information. To see which files are only accessible by the root user for example find
/etc -type f -a -perm 600 -a -uid 0 as superuser.

• your installed packages, either by looking at the package database, at the /usr/share
/doc directory or by guessing by looking at the binaries and libraries installed in your
system.

• some log files at /var/log . Note also that some log files are only accessible to root
and the adm group (try find /var/log -type f -a -perm 640 ) and some are
even only available to the root user (try find /var/log -type f -a -perm 600
-a -uid 0 ).

What can a user see in your system? Probably quite a lot of things, try this (take a deep breath):

find / -type f -a -perm +006 2>/dev/null
find / -type d -a -perm +007 2>/dev/null

The output is the list of files that a user can see and the directories to which he has access.

Limiting access to other user’s information

If you still grant shell access to users you might want to limit what information they can view
from other users. Users with shell access have a tendency to create quite a number of files
under their $HOMEs: mailboxes, personal documents, configuration of X/GNOME/KDE ap-
plications. . .

In Debian each user is created with one associated group, and no two users belong to the same
group. This is the default behavior: when an user account is created, a group of the same name
is created too, and the user is assigned to it. This avoids the concept of a common users group
which might make it more difficult for users to hide information from other users.

However, users’ $HOME directories are created with 0755 permissions (group-readable and
world-readable). The group permissions is not an issue since only the user belongs to the
group, however the world permissions might (or might not) be an issue depending on your
local policy.

You can change this behavior so that user creation provides different $HOME permissions. To
change the behavior for new users when they get created, change DIR_MODE in the configu-
ration file /etc/adduser.conf to 0750 (no world-readable access).

Users can still share information, but not directly in their $HOME directories unless they
change its permissions.

Note that disabling world-readable home directories will prevent users from creating their
personal web pages in the ~/public_html directory, since the web server will not be able to



Chapter 4. After installation 67

read one component in the path - namely their $HOME directory. If you want to permit users
to publish HTML pages in their ~/public_html , then change DIR_MODE to 0751. This will
allow the web server to access the final public_html directory (which itself should have a
mode of 0755) and provide the content published by users. Of course, we are only talking about
a default configuration here; users can generally tune modes of their own files completely to
their liking, or you could keep content intended for the web in a separate location which is not
a subdirectory of user’s $HOME directory.

4.10.13 Generating user passwords

There are many cases when an administrator needs to create many user accounts and provide
passwords for all of them. Of course, the administrator could easily just set the password to
be the same as the user’s account name, but that would not be very sensitive security-wise.
A better approach is to use a password generating program. Debian provides makepasswd ,
apg and pwgen packages which provide programs (the name is the same as the package) that
can be used for this purpose. Makepasswd will generate true random passwords with an
emphasis on security over pronounceability while pwgen will try to make meaningless but
pronounceable passwords (of course this might depend on your mother language). Apg has
algorithms to provide for both (there is a client/server version for this program but it is not
included in the Debian package).

Passwd does not allow non-interactive assignation of passwords (since it uses direct tty ac-
cess). If you want to change passwords when creating a large number of users you can cre-
ate them using adduser with the --disabled-login option and then use usermod or
chpasswd 20 (both from the passwd package so you already have them installed). If you
want to use a file with all the information to make users as a batch process you might be better
off using newusers .

4.10.14 Checking user passwords

User passwords can sometimes become the weakest link in the security of a given system. This
is due to some users choosing weak passwords for their accounts (and the more of them that
have access to it the greater the chances of this happening). Even if you established checks with
the cracklib PAM module and password limits as described in ‘User authentication: PAM’ on
page 55 users will still be able to use weak passwords. Since user access might include remote
shell access (over ssh , hopefully) it’s important to make password guessing as hard as possible
for the remote attackers, especially if they were somehow able to collect important information
such as usernames or even the passwd and shadow files themselves.

A system administrator must, given a big number of users, check if the passwords they have
are consistent with the local security policy. How to check? Try to crack them as an attacker
would if he had access to the hashed passwords (the /etc/shadow file).

20Chpasswd cannot handle MD5 password generation so it needs to be given the password in encrypted form
before using it, with the -e option.



Chapter 4. After installation 68

An administrator can use john or crack (both are brute force password crackers) together
with an appropriate wordlist to check users’ passwords and take appropriate action when a
weak password is detected. You can search for Debian GNU packages that contain word lists
using apt-cache search wordlist , or visit the classic Internet wordlist sites such as ftp:
//ftp.ox.ac.uk/pub/wordlists or ftp://ftp.cerias.purdue.edu/pub/dict .

4.10.15 Logging off idle users

Idle users are usually a security problem, a user might be idle maybe because he’s out to lunch
or because a remote connection hung and was not re-established. For whatever the reason, idle
users might lead to a compromise:

• because the user’s console might be unlocked and can be accessed by an intruder.

• because an attacker might be able to re-attach himself to a closed network connection and
send commands to the remote shell (this is fairly easy if the remote shell is not encrypted
as in the case of telnet ).

Some remote systems have even been compromised through an idle (and detached) screen .

Automatic disconnection of idle users is usually a part of the local security policy that must be
enforced. There are several ways to do this:

• If bash is the user shell, a system administrator can set a default TMOUTvalue (see
bash(1) ) which will make the shell automatically log off remote idle users. Note that it
must be set with the -o option or users will be able to change (or unset) it.

• Install timeoutd and configure /etc/timeouts according to your local security policy.
The daemon will watch for idle users and time out their shells accordingly.

• Install autolog and configure it to remove idle users.

The timeoutd or autolog daemons are the preferred method since, after all, users can
change their default shell or can, after running their default shell, switch to another (uncon-
trolled) shell.

4.11 Using tcpwrappers

TCP wrappers were developed when there were no real packet filters available and access
control was needed. Nevertheless, they’re still very interesting and useful. The TCP wrappers
allow you to allow or deny a service for a host or a domain and define a default allow or
deny rule (all performed on the application level). If you want more information take a look at
hosts_access(5) .

Many services installed in Debian are either:

ftp://ftp.ox.ac.uk/pub/wordlists
ftp://ftp.ox.ac.uk/pub/wordlists
ftp://ftp.cerias.purdue.edu/pub/dict


Chapter 4. After installation 69

• launched through the tcpwrapper service (tcpd )

• compiled with libwrapper support built-in.

On the one hand, for services configured in /etc/inetd.conf (this includes telnet ,
ftp , netbios , swat and finger ) you will see that the configuration file executes
/usr/sbin/tcpd first. On the other hand, even if a service is not launched by the inetd
superdaemon, support for the tcp wrappers rules can be compiled into it. Services compiled
with tcp wrappers in Debian include ssh , portmap , in.talk , rpc.statd , rpc.mountd ,
gdm, oaf (the GNOME activator daemon), nessus and many others.

To see which packages use tcpwrappers 21 try:

$ apt-cache rdepends libwrap0

Take this into account when running tcpdchk (a very useful TCP wrappers config file rule
and syntax checker). When you add stand-alone services (that are directly linked with the
wrapper library) into the hosts.deny and hosts.allow files, tcpdchk will warn you that
it is not able to find the mentioned services since it only looks for them in /etc/inetd.conf
(the manpage is not totally accurate here).

Now, here comes a small trick, and probably the smallest intrusion detection system available.
In general, you should have a decent firewall policy as a first line, and tcp wrappers as the
second line of defense. One little trick is to set up a SPAWN 22 command in /etc/hosts.deny
that sends mail to root whenever a denied service triggers wrappers:

ALL: ALL: SPAWN ( \
echo -e "\n\
TCP Wrappers\: Connection refused\n\
By\: $(uname -n)\n\
Process\: %d (pid %p)\n\
User\: %u\n\
Host\: %c\n\
Date\: $(date)\n\

" | /usr/bin/mail -s "Connection to %d blocked" root) &

Beware: The above printed example is open to a DoS attack by making many connections in a
short period of time. Many emails mean a lot of file I/O by sending only a few packets.

21On older Debian releases you might need to do this:

$ apt-cache showpkg libwrap0 | egrep ’^[[:space:]]’ | sort -u | \ sed
’s/,libwrap0$//;s/^[[:space:]]\+//’

22be sure to use uppercase here since spawn will not work



Chapter 4. After installation 70

4.12 The importance of logs and alerts

It is easy to see that the treatment of logs and alerts is an important issue in a secure system.
Suppose a system is perfectly configured and 99% secure. If the 1% attack occurs, and there
are no security measures in place to, first, detect this and, second, raise alarms, the system is
not secure at all.

Debian GNU/Linux provides some tools to perform log analysis, most notably swatch , 23

logcheck or log-analysis (all will need some customisation to remove unnecessary things
from the report). It might also be useful, if the system is nearby, to have the system logs printed
on a virtual console. This is useful since you can (from a distance) see if the system is behaving
properly. Debian’s /etc/syslog.conf comes with a commented default configuration; to
enable it uncomment the lines and restart syslogd (/etc/init.d/syslogd restart ):

daemon,mail.*;\
news.=crit;news.=err;news.=notice;\
*.=debug;*.=info;\
*.=notice;*.=warn /dev/tty8

To colorize the logs, you could take a look at colorize , ccze or glark . There is a lot to
log analysis that cannot be fully covered here, so a good information resource would be Log
Analysis (http://www.loganalysis.org/ ) website. In any case, even automated tools are
no match for the best analysis tool: your brain.

4.12.1 Using and customizing logcheck

The logcheck package in Debian is divided into the three packages logcheck (the main
program), logcheck-database (a database of regular expressions for the program) and
logtail (prints loglines that have not yet been read). The Debian default (in /etc/cron.d
/logcheck ) is that logcheck is run every hour and after reboots.

This tool can be quite useful if properly customized to alert the administrator of un-
usual system events. Logcheck can be fully customized so that it sends mails based
on events found in the logs and worthy of attention. The default installation in-
cludes profiles for ignored events and policy violations for three different setups
(workstation, server and paranoid). The Debian package includes a configuration
file /etc/logcheck/logcheck.conf , sourced by the program, that defines which
user the checks are sent to. It also provides a way for packages that provide ser-
vices to implement new policies in the directories: /etc/logcheck/cracking.d
/_packagename_ , /etc/logcheck/violations.d/_packagename_ , /etc/logcheck
/violations.ignore.d/_packagename_ , /etc/logcheck/ignore.d.paranoid
/_packagename_ , /etc/logcheck/ignore.d.server/_packagename_ , and /etc
/logcheck/ignore.d.workstation/_packagename_ . However, not many packages
currently do so. If you have a policy that can be useful for other users, please send it as a

23there’s a very good article on it written by Lance Spitzner (http://www.spitzner.net/swatch.html )

http://www.loganalysis.org/
http://www.spitzner.net/swatch.html


Chapter 4. After installation 71

bug report for the appropriate package (as a wishlist bug). For more information read /usr
/share/doc/logcheck/README.Debian .

The best way to configure logcheck is to edit its main configuration file /etc/logcheck
/logcheck.conf after installation. Change the default user (root) to whom reports should
be mailed. You should set the reportlevel in there, too. logcheck-database has three report
levels of increasing verbosity: workstation, server, paranoid. “server” being the default level,
paranoid is only recommended for high-security machines running as few services as possible
and workstation for relatively sheltered, non-critical machines. If you wish to add new log
files just add them to /etc/logcheck/logcheck.logfiles . It is tuned for default syslog
install.

Once this is done you might want to check the mails that are sent, for the first few
days/weeks/months. If you find you are sent messages you do not wish to receive, just add
the regular expressions (see regex(7) and egrep(1) ) that correspond to these messages
to the /etc/logcheck/ignore.d. reportlevel /local . Try to match the whole log-
line. Details on howto write rules are explained in /usr/share/doc/logcheck-database
/README.logcheck-database.gz . It’s an ongoing tuning process; once the messages that
are sent are always relevant you can consider the tuning finished. Note that if logcheck does
not find anything relevant in your system it will not mail you even if it does run (so you might
get a mail only once a week, if you are lucky).

4.12.2 Configuring where alerts are sent

Debian comes with a standard syslog configuration (in /etc/syslog.conf ) that logs mes-
sages to the appropriate files depending on the system facility. You should be familiar with
this; have a look at the syslog.conf file and the documentation if not. If you intend to main-
tain a secure system you should be aware of where log messages are sent so they do not go
unnoticed.

For example, sending messages to the console also is an interesting setup useful for many
production-level systems. But for many such systems it is also important to add a new machine
that will serve as loghost (i.e. it receives logs from all other systems).

Root’s mail should be considered also, many security controls (like snort ) send alerts to
root’s mailbox. This mailbox usually points to the first user created in the system (check /etc
/aliases ). Take care to send root’s mail to some place where it will be read (either locally or
remotely).

There are other role accounts and aliases on your system. On a small system, it’s probably
simplest to make sure that all such aliases point to the root account, and that mail to root is
forwarded to the system administrator’s personal mailbox.

FIXME: It would be interesting to tell how a Debian system can send/receive SNMP traps
related to security problems (jfs). Check: snmptrapfmt , snmp and snmpd.



Chapter 4. After installation 72

4.12.3 Using a loghost

A loghost is a host which collects syslog data remotely over the network. If one of your ma-
chines is cracked, the intruder is not able to cover his tracks, unless he hacks the loghost as well.
So, the loghost should be especially secure. Making a machine a loghost is simple. Just start
the syslogd with syslogd -r and a new loghost is born. In order to do this permanently in
Debian, edit /etc/default/syslogd and change the line

SYSLOGD=""

to

SYSLOGD="-r"

Next, configure the other machines to send data to the loghost. Add an entry like the following
to /etc/syslog.conf :

facility.level @your_loghost

See the documentation for what to use in place of facility and level (they should not be entered
verbatim like this). If you want to log everything remotely, just write:

*.* @your_loghost

into your syslog.conf . Logging remotely as well as locally is the best solution (the attacker
might presume to have covered his tracks after deleting the local log files). See the syslog(3) ,
syslogd(8) and syslog.conf(5) manpages for additional information.

4.12.4 Log file permissions

It is not only important to decide how alerts are used, but also who has read/modify access to
the log files (if not using a remote loghost). Security alerts which the attacker can change or
disable are not worth much in the event of an intrusion. Also, you have to take into account
that log files might reveal quite a lot of information about your system to an intruder if he has
access to them.

Some log file permissions are not perfect after the installation (but of course this really depends
on your local security policy). First /var/log/lastlog and /var/log/faillog do not
need to be readable by normal users. In the lastlog file you can see who logged in recently,
and in the faillog you see a summary of failed logins. The author recommends chmod 660
for both. Take a brief look at your log files and decide very carefully which log files to make
readable/writable for a user with a UID other than 0 and a group other than ’adm’ or ’root’.
You can easily check this in your system with:



Chapter 4. After installation 73

# find /var/log -type f -exec ls -l {} \; | cut -c 17-35 |sort -u
(see to what users do files in /var/log belong)
# find /var/log -type f -exec ls -l {} \; | cut -c 26-34 |sort -u
(see to what groups do files in /var/log belong)
# find /var/log -perm +004
(files which are readable by any user)
# find /var/log \! -group root \! -group adm -exec ls -ld {} \;
(files which belong to groups not root or adm)

To customize how log files are created you will probably have to customize the program that
generates them. If the log file gets rotated, however, you can customize the behavior of creation
and rotation.

4.13 Adding kernel patches

Debian GNU/Linux provides some of the patches for the Linux kernel that enhance its security.
These include:

• Linux Intrusion Detection (http://www.lids.org ) provided in the
kernel-patch-2.4-lids package. This kernel patch makes the process of hardening
your Linux system easier by allowing you to restrict, hide and protect processes, even
from root. It implements mandatory access control capabilities.

• Linux Trustees (http://trustees.sourceforge.net/ ), provided in package
trustees . This patch adds a decent advanced permissions management system to your
Linux kernel. Special objects (called trustees) are bound to every file or directory, and are
stored in kernel memory, which allows fast lookup of all permissions.

• NSA Enhanced Linux (in package selinux ). Backports of the SElinux-enabled pack-
ages are available at http://selinux.alioth.debian.org/ . More information
available at SElinux in Debian Wiki page (http://wiki.debian.org/SELinux ),
at Manoj Srivastava’s (http://www.golden-gryphon.com/software/security/
selinux.xhtml ) and Russell Cookers’s (http://www.coker.com.au/selinux/ )
SElinux websites.

• The exec-shield patch (http://people.redhat.com/mingo/exec-shield/ ) pro-
vided in the kernel-patch-exec-shield package. This patch provides protection
against some buffer overflows (stack smashing attacks).

• The Grsecurity patch (http://www.grsecurity.net/ ), provided by the
kernel-patch-2.4-grsecurity and kernel-patch-grsecurity2 packages
24 implements Mandatory Access Control through RBAC, provides buffer overflow
protection through PaX, ACLs, network randomness (to make OS fingerprinting more
difficult) and many more features (http://www.grsecurity.net/features.php ).

24Notice that this patch conflicts with patches already included in Debian’s 2.4 kernel source package. You will
need to use the stock vanilla kernel. You can do this with the following steps:

http://www.lids.org
http://trustees.sourceforge.net/
http://selinux.alioth.debian.org/
http://wiki.debian.org/SELinux
http://www.golden-gryphon.com/software/security/selinux.xhtml
http://www.golden-gryphon.com/software/security/selinux.xhtml
http://www.coker.com.au/selinux/
http://people.redhat.com/mingo/exec-shield/
http://www.grsecurity.net/
http://www.grsecurity.net/features.php


Chapter 4. After installation 74

• The kernel-patch-adamantix provides the patches developed for Adamantix
(http://www.adamantix.org/ ), a Debian-based distribution. This kernel patch for
the 2.4.x kernel releases introduces some security features such as a non-executable stack
through the use of PaX (http://pageexec.virtualave.net/ ) and mandatory ac-
cess control based on RSBAC (http://www.rsbac.org/ ). Other features include:
the Random PID patch (http://www.vanheusden.com/Linux/sp/ ), AES encrypted
loop device, MPPE support and an IPSEC v2.6 backport.

• cryptoloop-source . This patches allows you to use the functions of the kernel crypto
API to create encrypted filesystems using the loopback device.

• IPSEC kernel support (in package linux-patch-openswan ). If you want to use the
IPsec protocol with Linux, you need this patch. You can create VPNs with this quite
easily, even to Windows machines, as IPsec is a common standard. IPsec capabilities
have been added to the 2.5 development kernel, so this feature will be present by default
in the future Linux Kernel 2.6. Homepage: http://www.openswan.org . FIXME: The
latest 2.4 kernels provided in Debian include a backport of the IPSEC code from 2.5.
Comment on this.

The following security kernel patches are only available for old kernel versions in woody and
are deprecated:

• POSIX Access Control Lists (http://acl.bestbits.at/ ) (ACLs) for Linux provided
in the package kernel-patch-acl . This kernel patch adds access control lists, an ad-
vanced method for restricting access to files. It allows you to control fine-grain access to
files and directory.

• The Openwall (http://www.openwall.com/linux/ ) linux kernel patch by Solar De-
signer, provided in the kernel-patch-2.2.18-openwall package. This is a useful
set of kernel restrictions, like restricted links, FIFOs in /tmp , a restricted /proc file sys-
tem, special file descriptor handling, non-executable user stack area and other features.
Note: This package applies to the 2.2 release, no packages are available for the 2.4 release
patches provided by Solar.

• kernel-patch-int . This patch also adds cryptographic capabilities to the Linux ker-
nel, and was useful with Debian releases up to Potato. It doesn’t work with Woody, and
if you are using Sarge or a newer version, you should use a more recent kernel which
includes these features already.

# apt-get install kernel-source-2.4.22 kernel-patch-debian-2.4.22 # tar
xjf /usr/src/kernel-source-2.4.22.tar.bz2 # cd kernel-source-2.4.22 #
/usr/src/kernel-patches/all/2.4.22/unpatch/debian

For more information see #194225 (http://bugs.debian.org/194225 ), #199519 (http://bugs.debian.
org/199519 ), #206458 (http://bugs.debian.org/206458 ), #203759 (http://bugs.debian.org/
203759 ), #204424 (http://bugs.debian.org/204424 ), #210762 (http://bugs.debian.org/210762 ),
#211213 (http://bugs.debian.org/211213 ), and the discussion at debian-devel (http://lists.debian.
org/debian-devel/2003/debian-devel-200309/msg01133.html )

http://www.adamantix.org/
http://pageexec.virtualave.net/
http://www.rsbac.org/
http://www.vanheusden.com/Linux/sp/
http://www.openswan.org
http://acl.bestbits.at/
http://www.openwall.com/linux/
http://bugs.debian.org/194225
http://bugs.debian.org/199519
http://bugs.debian.org/199519
http://bugs.debian.org/206458
http://bugs.debian.org/203759
http://bugs.debian.org/203759
http://bugs.debian.org/204424
http://bugs.debian.org/210762
http://bugs.debian.org/211213
http://lists.debian.org/debian-devel/2003/debian-devel-200309/msg01133.html
http://lists.debian.org/debian-devel/2003/debian-devel-200309/msg01133.html


Chapter 4. After installation 75

However, some patches have not been provided in Debian yet. If you feel that some of these
should be included please ask for it at the Work Needing and Prospective Packages (http:
//www.debian.org/devel/wnpp/ ).

4.14 Protecting against buffer overflows

Buffer overflow is the name of a common attack to software 25 which makes use of insufficient
boundary checking (a programming error, most commonly in the C language) in order to exe-
cute machine code through program inputs. These attacks, against server software which lis-
ten to connections remotely and against local software which grant higher privileges to users
(setuid or setgid ) can result in the compromise of any given system.

There are mainly four methods to protect against buffer overflows:

• patch the kernel to prevent stack execution. You can use either: Exec-shield, OpenWall
or PaX (included in the Grsecurity and Adamantix patches).

• fix the source code by using tools to find fragments of it that might introduce this vulner-
ability.

• recompile the source code to introduce proper checks that prevent overflows, us-
ing the Stack Smashing Protector (SSP) (http://www.research.ibm.com/trl/
projects/security/ssp/ ) patch for GCC (which is used by Adamantix (http:
//www.adamantix.org ))

Debian GNU/Linux, as of the 3.0 release, provides software to introduce all of these meth-
ods except for the protection on source code compilation (but this has been requested in Bug
#213994 (http://bugs.debian.org/213994 )).

Notice that even if Debian provided a compiler which featured stack/buffer overflow protec-
tion all packages would need to be recompiled in order to introduce this feature. This is, in
fact, what the Adamantix distribution does (among other features). The effect of this new fea-
ture on the stability of software is yet to be determined (some programs or some processor
architectures might break due to it).

In any case, be aware that even these workarounds might not prevent buffer overflows
since there are ways to circumvent these, as described in phrack’s magazine issue 58
(http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz ) or in
CORE’s Advisory Multiple vulnerabilities in stack smashing protection technologies (http:
//online.securityfocus.com/archive/1/269246 ).

If you want to test out your buffer overflow protection once you have implemented it (regard-
less of the method) you might want to install the paxtest and run the tests it provides.

25So common, in fact, that they have been the basis of 20% of the reported security vulnerabilities every year, as
determined by statistics from ICAT’s vulnerability database (http://icat.nist.gov/icat.cfm?function=
statistics )

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.research.ibm.com/trl/projects/security/ssp/
http://www.research.ibm.com/trl/projects/security/ssp/
http://www.adamantix.org
http://www.adamantix.org
http://bugs.debian.org/213994
http://packetstorm.linuxsecurity.com/mag/phrack/phrack58.tar.gz
http://online.securityfocus.com/archive/1/269246
http://online.securityfocus.com/archive/1/269246
http://icat.nist.gov/icat.cfm?function=statistics
http://icat.nist.gov/icat.cfm?function=statistics


Chapter 4. After installation 76

4.14.1 Kernel patch protection for buffer overflows

Kernel patches related to buffer overflows include the Openwall patch provides pro-
tection against buffer overflows in 2.2 linux kernels. For 2.4 or newer kernels, you
need to use the Exec-shield implementation, or the PaX implementation (provided in
the grsecurity patch, kernel-patch-2.4-grsecurity , and in the Adamantix patch,
kernel-patch-adamantix ). For more information on using these patches read the the sec-
tion ‘Adding kernel patches’ on page 73.

4.14.2 Testing programs for overflows

The use of tools to detect buffer overflows requires, in any case, of programming experience
in order to fix (and recompile) the code. Debian provides, for example: bfbtester (a buffer
overflow tester that brute-forces binaries through command line and environment overflows).
Other packages of interest would also be rats , pscan , flawfinder and splint .

4.15 Secure file transfers

During normal system administration one usually needs to transfer files in and out from the
installed system. Copying files in a secure manner from a host to another can be achieved by
using the ssh server package. Another possibility is the use of ftpd-ssl , a ftp server which
uses the Secure Socket Layer to encrypt the transmissions.

Any of these methods need special clients. Debian does provide client software, such as scp
from the ssh package, which works like rcp but is encrypted completely, so the bad guys can-
not even find out WHAT you copy. There is also a ftp-ssl package for the equivalent server.
You can find clients for these software even for other operating systems (non-UNIX), putty
and winscp provide secure copy implementations for any version of Microsoft’s operating
system.

Note that using scp provides access to the users to all the file system unless chroot ’ed as
described in ‘Chrooting ssh’ on page 93. FTP access can be chroot ’ed, probably easier de-
pending on you chosen daemon, as described in ‘Securing FTP’ on page 96. If you are worried
about users browsing your local files and want to have encrypted communication you can
either use an ftp daemon with SSL support or combine clear-text ftp and a VPN setup (see
‘Virtual Private Networks’ on page 155).

4.16 File system limits and control

4.16.1 Using quotas

Having a good quota policy is important, as it keeps users from filling up the hard disk(s).



Chapter 4. After installation 77

You can use two different quota systems: user quota and group quota. As you probably figured
out, user quota limits the amount of space a user can take up, group quota does the equivalent
for groups. Keep this in mind when you’re working out quota sizes.

There are a few important points to think about in setting up a quota system:

• Keep the quotas small enough, so users do not eat up your disk space.

• Keep the quotas big enough, so users do not complain or their mail quota keeps them
from accepting mail over a longer period.

• Use quotas on all user-writable areas, on /home as well as on /tmp .

Every partition or directory to which users have full write access should be quota enabled.
Calculate and assign a workable quota size for those partitions and directories which combines
usability and security.

So, now you want to use quotas. First of all you need to check whether you enabled quota
support in your kernel. If not, you will need to recompile it. After this, control whether the
package quota is installed. If not you will need this one as well.

Enabling quota for the respective file systems is as easy as modifying the defaults set-
ting to defaults,usrquota in your /etc/fstab file. If you need group quota, substi-
tute usrquota to grpquota . You can also use them both. Then create empty quota.user
and quota.group files in the roots of the file systems you want to use quotas on (e.g. touch
/home/quota.user /home/quota.group for a /home file system).

Restart quota by doing /etc/init.d/quota stop;/etc/init.d/quota start . Now
quota should be running, and quota sizes can be set.

Editing quotas for a specific user can be done by edquota -u <user> . Group quotas can be
modified with edquota -g <group> . Then set the soft and hard quota and/or inode quotas
as needed.

For more information about quotas, read the quota man page, and the quota mini-howto (
/usr/share/doc/HOWTO/en-html/mini/Quota.html ). You may also want to look at
pam_limits.so .

4.16.2 The ext2 filesystem specific attributes (chattr/lsattr)

In addition to the usual Unix permissions, the ext2 and ext3 filesystems offer a set of specific at-
tributes that give you more control over the files on your system. Unlike the basic permissions,
these attributes are not displayed by the usual ls -l command or changed using chmod, and
you need two other utilities, lsattr and chattr (in package e2fsprogs ) to manage them.
Note that this means that these attributes will usually not be saved when you backup your sys-
tem, so if you change any of them, it may be worth saving the successive chattr commands
in a script so that you can set them again later if you have to restore a backup.

Among all available attributes, the two that are most important for increasing security are
referenced by the letters ’i’ and ’a’, and they can only be set (or removed) by the superuser:



Chapter 4. After installation 78

• The ’i’ attribute (’immutable’): a file with this attribute can neither be modified nor
deleted or renamed and no link can be created to it, even by the superuser.

• The ’a’ attribute (’append’): this attribute has the same effect that the immutable attribute,
except that you can still open the file in append mode. This means that you can still
add more content to it but it is impossible to modify previous content. This attribute is
especially useful for the log files stored in /var/log/ , though you should consider that
they get moved sometimes due to the log rotation scripts.

These attributes can also be set for directories, in which case everyone is denied the right to
modify the contents of a directory list (e.g. rename or remove a file, . . . ). When applied to a
directory, the append attribute only allows file creation.

It is easy to see how the ’a’ attribute improves security, by giving to programs that are not run-
ning as the superuser the ability to add data to a file without modifying its previous content.
On the other hand, the ’i’ attribute seems less interesting: after all, the superuser can already
use the basic Unix permissions to restrict access to a file, and an intruder that would get ac-
cess to the superuser account could always use the chattr program to remove the attribute.
Such an intruder may first be confused when he sees that he is not able to remove a file, but
you should not assume that he is blind - after all, he got into your system! Some manuals
(including a previous version of this document) suggest to simply remove the chattr and
lsattr programs from the system to increase security, but this kind of strategy, also known as
“security by obscurity”, is to be absolutely avoided, since it provides a false sense of security.

A secure way to solve this problem is to use the capabilities of the Linux kernel, as
described in ‘Proactive defense’ on page 177. The capability of interest here is called
CAP_LINUX_IMMUTABLE: if you remove it from the capabilities bounding set (using for ex-
ample the command lcap CAP_LINUX_IMMUTABLE) it won’t be possible to change any ’a’
or ’i’ attribute on your system anymore, even by the superuser ! A complete strategy could be
as follows:

1 Set the attributes ’a’ and ’i’ on any file you want;

2 Add the command lcap CAP_LINUX_IMMUTABLE (as well as lcap
CAP_SYS_MODULE, as suggested in ‘Proactive defense’ on page 177) to one of the
startup scripts;

3 Set the ’i’ attribute on this script and other startup files, as well as on the lcap binary
itself;

4 Execute the above command manually (or reboot your system to make sure everything
works as planned).

Now that the capability has been removed from the system, an intruder cannot change any
attribute on the protected files, and thus cannot change or remove the files. If he forces the
machine to reboot (which is the only way to restore the capabilities bounding set), it will easily
be detected, and the capability will be removed again as soon as the system restarts anyway.
The only way to change a protected file would be to boot the system in single-user mode or
using another bootdisk, two operations that require physical access to the machine !



Chapter 4. After installation 79

4.16.3 Checking file system integrity

Are you sure /bin/login on your hard drive is still the binary you installed there some
months ago? What if it is a hacked version, which stores the entered password in a hidden file
or mails it in clear-text version all over the Internet?

The only method to have some kind of protection is to check your files every hour/day/month
(I prefer daily) by comparing the actual and the old md5sum of this file. Two files cannot have
the same md5sum (the MD5 digest is 128 bits, so the chance that two different files will have
the same md5sum is roughly one in 3.4e3803), so you’re on the safe site here, unless someone
has also hacked the algorithm that creates md5sums on that machine. This is, well, extremely
difficult and very unlikely. You really should consider this auditing of your binaries as very
important, since it is an easy way to recognize changes at your binaries.

Common tools used for this are sxid , aide (Advanced Intrusion Detection Environment),
tripwire , integrit and samhain . Installing debsums will also help you to check the file
system integrity, by comparing the md5sums of every file against the md5sums used in the
Debian package archive. But beware: those files can easily be changed by an attacker and not
all packages provide md5sums listings for the binaries they provided. For more information
please read ‘Do periodic integrity checks’ on page 174 and ‘Taking a snapshot of the system’
on page 87.

You might want to use locate to index the whole filesystem, if so, consider the implications
of that. The Debian findutils package contains locate which runs as user nobody, and so
it only indexes files which are visible to everybody. However, if you change it’s behaviour you
will make all file locations visible to all users. If you want to index all the filesystem (not the
bits that the user nobody can see) you can replace locate with the package slocate . slocate
is labeled as a security enhanced version of GNU locate, but it actually provides additional file-
locating functionality. When using slocate , the user only sees the files he really has access
to and you can exclude any files or directories on the system. The slocate package runs its
update process with higher privledges than locate, and indexes every file. Users are then able
to quickly search for every file which they are able to see. slocate doesn’t let them see new
files; it filters the output based on your UID.

You might want to use bsign or elfsign . elfsign provides an utility to add a digital signa-
ture to an ELF binary and a second utility to verify that signature. The current implementation
uses PKI to sign the checksum of the binary. The benefits of doing this are that it enables one to
determine if a binary has been modified and who created it. bsign uses GPG, elfsign uses
PKI (X.509) certificates (OpenSSL).

4.16.4 Setting up setuid check

The Debian checksecurity package provides a cron job that runs daily
in /etc/cron.daily/checksecurity 26. This cron job will run the
/usr/sbin/checksecurity script that will store information of this changes.

26In previous releases, checksecurity was integrated into cron and the file was /etc/cron.daily/standard



Chapter 4. After installation 80

The default behavior does not send this information to the superuser but, instead keeps daily
copies of the changes in /var/log/setuid.changes . You should set the MAILTO vari-
able (in /etc/checksecurity.conf ) to ’root’ to have this information mailed to him. See
checksecurity(8) for more configuration info.

4.17 Securing network access

FIXME: More (Debian-specific) content needed.

4.17.1 Configuring kernel network features

Many features of the kernel can be modified while running by echoing something into the
/proc file system or by using sysctl . By entering /sbin/sysctl -A you can see what you
can configure and what the options are, and it can be modified running /sbin/sysctl -w
variable=value (see sysctl(8) ). Only in rare cases do you need to edit something here,
but you can increase security that way as well. For example:

net/ipv4/icmp_echo_ignore_broadcasts = 1

This is a Windows emulator because it acts like Windows on broadcast ping if this option is set
to 1. That is, ICMP echo requests sent to the broadcast address will be ignored. Otherwise, it
does nothing.

If you want to prevent you system from answering ICMP echo requests, just enable this con-
figuration option:

net/ipv4/icmp_echo_ignore_all = 1

To log packets with impossible addresses (due to wrong routes) on your network use:

/proc/sys/net/ipv4/conf/all/log_martians = 1

For more information on what things can be done with /proc/sys/net/ipv4/* read /usr
/src/linux/Documentation/filesystems/proc.txt . All the options are described
thoroughly under /usr/src/linux/Documentation/networking/ip-sysctl.txt 27.

27In Debian the kernel-source- version packages copy the sources to /usr/src
/kernel-source- version .tar.bz2 , just substitute version to whatever kernel version sources you have
installed



Chapter 4. After installation 81

4.17.2 Configuring syncookies

This option is a double-edged sword. On the one hand it protects your system against syn
packet flooding; on the other hand it violates defined standards (RFCs).

net/ipv4/tcp_syncookies = 1

If you want to change this option each time the kernel is working you need to change it
in /etc/network/options by setting syncookies=yes . This will take effect when ever
/etc/init.d/networking is run (which is typically done at boot time) while the following
will have a one-time effect until the reboot:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

This option will only be available if the kernel is compiled with the CONFIG_SYNCOOKIES. All
Debian kernels are compiled with this option builtin but you can verify it running:

$ sysctl -A |grep syncookies
net/ipv4/tcp_syncookies = 1

For more information on TCP syncookies read http://cr.yp.to/syncookies.html .

4.17.3 Securing the network on boot-time

When setting configuration options for the kernel networking you need configure it so that it’s
loaded every time the system is restarted. The following example enables many of the previous
options as well as other useful options.

There are actually two ways to configure your network at boot time. You can configure /etc
/sysctl.conf (see: sysctl.conf(5) ) or introduce a script that is called when the interface
is enabled. The first option will be applied to all interfaces, whileas the second option allows
you to configure this on a per-interface basis.

An example of a /etc/sysctl.conf configuration that will secure some network options
at the kernel level is shown below. Notice the comment in it, /etc/network/options
might override some values if they contradict those in this file when the /etc/init.d
/networking is run (which is later than procps on the startup sequence).

#
# /etc/sysctl.conf - Configuration file for setting system variables
# See sysctl.conf (5) for information. Also see the files under
# Documentation/sysctl/, Documentation/filesystems/proc.txt, and
# Documentation/networking/ip-sysctl.txt in the kernel sources
# (/usr/src/kernel-$version if you have a kernel-package installed)

http://cr.yp.to/syncookies.html


Chapter 4. After installation 82

# for more information of the values that can be defined here.

#
# Be warned that /etc/init.d/procps is executed to set the following
# variables. However, after that, /etc/init.d/networking sets some
# network options with builtin values. These values may be overridden
# using /etc/network/options.
#
#kernel.domainname = example.com

# Additional settings - adapted from the script contributed
# by Dariusz Puchala (see below)
# Ignore ICMP broadcasts
net/ipv4/icmp_echo_ignore_broadcasts = 1
#
# Ignore bogus ICMP errors
net/ipv4/icmp_ignore_bogus_error_responses = 1
#
# Do not accept ICMP redirects (prevent MITM attacks)
net/ipv4/conf/all/accept_redirects = 0
# _or_
# Accept ICMP redirects only for gateways listed in our default
# gateway list (enabled by default)
# net/ipv4/conf/all/secure_redirects = 1
#
# Do not send ICMP redirects (we are not a router)
net/ipv4/conf/all/send_redirects = 0
#
# Do not forward IP packets (we are not a router)
# Note: Make sure that /etc/network/options has ’ip_forward=no’
net/ipv4/conf/all/forwarding = 0
#
# Enable TCP Syn Cookies
# Note: Make sure that /etc/network/options has ’syncookies=yes’
net/ipv4/tcp_syncookies = 1
#
# Log Martian Packets
net/ipv4/conf/all/log_martians = 1
#
# Turn on Source Address Verification in all interfaces to
# prevent some spoofing attacks
# Note: Make sure that /etc/network/options has ’spoofprotect=yes’
net/ipv4/conf/all/rp_filter = 1
#
# Do not accept IP source route packets (we are not a router)
net/ipv4/conf/all/accept_source_route = 0



Chapter 4. After installation 83

To use the script you need to first create the script, for example, in /etc/network
/interface-secure (the name is given as an example) and call it from /etc/network
/interfaces like this:

auto eth0
iface eth0 inet static

address xxx.xxx.xxx.xxx
netmask 255.255.255.xxx
broadcast xxx.xxx.xxx.xxx
gateway xxx.xxx.xxx.xxx
pre-up /etc/network/interface-secure

In this example, before the interface eth0 is enabled the script will be called to secure all net-
work interfaces as shown below.

#!/bin/sh -e
# Script-name: /etc/network/interface-secure
#
# Modifies some default behavior in order to secure against
# some TCP/IP spoofing & attacks for all interfaces.
#
# Contributed by Dariusz Puchalak.
#
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

# Broadcast echo protection enabled.
echo 0 > /proc/sys/net/ipv4/conf/all/forwarding

# IP forwarding disabled.
echo 1 > /proc/sys/net/ipv4/tcp_syncookies # TCP syn cookies protection enabled.
echo 1 >/proc/sys/net/ipv4/conf/all/log_martians # Log strange packets.
# (this includes spoofed packets, source routed packets, redirect packets)
# but be careful with this on heavy loaded web servers.
echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses

# Bad error message protection enabled.

# IP spoofing protection.
echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter

# Disable ICMP redirect acceptance.
echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects

# Disable source routed packets.
echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

exit 0



Chapter 4. After installation 84

Notice that you can actually have per-interface scripts that will enable different network op-
tions for different interfaces (if you have more than one), just change the pre-up line to:

pre-up /etc/network/interface-secure $IFACE

And use a script which will only apply changes to a specific interface, not to all of the interfaces
available. Notice that some networking options can only be enabled globally, however. A
sample script is this one:

#!/bin/sh -e
# Script-name: /etc/network/interface-secure
#
# Modifies some default behavior in order to secure against
# some TCP/IP spoofing & attacks for a given interface.
#
# Contributed by Dariusz Puchalak.
#

IFACE=$1
if [ -z "$IFACE" ] ; then

echo "$0: Must give an interface name as argument!"
echo "Usage: $0 <interface>"
exit 1

fi

if [ ! -e /proc/sys/net/ipv4/conf/$IFACE/ ]; then
echo "$0: Interface $IFACE does not exit (cannot find /proc/sys/net/ipv4/conf/)"
exit 1

fi

echo 0 > /proc/sys/net/ipv4/conf/$IFACE/forwarding # IP forwarding disabled.
echo 1 >/proc/sys/net/ipv4/conf/$IFACE/log_martians # Log strange packets.
# (this includes spoofed packets, source routed packets, redirect packets)
# but be careful with this on heavy loaded web servers.

# IP spoofing protection.
echo 1 > /proc/sys/net/ipv4/conf/$IFACE/rp_filter

# Disable ICMP redirect acceptance.
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/send_redirects

# Disable source routed packets.
echo 0 > /proc/sys/net/ipv4/conf/$IFACE/accept_source_route

exit 0



Chapter 4. After installation 85

An alternative solution is to create an init.d script and have it run on bootup (using
update-rc.d to create the appropriate rc.d links).

4.17.4 Configuring firewall features

In order to have firewall capabilities, either to protect the local system or others behind it, the
kernel needs to be compiled with firewall capabilities. The standard Debian 2.2 kernel (Linux
2.2) provides the packet filter ipchains firewall, Debian 3.0 standard kernel (Linux 2.4) pro-
vides the stateful packet filter iptables (netfilter) firewall.

In any case, it is pretty easy to use a kernel different from the one provided by Debian. You
can find pre-compiled kernels as packages you can easily install in the Debian system. You
can also download the kernel sources using the kernel-source- X and build custom kernel
packages using make-kpkg from the kernel-package package.

Setting up firewalls in Debian is discussed more thoroughly in ‘Adding firewall capabilities’
on page 114.

4.17.5 Disabling weak-end hosts issues

Systems with more than one interface on different networks can have services configured so
that they will bind only to a given IP address. This usually prevents access to services when
requested through any other address. However, this does not mean (although it is a common
misconception) that the service is bound to a given hardware address (interface card). 28

This is not an ARP issue and it’s not an RFC violation (it’s called weak end host in RFC1122 (ftp:
//ftp.isi.edu/in-notes/rfc1122.txt ), section 3.3.4.2). Remember, IP addresses have
nothing to do with physical interfaces.

On 2.2 (and previous) kernels this can be fixed with:

# echo 1 > /proc/sys/net/ipv4/conf/all/hidden
# echo 1 > /proc/sys/net/ipv4/conf/eth0/hidden
# echo 1 > /proc/sys/net/ipv4/conf/eth1/hidden
.....

On later kernels this can be fixed either with:

• iptables rules.

28To reproduce this (example provided by Felix von Leitner on the Bugtraq mailing list):

host a (eth0 connected to eth0 of host b): ifconfig eth0 10.0.0.1 ifconfig eth1
23.0.0.1 tcpserver -RHl localhost 23.0.0.1 8000 echo fnord host b: ifconfig eth0
10.0.0.2 route add 23.0.0.1 gw 10.0.0.1 telnet 23.0.0.1 8000

It seems, however, not to work with services bound to 127.0.0.1, you might need to write the tests using raw sockets.

ftp://ftp.isi.edu/in-notes/rfc1122.txt
ftp://ftp.isi.edu/in-notes/rfc1122.txt


Chapter 4. After installation 86

• properly configured routing. 29

• kernel patching. 30

Along this text there will be many occasions in which it is shown how to configure some ser-
vices (sshd server, apache, printer service. . . ) in order to have them listening on any given
address, the reader should take into account that, without the fixes given here, the fix would
not prevent accesses from within the same (local) network. 31

FIXME: Comments on Bugtraq indicate there is a Linux specific method to bind to a given
interface.

FIXME: Submit a bug against netbase so that the routing fix is standard behavior in Debian?

4.17.6 Protecting against ARP attacks

When you don’t trust the other boxes on your LAN (which should always be the case, because
it’s the safest attitude) you should protect yourself from the various existing ARP attacks.

As you know the ARP protocol is used to link IP addresses to MAC addresses (see RFC826
(ftp://ftp.isi.edu/in-notes/rfc826.txt ) for all the details). Every time you send a
packet to an IP address an ARP resolution is done (first by looking into the local ARP cache
then if the IP isn’t present in the cache by broadcasting an ARP query) to find the target’s
hardware address. All the ARP attacks aim to fool your box into thinking that box B’s IP
address is associated to the intruder’s box’s MAC address; Then every packet that you want to
send to the IP associated to box B will be send to the intruder’s box. . .

Those attacks (ARP cache poisoning, ARP spoofing. . . ) allow the attacker to sniff the traffic
even on switched networks, to easily hijack connections, to disconnect any host from the net-
work. . . ARP attacks are powerful and simple to implement, and several tools exists, such
as arpspoof from the dsniff package or arpoison (http://arpoison.sourceforge.
net/ ).

However, there is always a solution:

• Use a static ARP cache. You can set up “static” entries in your ARP cache with:

29The fact that this behavior can be changed through routing was described by Matthew G. Marsh in the Bugtraq
thread:

eth0 = 1.1.1.1/24 eth1 = 2.2.2.2/24 ip rule add from 1.1.1.1/32 dev lo table 1 prio
15000 ip rule add from 2.2.2.2/32 dev lo table 2 prio 16000 ip route add default dev
eth0 table 1 ip route add default dev eth1 table 2

30There are some patches available for this behavior as described in Bugtraq’s thread at http://www.
linuxvirtualserver.org/~julian/#hidden and http://www.fefe.de/linux-eth-forwarding.
diff .

31An attacker might have many problems pulling the access through after configuring the IP-address binding if
he is not on the same broadcast domain (same network) as the attacked host. If the attack goes through a router it
might be quite difficult for the answers to return somewhere.

ftp://ftp.isi.edu/in-notes/rfc826.txt
http://arpoison.sourceforge.net/
http://arpoison.sourceforge.net/
http://www.linuxvirtualserver.org/~julian/#hidden
http://www.linuxvirtualserver.org/~julian/#hidden
http://www.fefe.de/linux-eth-forwarding.diff
http://www.fefe.de/linux-eth-forwarding.diff


Chapter 4. After installation 87

arp -s host_name hdwr_addr

By setting static entries for each important host in your network you ensure that nobody
will create/modify a (fake) entry for these hosts (static entries don’t expire and can’t be
modified) and spoofed ARP replies will be ignored.

• Detect suspicious ARP traffic. You can use arpwatch , karpski or more general IDS that
can also detect suspicious ARP traffic (snort , prelude (http://www.prelude-ids.
org ). . . ).

• Implement IP traffic filtering validating the MAC address.

4.18 Taking a snapshot of the system

Before putting the system into production system you could take a snapshot of the whole
system. This snapshot could be used in the event of a compromise (see ‘After the compromise
(incident response)’ on page 181). You should remake this upgrade whenever the system is
upgraded, especially if you upgrade to a new Debian release.

For this you can use a writable removable-media that can be set up read-only, this could be a
floppy disk (read protected after use), a CD on a CD-ROM unit (you could use a rewritable
CD-ROM so you could even keep backups of md5sums in different dates), or a USB disk or
MMC card (if your system can access those and they can be write protected).

The following script creates such a snapshot:

#!/bin/bash
/bin/mount /dev/fd0 /mnt/floppy
if [ ! -f /usr/bin/md5sum ] ; then

echo "Cannot find md5sum. Aborting."
exit 1

fi
/bin/cp /usr/bin/md5sum /mnt/floppy
echo "Calculating md5 database"
>/mnt/floppy/md5checksums.txt
for dir in /bin/ /sbin/ /usr/bin/ /usr/sbin/ /lib/ /usr/lib/
do

find $dir -type f | xargs /usr/bin/md5sum >>/mnt/floppy/md5checksums-lib.txt
done
echo "post installation md5 database calculated"
if [ ! -f /usr/bin/sha1sum ] ; then

echo "Cannot find sha1sum"
else

/bin/cp /usr/bin/sha1sum /mnt/floppy
echo "Calculating SHA-1 database"
>/mnt/floppy/sha1checksums.txt

http://www.prelude-ids.org
http://www.prelude-ids.org


Chapter 4. After installation 88

for dir in /bin/ /sbin/ /usr/bin/ /usr/sbin/ /lib/ /usr/lib/
do

find $dir -type f | xargs /usr/bin/sha1sum >>/mnt/floppy/sha1checksums-lib.txt
done
echo "post installation sha1 database calculated"

fi
/bin/umount /dev/fd0
exit 0

Note that the md5sum binary (and sha1sum, if available) is placed on the floppy drive so it
can be used later on to check the binaries of the system (just in case it gets trojaned). However,
if you want to make sure that you are running a legitimate binary, you might want to either
compile a static copy of the md5sum binary and use that one (to prevent a trojaned libc library
from interfering with the binary) or to use the snapshot of md5sums only from a clean environ-
ment such as a rescue CD-ROM or a Live-CD (to prevent a trojaned kernel from interfering). I
cannot stress this enough: if you are on a compromised system you cannot trust its output, see
‘After the compromise (incident response)’ on page 181.

The snapshot does not include the files under /var/lib/dpkg/info which includes the
MD5 hashes of installed packages (in files ending with .md5sums ). You could copy this infor-
mation along too, however you should notice:

• the md5sums files include the md5sum of all files provided by the Debian packages, not
just system binaries. As a consequence, that database is bigger (5 Mb versus 600 Kb in
a Debian GNU/Linux system with a graphical system and around 2.5 Gb of software
installed) and will not fit in small removable media (like a single floppy disk, but would
probably fit in a removable USB memory).

• not all Debian packages provide md5sums for the files installed since it is not (currently)
mandated policy. Notice, however, that you can generate the md5sums for all packages
using debsums after you’ve finished the system installation:

# debsums --generate=missing,keep

Once the snapshot is done you should make sure to set the medium read-only. You can then
store it for backup or place it in the drive and use it to drive a cron check nightly comparing
the original md5sums against those on the snapshot.

If you do not want to setup a manual check you can always use any of the integrity systems
available that will do this and more, for more information please read ‘Do periodic integrity
checks’ on page 174.



Chapter 4. After installation 89

4.19 Other recommendations

4.19.1 Do not use software depending on svgalib

SVGAlib is very nice for console lovers like me, but in the past it has been proven several times
that it is very insecure. Exploits against zgv were released, and it was simple to become root.
Try to prevent using SVGAlib programs wherever possible.



Chapter 4. After installation 90



91

Chapter 5

Securing services running on your
system

Services can be secured in a running system in two ways:

• Making them only accessible at the access points (interfaces) they need to be in.

• Configuring them properly so that they can only be used by legitimate users in an autho-
rized manner.

Restricting services so that they can only be accessed from a given place can be done by re-
stricting access to them at the kernel (i.e. firewall) level, configure them to listen only on a
given interface (some services might not provide this feature) or using some other methods,
for example the Linux vserver patch (for 2.4.16) can be used to force processes to use only one
interface.

Regarding the services running from inetd (telnet , ftp , finger , pop3 . . . ) it is worth
noting that inetd can be configured so that services only listen on a given interface (using
service@ip syntax) but that’s an undocumented feature. One of its substitutes, the xinetd
meta-daemon includes a bind option just for this matter. See xinetd.conf(5) .

service nntp
{

socket_type = stream
protocol = tcp
wait = no
user = news
group = news
server = /usr/bin/env
server_args = POSTING_OK=1 PATH=/usr/sbin/:/usr/bin:/sbin/:/bin

+/usr/sbin/snntpd logger -p news.info
bind = 127.0.0.1

}



Chapter 5. Securing services running on your system 92

The following sections detail how specific individual services can be configured properly de-
pending on their intended use.

5.1 Securing ssh

If you are still running telnet instead of ssh, you should take a break from this manual and
change this. Ssh should be used for all remote logins instead of telnet. In an age where it is
easy to sniff Internet traffic and get clear-text passwords, you should use only protocols which
use cryptography. So, perform an apt-get install ssh on your system now.

Encourage all the users on your system to use ssh instead of telnet, or even better, uninstall
telnet/telnetd. In addition you should avoid logging into the system using ssh as root and use
alternative methods to become root instead, like su or sudo . Finally, the sshd_config file,
in /etc/ssh , should be modified to increase security as well:

• ListenAddress 192.168.0.1

Have ssh listen only on a given interface, just in case you have more than one (and do
not want ssh available on it) or in the future add a new network card (and don’t want ssh
connections from it).

• PermitRootLogin no

Try not to permit Root Login wherever possible. If anyone wants to become root via ssh,
now two logins are needed and the root password cannot be brute forced via SSH.

• Port 666 or ListenAddress 192.168.0.1:666

Change the listen port, so the intruder cannot be completely sure whether a sshd daemon
runs (be forewarned, this is security by obscurity).

• PermitEmptyPasswords no

Empty passwords make a mockery of system security.

• AllowUsers alex ref me@somewhere

Allow only certain users to have access via ssh to this machine. user@host can also be
used to restrict a given user from accessing only at a given host.

• AllowGroups wheel admin

Allow only certain group members to have access via ssh to this machine. AllowGroups
and AllowUsers have equivalent directives for denying access to a machine. Not surpris-
ingly they are called “DenyUsers” and “DenyGroups”.

• PasswordAuthentication yes

It is completely your choice what you want to do. It is more secure to only allow access
to the machine from users with ssh-keys placed in the ~/.ssh/authorized_keys file.
If you want so, set this one to “no”.



Chapter 5. Securing services running on your system 93

• Disable any form of authentication you do not really need, if you do not
use, for example RhostsRSAAuthentication , HostbasedAuthentication ,
KerberosAuthentication or RhostsAuthentication you should disable them,
even if they are already by default (see the manpage sshd_config(5) ).

• Protocol 2

Disable the protocol version 1, since it has some design flaws that make it easier to crack
passwords. For more information read a paper regarding ssh protocol problems (http:
//earthops.net/ssh-timing.pdf ) or the Xforce advisory (http://xforce.iss.
net/static/6449.php ).

• Banner /etc/ some_file

Add a banner (it will be retrieved from the file) to users connecting to the ssh server. In
some countries sending a warning before access to a given system about unauthorized
access or user monitoring should be added to have legal protection.

You can also restrict access to the ssh server using pam_listfile or pam_wheel in the PAM
control file. For example, you could keep anyone not listed in /etc/loginusers away by
adding this line to /etc/pam.d/ssh :

auth required pam_listfile.so sense=allow onerr=fail item=user file=/etc/loginusers

As a final note, be aware that these directives are from a OpenSSH configuration file. Right
now, there are three commonly used SSH daemons, ssh1, ssh2, and OpenSSH by the OpenBSD
people. Ssh1 was the first ssh daemon available and it is still the most commonly used (there
are rumors that there is even a Windows port). Ssh2 has many advantages over ssh1 except
it is released under a closed-source license. OpenSSH is completely free ssh daemon, which
supports both ssh1 and ssh2. OpenSSH is the version installed on Debian when the package
ssh is chosen.

You can read more information on how to set up SSH with PAM support in the
security mailing list archives (http://lists.debian.org/debian-security/2001/
debian-security-200111/msg00395.html ).

5.1.1 Chrooting ssh

Currently OpenSSH does not provide a way to chroot automatically users upon connection
(the commercial version does provide this functionality). However there is a project to provide
this functionality for OpenSSH too, see http://chrootssh.sourceforge.net , it is not
currently packaged for Debian, though. You could use, however, the pam_chroot module as
described in ‘Restricting users’s access’ on page 62.

In ‘Chroot environment for SSH’ on page 229 you can find several options to make a chroot
environment for SSH.

http://earthops.net/ssh-timing.pdf
http://earthops.net/ssh-timing.pdf
http://xforce.iss.net/static/6449.php
http://xforce.iss.net/static/6449.php
http://lists.debian.org/debian-security/2001/debian-security-200111/msg00395.html
http://lists.debian.org/debian-security/2001/debian-security-200111/msg00395.html
http://chrootssh.sourceforge.net


Chapter 5. Securing services running on your system 94

5.1.2 Ssh clients

If you are using an SSH client against the SSH server you must make sure that it supports the
same protocols that are enforced on the server. For example, if you use the mindterm package,
it only supports protocol version 1. However, the sshd server is, by default, configured to only
accept version 2 (for security reasons).

5.1.3 Disallowing file transfers

If you do not want users to transfer files to and from the ssh server you need to restrict access
to the sftp-server and the scp access. You can restrict sftp-server by configuring the
proper Subsystem in the /etc/ssh/sshd_config .

You can also chroot users (using libpam-chroot so that, even if file transfer is allowed, they
are limited to an environment which does not include any system files.

5.1.4 Restricing access to file transfer only

You might want to restrict access to users so that they can only do file transfers and cannot
have interactive shells. In order to do this you can either:

• disallow users from login to the ssh server (as described above either through the config-
uration file or PAM configuration).

• give users a restricted shell such as scponly or rssh . These shells restrict the commands
available to the users so that they are not provided any remote execution priviledges.

5.2 Securing Squid

Squid is one of the most popular proxy/cache server, and there are some security issues that
should be taken into account. Squid’s default configuration file denies all users requests.
However the Debian package allows access from ’localhost’, you just need to configure your
browser properly. You should configure Squid to allow access to trusted users, hosts or net-
works defining an Access Control List on /etc/squid/squid.conf , see the Squid User’s
Guide (http://www.deckle.co.za/squid-users-guide/Main_Page ) for more infor-
mation about defining ACLs rules. Notice that Debian provides a minimum configuration for
Squid that will prevent anything, except from localhost to connect to your proxy server (which
will run in the default port 3128). You will need to customize your /etc/squid/squid.conf
as needed. The recommended minimum configuration (provided with the package) is shown
below:

acl all src 0.0.0.0/0.0.0.0
acl manager proto cache_object

http://www.deckle.co.za/squid-users-guide/Main_Page


Chapter 5. Securing services running on your system 95

acl localhost src 127.0.0.1/255.255.255.255
acl SSL_ports port 443 563
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 # https, snews
acl Safe_ports port 70 # gopher
acl Safe_ports port 210 # wais
acl Safe_ports port 1025-65535 # unregistered ports
acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl Safe_ports port 901 # SWAT
acl purge method PURGE
acl CONNECT method CONNECT
(...)
# Only allow cachemgr access from localhost
http_access allow manager localhost
http_access deny manager
# Only allow purge requests from localhost
http_access allow purge localhost
http_access deny purge
# Deny requests to unknown ports
http_access deny !Safe_ports
# Deny CONNECT to other than SSL ports
http_access deny CONNECT !SSL_ports
#
# INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS
#
http_access allow localhost
# And finally deny all other access to this proxy
http_access deny all
#Default:
# icp_access deny all
#
#Allow ICP queries from everyone
icp_access allow all

You should also configure Squid based on your system resources, including cache memory
(option cache_mem), location of the cached files and the amount of space they will take up on
disk (option cache_dir ).

Notice that, if not properly configured, someone may relay a mail message through Squid,
since the HTTP and SMTP protocols are designed similarly. Squid’s default configuration file
denies access to port 25. If you wish to allow connections to port 25 just add it to Safe_ports
lists. However, this is NOT recommended.



Chapter 5. Securing services running on your system 96

Setting and configuring the proxy/cache server properly is only part of keeping your site se-
cure. Another necessary task is to analyze Squid’s logs to assure that all things are working
as they should be working. There are some packages in Debian GNU/Linux that can help an
administrator to do this. The following packages are available in Debian 3.0 and Debian 3.1
(sarge):

• calamaris - Log analyzer for Squid or Oops proxy log files.

• modlogan - A modular logfile analyzer.

• sarg - Squid Analysis Report Generator.

• squidtaild - Squid log monitoring program.

When using Squid in Accelerator Mode it acts as a web server too. Turning on this option
increases code complexity, making it less reliable. By default Squid is not configured to act
as a web server, so you don’t need to worry about this. Note that if you want to use this
feature be sure that it is really necessary. To find more information about Accelerator Mode
on Squid see the Squid User’s Guide - Accelerator Mode (http://www.deckle.co.za/
squid-users-guide/Accelerator_Mode )

5.3 Securing FTP

If you really have to use FTP (without wrapping it with sslwrap or inside a SSL or SSH tunnel),
you should chroot ftp into the ftp users’ home directory, so that the user is unable to see any-
thing else than their own directory. Otherwise they could traverse your root file system just
like if they had a shell in it. You can add the following line in your proftpd.conf in your
global section to enable this chroot feature:

DefaultRoot ~

Restart ProFTPd by /etc/init.d/proftpd restart and check whether you can escape
from your homedir now.

To prevent ProFTPd DoS attacks using ../../.., add the following line in /etc/proftpd.conf :
DenyFilter \*.*/

Always remember that FTP sends login and authentication passwords in clear text (this is not
an issue if you are providing an anonymous public service) and there are better alternatives
in Debian for this. For example, sftp (provided by ssh ). There are also free implemen-
tations of SSH for other operating systems: putty (http://www.chiark.greenend.org.
uk/~sgtatham/putty/ ) and cygwin (http://www.cygwin.com ) for example.

However, if you still maintain the FTP server while making users access through SSH you
might encounter a typical problem. Users accessing anonymous FTP servers inside SSH-
secured systems might try to log in the FTP server. While the access will be refused, the

http://www.deckle.co.za/squid-users-guide/Accelerator_Mode
http://www.deckle.co.za/squid-users-guide/Accelerator_Mode
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.cygwin.com


Chapter 5. Securing services running on your system 97

password will nevertheless be sent through the net in clear form. To avoid that, ProFTPd
developer TJ Saunders has created a patch that prevents users feeding the anonymous FTP
server with valid SSH accounts. More information and patch available at: ProFTPD Patches
(http://www.castaglia.org/proftpd/#Patches ). This patch has been reported to De-
bian too, see Bug #145669 (http://bugs.debian.org/145669 ).

5.4 Securing access to the X Window System

Today, X terminals are used by more and more companies where one server is needed for a lot
of workstations. This can be dangerous, because you need to allow the file server to connect to
the clients (X server from the X point of view. X switches the definition of client and server).
If you follow the (very bad) suggestion of many docs, you type xhost + on your machine.
This allows any X client to connect to your system. For slightly better security, you can use the
command xhost +hostname instead to only allow access from specific hosts.

A much more secure solution, though, is to use ssh to tunnel X and encrypt the whole session.
This is done automatically when you ssh to another machine. For this to work, you have to
configure both the ssh client and the ssh server. On the ssh client, ForwardX11 should be set
to yes in /etc/ssh/ssh_config . On the ssh server, X11Forwarding should be set to yes
in /etc/ssh/sshd_config and the package xbase-clients should be installed because
the ssh server uses /usr/X11R6/bin/xauth (/usr/bin/xauth on Debian unstable) when
setting up the pseudo X display. In times of SSH, you should drop the xhost based access
control completely.

For best security, if you do not need X access from other machines, switch off the binding on
TCP port 6000 simply by typing:

$ startx -- -nolisten tcp

This is the default behavior in Xfree 4.1.0 (the Xserver provided in Debian 3.0 and 3.1). If you
are running Xfree 3.3.6 (i.e. you have Debian 2.2 installed) you can edit /etc/X11/xinit
/xserverrc to have it something along the lines of:

#!/bin/sh
exec /usr/bin/X11/X -dpi 100 -nolisten tcp

If you are using XDM set /etc/X11/xdm/Xservers to: :0 local /usr/bin/X11/X vt7
-dpi 100 -nolisten tcp . If you are using Gdm make sure that the DisallowTCP=true
option is set in the /etc/gdm/gdm.conf (which is the default in Debian). This will basically
append -nolisten tcp to every X command line 1.

You can also set the default’s system timeout for xscreensaver locks. Even if the user can
override it, you should edit the /etc/X11/app-defaults/XScreenSaver configuration
file and change the lock line:

1Gdm will not append -nolisten tcp if it finds a -query or -indirect on the command line since the
query wouldn’t work.

http://www.castaglia.org/proftpd/#Patches
http://bugs.debian.org/145669


Chapter 5. Securing services running on your system 98

*lock: False

(which is the default in Debian) to:

*lock: True

FIXME: Add information on how to disable the screensavers which show the user desktop
(which might have sensitive information).

Read more on X Window security in XWindow-User-HOWTO (http://www.tldp.
org/HOWTO/XWindow-User-HOWTO.html ) (/usr/share/doc/HOWTO/en-txt
/XWindow-User-HOWTO.txt.gz ).

FIXME: Add info on thread of debian-security on how to change config files of XFree 3.3.6 to
do this.

5.4.1 Check your display manager

If you only want to have a display manager installed for local usage (having a nice graphical
login, that is), make sure the XDMCP (X Display Manager Control Protocol) stuff is disabled.
In XDM you can do this with this line in /etc/X11/xdm/xdm-config :

DisplayManager.requestPort: 0

For GDM there should be in your gdm.conf:

[xdmcp]
Enable=false

Normally, all display managers are configured not to start XDMCP services per default in
Debian.

5.5 Securing printing access (the lpd and lprng issue)

Imagine, you arrive at work, and the printer is spitting out endless amounts of paper because
someone is DoSing your line printer daemon. Nasty, isn’t it?

In any UNIX printing architecture, there has to be a way to get the client’s data to the host’s
print server. In traditional lpr and lp , the client command copies or symlinks the data into
the spool directory (which is why these programs are usually SUID or SGID).

In order to avoid any issues you should keep your printer servers especially secure. This
means you need to configure your printer service so it will only allow connections from a set

http://www.tldp.org/HOWTO/XWindow-User-HOWTO.html
http://www.tldp.org/HOWTO/XWindow-User-HOWTO.html


Chapter 5. Securing services running on your system 99

of trusted servers. In order to do this, add the servers you want to allow printing to your /etc
/hosts.lpd .

However, even if you do this, the lpr daemon accepts incoming connections on port 515 of
any interface. You should consider firewalling connections from networks/hosts which are
not allowed printing (the lpr daemon cannot be limited to listen only on a given IP address).

Lprng should be preferred over lpr since it can be configured to do IP access control. And
you can specify which interface to bind to (although somewhat weirdly).

If you are using a printer in your system, but only locally, you will not want to share this
service over a network. You can consider using other printing systems, like the one provided
by cups or PDQ (http://pdq.sourceforge.net/ ) which is based on user permissions of
the /dev/lp0 device.

In cups , the print data is transferred to the server via the HTTP protocol. This means the client
program doesn’t need any special privileges, but does require that the server is listening on a
port somewhere.

However, if you want to use cups , but only locally, you can configure it to bind to the loopback
interface by changing /etc/cups/cupsd.conf :

Listen 127.0.0.1:631

There are many other security options like allowing or denying networks and hosts in this
config file. However, if you do not need them you might be better off just limiting the listening
port. Cups also serves documentation through the HTTP port, if you do not want to disclose
potential useful information to outside attackers (and the port is open) add also:

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1

</Location>

This configuration file can be modified to add some more features including SSL/TLS certifi-
cates and crypto. The manuals are available at http://localhost:631/ or at cups.org .

FIXME: Add more content (the article on Amateur Fortress Building (http://www.
rootprompt.org ) provides some very interesting views).

FIXME: Check if PDG is available in Debian, and if so, suggest this as the preferred printing
system.

FIXME: Check if Farmer/Wietse has a replacement for printer daemon and if it’s available in
Debian.

http://pdq.sourceforge.net/
cups.org
http://www.rootprompt.org
http://www.rootprompt.org


Chapter 5. Securing services running on your system 100

5.6 Securing the mail service

If your server is not a mailing system, you do not really need to have a mail daemon listening
for incoming connections, but you might want local mail delivered in order, for example, to
receive mail for the root user from any alert systems you have in place.

If you have exim you do not need the daemon to be working in order to do this since the
standard cron job flushes the mail queue. See ‘Disabling daemon services’ on page 39 on how
to do this.

5.6.1 Configuring a Nullmailer

You might want to have a local mailer daemon so that it can relay the mails sent locally to
another system. This is common when you have to administer a number of systems and do
not want to connect to each of them to read the mail sent locally. Just as all logging of each
individual system can be centralized by using a central syslog server, mail can be sent to a
central mailserver.

Such a relay-only system should be configured properly for this. The daemon could, as well, be
configured to only listen on the loopback address.

The following configuration steps only need to be taken to configure the exim package in
the Debian 3.0 release. If you are using a later release (such as 3.1 which uses exim4 ) the
installation system has been improved so that if the mail transport agent is configured to only
deliver local mail it will automatically only allow connections from the local host and will not
permit remote connections.

In a Debian 3.0 system using exim , you will have to remove the SMTP daemon from inetd :

$ update-inetd --disable smtp

and configure the mailer daemon to only listen on the loopback interface. In exim (the default
MTA) you can do this by editing the file /etc/exim.conf and adding the following line:

local_interfaces = "127.0.0.1"

Restart both daemons (inetd and exim) and you will have exim listening on the 127.0.0.1:25
socket only. Be careful, and first disable inetd, otherwise, exim will not start since the inetd
daemon is already handling incoming connections.

For postfix edit /etc/postfix/main.conf :

inet_interfaces = localhost



Chapter 5. Securing services running on your system 101

If you only want local mail, this approach is better than tcp-wrapping the mailer daemon or
adding firewalling rules to limit anybody accessing it. However, if you do need it to listen
on other interfaces, you might consider launching it from inetd and adding a tcp wrapper
so incoming connections are checked against /etc/hosts.allow and /etc/hosts.deny .
Also, you will be aware of when an unauthorized access is attempted against your mailer
daemon, if you set up proper logging for any of the methods above.

In any case, to reject mail relay attempts at the SMTP level, you can change /etc/exim
/exim.conf to include:

receiver_verify = true

Even if your mail server will not relay the message, this kind of configuration is needed for the
relay tester at http://www.abuse.net/relay.html to determine that your server is not
relay capable.

If you want a relay-only setup, however, you can consider changing the mailer daemon to
programs that can only be configured to forward the mail to a remote mail server. Debian pro-
vides currently both ssmtp and nullmailer for this purpose. In any case, you can evaluate
for yourself any of the mail transport agents 2 provided by Debian and see which one suits best
to the system’s purposes.

5.6.2 Providing secure access to mailboxes

If you want to give remote access to mailboxes there are a number of POP3 and IMAP daemons
available.3 However, if you provide IMAP access note that it is a general file access protocol, it
can become the equivalent of a shell access because users might be able to retrieve any file that
they can through it.

Try, for example, to configure as your inbox path {server.com}/etc/passwd if it succeeds
your IMAP daemon is not properly configured to prevent this kind of access.

Of the IMAP servers in Debian the cyrus server (in the cyrus-imapd package) gets around
this by having all access to a database in a restricted part of the file system. Also, uw-imapd
(either install the uw-imapd or better, if your IMAP clients support it, uw-imapd-ssl ) can be
configured to chroot the users mail directory but this is not enabled by default. The documen-
tation provided gives more information on how to configure it.

Also, you might want to run an IMAP server that does not need valid users to be created
on the local system (which would grant shell access too), courier-imap (for IMAP) and

2To retrieve the list of mailer daemons available in Debian try:

$ apt-cache search mail-transport-agent

The list will not include qmail , which is distributed only as source code in the qmail-src package.
3A list of servers/daemons which support these protocols in Debian can be retrieved with:

$ apt-cache search pop3-server $ apt-cache search imap-server

http://www.abuse.net/relay.html


Chapter 5. Securing services running on your system 102

courier-pop , teapop (for POP3) and cyrus-imapd (for both POP3 and IMAP) provide
servers with authentication methods beside the local user accounts. cyrus can use any au-
thentication method that can be configured through PAM while teapop might use databases
(such as postgresql and mysql ) for user authentication.

FIXME: Check: uw-imapd might be configured with user authentication through PAM too.

5.6.3 Receiving mail securely

Reading/receiving mail is the most common clear-text protocol. If you use either POP3 or
IMAP to get your mail, you send your clear-text password across the net, so almost anyone
can read your mail from now on. Instead, use SSL (Secure Sockets Layer) to receive your mail.
The other alternative is SSH, if you have a shell account on the box which acts as your POP or
IMAP server. Here is a basic fetchmailrc to demonstrate this:

poll my-imap-mailserver.org via "localhost"
with proto IMAP port 1236

user "ref" there with password "hackme" is alex here warnings 3600
folders

.Mail/debian
preconnect ’ssh -f -P -C -L 1236:my-imap-mailserver.org:143 -l ref

my-imap-mailserver.org sleep 15 </dev/null > /dev/null’

The preconnect is the important line. It fires up an ssh session and creates the necessary tunnel,
which automatically forwards connections to localhost port 1236 to the IMAP mail server, but
encrypted. Another possibility would be to use fetchmail with the SSL feature.

If you want to provide encrypted mail services like POP and IMAP, apt-get install
stunnel and start your daemons this way:

stunnel -p /etc/ssl/certs/stunnel.pem -d pop3s -l /usr/sbin/popd

This command wraps the provided daemon (-l) to the port (-d) and uses the specified SSL
certificate (-p).

5.7 Securing BIND

There are different issues that can be tackled in order to secure the Domain server daemon,
which are similar to the ones considered when securing any given service:

• configuring the daemon itself properly so it cannot be misused from the outside (see
‘Bind configuration to avoid misuse’ on the facing page). This includes limiting possible
queries from clients: zone transfers and recursive queries.



Chapter 5. Securing services running on your system 103

• limit the access of the daemon to the server itself so if it is used to break in, the damage
to the system is limited. This includes running the daemon as a non-privileged user (see
‘Changing BIND’s user’ on page 105) and chrooting it (see ‘Chrooting the name server’
on page 107).

5.7.1 Bind configuration to avoid misuse

You should restrict some of the information that is served from the DNS server to outside
clients so that it cannot be used to retrieve valuable information from your organization that
you do not want to give away. This includes adding the following options: allow-transfer,
allow-query, allow-recursion and version. You can either limit this on the global section (so it
applies to all the zones served) or on a per-zone basis. This information is documented in
the bind-doc package, read more on this on /usr/share/doc/bind/html/index.html
once the package is installed.

Imagine that your server is connected to the Internet and to your internal (your internal IP is
192.168.1.2) network (a basic multi-homed server), you do not want to give any service to the
Internet and you just want to enable DNS lookups from your internal hosts. You could restrict
it by including in /etc/bind/named.conf :

options {
allow-query { 192.168.1/24; } ;
allow-transfer { none; } ;
allow-recursion { 192.168.1/24; } ;
listen-on { 192.168.1.2; } ;
forward { only; } ;
forwarders { A.B.C.D; } ;

};

The listen-on option makes the DNS bind to only the interface that has the internal address, but,
even if this interface is the same as the interface that connects to the Internet (if you are using
NAT, for example), queries will only be accepted if coming from your internal hosts. If the
system has multiple interfaces and the listen-on is not present, only internal users could query,
but, since the port would be accessible to outside attackers, they could try to crash (or exploit
buffer overflow attacks) on the DNS server. You could even make it listen only on 127.0.0.1 if
you are not giving DNS service for any other systems than yourself.

The version.bind record in the chaos class contains the version of the currently running bind
process. This information is often used by automated scanners and malicious individuals who
wish to determine if one’s bind is vulnerable to a specific attack. By providing false or no
information in the version.bind record, one limits the probability that one’s server will be at-
tacked based on its published version. To provide your own version, use the version directive
in the following manner:

options { ... various options here ...
version "Not available."; };



Chapter 5. Securing services running on your system 104

Changing the version.bind record does not provide actual protection against attacks, but it
might be considered a useful safeguard.

A sample named.conf configuration file might be the following:

acl internal {
127.0.0.1/32; // localhost
10.0.0.0/8; // internal
aa.bb.cc.dd; // eth0 IP

};

acl friendly {
ee.ff.gg.hh; // slave DNS
aa.bb.cc.dd; // eth0 IP
127.0.0.1/32; // localhost
10.0.0.0/8; // internal

};

options {
directory "/var/cache/bind";
allow-query { internal; };
allow-recursion { internal; };
allow-transfer { none; };

};
// From here to the mysite.bogus zone
// is basically unmodified from the debian default
logging {

category lame-servers { null; };
category cname { null; };

};

zone "." {
type hint;
file "/etc/bind/db.root";

};

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

zone "127.in-addr.arpa" {
type master;
file "/etc/bind/db.127";

};



Chapter 5. Securing services running on your system 105

zone "0.in-addr.arpa" {
type master;
file "/etc/bind/db.0";

};

zone "255.in-addr.arpa" {
type master;
file "/etc/bind/db.255";

};

// zones I added myself
zone "mysite.bogus" {

type master;
file "/etc/bind/named.mysite";
allow-query { any; };
allow-transfer { friendly; };

};

Please (again) check the Bug Tracking System regarding Bind, specifically Bug #94760 (regard-
ing ACLs on zone transfers) (http://bugs.debian.org/94760 ). Feel free to contribute to
the bug report if you think you can add useful information.

5.7.2 Changing BIND’s user

Regarding limiting BIND’s privileges you must be aware that if a non-root user runs BIND,
then BIND cannot detect new interfaces automatically, for example when you put a PCMCIA
card into your laptop. Check the README.Debian file in your named documentation (/usr
/share/doc/bind/README.Debian ) directory for more information about this issue. There
have been many recent security problems concerning BIND, so switching the user is useful
when possible. We will detail here the steps needed in order to do this, however, if you want
to do this in an automatic way you might try the script provided in ‘Sample script to change
the default Bind installation.’ on page 223.

Notice, in any case, that this only applies to BIND version 8. In the Debian packages for BIND
version 9 (since the 9.2.1-5 version, available since sarge) the bind user is created and used by
setting the OPTIONS variable in /etc/default/bind9 . If you are using BIND version 9 and
your name server daemon is not running as the bind user verify the settings on that file.

To run BIND under a different user, first create a separate user and group for it (it is not a good
idea to use nobody or nogroup for every service not running as root). In this example, the user
and group named will be used. You can do this by entering:

addgroup named
adduser --system --home /home/named --no-create-home --ingroup named \

--disabled-password --disabled-login named

http://bugs.debian.org/94760


Chapter 5. Securing services running on your system 106

Notice that the user named will be quite restricted. If you want, for whatever reason, to have a
less restrictive setup use:

adduser --system --ingroup named named

Now you can either edit /etc/init.d/bind with your favorite editor and change the line
beginning with

start-stop-daemon --start

to4

start-stop-daemon --start --quiet --exec /usr/sbin/named -- -g named -u named

Or you can change (create it if it does not exit) the default configuration file (/etc/default
/bind for BIND version 8) and introduce the following:

OPTIONS="-u named -g named"

Change the permissions of files that are used by Bind, including /etc/bind/rndc.key :

-rw-r----- 1 root named 77 Jan 4 01:02 rndc.key

and where bind creates its pidfile, using, for example, /var/run/named instead of /var
/run :

$ mkdir /var/run/named
$ chown named.named /var/run/named
$ vi /etc/named.conf
[ ... update the configuration file to use this new location ...]
options { ...

pid-file "/var/run/named/named.pid";
};
[ ... ]

Also, in order to avoid running anything as root, change the reload line in the init.d script by
substituting:

reload)
/usr/sbin/ndc reload

4Note that depending on your bind version you might not have the -g option, most notably if you are using
bind9 in sarge (9.2.4 version).



Chapter 5. Securing services running on your system 107

to:

reload)
$0 stop
sleep 1
$0 start

Note: Depending on your Debian version you might have to change the restart line too.
This was fixed in Debian’s bind version 1:8.3.1-2 .

All you need to do now is to restart bind via /etc/init.d/bind restart , and then check
your syslog for two entries like this:

Sep 4 15:11:08 nexus named[13439]: group = named
Sep 4 15:11:08 nexus named[13439]: user = named

Voilà! Your named now does not run as root. If you want to read more information on
why BIND does not run as non-root user on Debian systems, please check the Bug Track-
ing System regarding Bind, specifically Bug #50013: bind should not run as root (http://
bugs.debian.org/50013 ) and Bug #132582: Default install is potentially insecure (http:
//bugs.debian.org/132582 ), Bug #53550 (http://bugs.debian.org/53550 ), Bug
#52745 (http://bugs.debian.org/52745 ), and Bug #128129 (http://bugs.debian.
org/128129 ). Feel free to contribute to the bug reports if you think you can add useful infor-
mation.

5.7.3 Chrooting the name server

To achieve maximum BIND security, now build a chroot jail (see ‘General chroot and suid
paranoia’ on page 111) around your daemon. There is an easy way to do this: the -t option
(see the named(8) manpage or page 100 of Bind’s 9 documentation (PDF) (http://www.
nominum.com/content/documents/bind9arm.pdf )). This will make Bind chroot itself
into the given directory without you needing to set up a chroot jail and worry about dynamic
libraries. The only files that need to be in the chroot jail are:

dev/null
etc/bind/ - should hold named.conf and all the server zones
sbin/named-xfer - if you do name transfers
var/run/named/ - should hold the PID and the name server cache (if

any) this directory needs to be writable by named user
var/log/named - if you set up logging to a file, needs to be writable

for the named user
dev/log - syslogd should be listening here if named is configured to

log through it

http://bugs.debian.org/50013
http://bugs.debian.org/50013
http://bugs.debian.org/132582
http://bugs.debian.org/132582
http://bugs.debian.org/53550
http://bugs.debian.org/52745
http://bugs.debian.org/128129
http://bugs.debian.org/128129
http://www.nominum.com/content/documents/bind9arm.pdf
http://www.nominum.com/content/documents/bind9arm.pdf


Chapter 5. Securing services running on your system 108

In order for your Bind daemon to work properly it needs permission in the named files. This is
an easy task since the configuration files are always at /etc/named/ . Take into account that
it only needs read-only access to the zone files, unless it is a secondary or cache name server.
If this is your case you will have to give read-write permissions to the necessary zones (so that
zone transfers from the primary server work).

Also, you can find more information regarding Bind chrooting in the Chroot-BIND-
HOWTO (http://www.tldp.org/HOWTO/Chroot-BIND-HOWTO.html ) (regarding Bind
9) and Chroot-BIND8-HOWTO (http://www.tldp.org/HOWTO/Chroot-BIND8-HOWTO.
html ) (regarding Bind 8). This same documents should be available through the instal-
lation of the doc-linux-text (text version) or doc-linux-html (HTML version). An-
other useful document is http://web.archive.org/web/20011024064030/http://
www.psionic.com/papers/dns/dns-linux .

If you are setting up a full chroot jail (i.e. not just -t ) for Bind in Debian, make sure you have
the following files in it5:

dev/log - syslogd should be listening here
dev/null
etc/bind/named.conf
etc/localtime
etc/group - with only a single line: "named:x:GID:"
etc/ld.so.cache - generated with ldconfig
lib/ld-2.3.6.so
lib/libc-2.3.6.so
lib/ld-linux.so.2 - symlinked to ld-2.3.6.so
lib/libc.so.6 - symlinked to libc-2.3.6.so
sbin/ldconfig - may be deleted after setting up the chroot
sbin/named-xfer - if you do name transfers
var/run/

And modify also syslogd listen on $CHROOT/dev/log so the named server can write syslog
entries into the local system log.

If you want to avoid problems with dynamic libraries, you can compile bind statically. You can
use apt-get for this, with the source option. It can even download the packages you need
to properly compile it. You would need to do something similar to:

$ apt-get source bind
# apt-get build-dep bind
$ cd bind-8.2.5-2

(edit src/port/linux/Makefile so CFLAGS includes the ’-static’
option)

$ dpkg-buildpackage -rfakeroot -uc -us
$ cd ..
# dpkg -i bind-8.2.5-2*deb

5This setup has not been tested for new release of Bind yet.

http://www.tldp.org/HOWTO/Chroot-BIND-HOWTO.html
http://www.tldp.org/HOWTO/Chroot-BIND8-HOWTO.html
http://www.tldp.org/HOWTO/Chroot-BIND8-HOWTO.html
http://web.archive.org/web/20011024064030/http://www.psionic.com/papers/dns/dns-linux
http://web.archive.org/web/20011024064030/http://www.psionic.com/papers/dns/dns-linux


Chapter 5. Securing services running on your system 109

After installation, you will need to move around the files to the chroot jail6 you can
keep the init.d scripts in /etc/init.d so that the system will automatically start the
name server, but edit them to add --chroot /location_of_chroot in the calls to
start-stop-daemon in those scripts or use the -t option for BIND by setting it in the OP-
TIONS argument at the /etc/default/bind (for version 8) or /etc/default/bind9 (for
version 9) configuration file.

For more information on how to set up chroots see ‘General chroot and suid paranoia’ on
page 111.

FIXME: Merge info from http://people.debian.org/~pzn/howto/chroot-bind.
sh.txt , http://www.cryptio.net/~ferlatte/config/ (Debian-specific), http:
//web.archive.org/web/20021216104548/http://www.psionic.com/papers/
whitep01.html and http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.
htm .

5.8 Securing Apache

FIXME: Add content: modules provided with the normal Apache installation (under
/usr/lib/apache/X.X/mod_*) and modules that can be installed separately in libapache-mod-
XXX packages.

You can limit access to the Apache server if you only want to use it internally (for testing
purposes, to access the doc-central archive, etc.) and do not want outsiders to access it. To
do this use the Listen or BindAddress directives in /etc/apache/http.conf .

Using Listen:

Listen 127.0.0.1:80

Using BindAddress:

BindAddress 127.0.0.1

Then restart apache with /etc/init.d/apache restart and you will see that it is only
listening on the loopback interface.

In any case, if you are not using all the functionality provided by Apache, you might want to
take a look at other web servers provided in Debian like dhttpd .

The Apache Documentation (http://httpd.apache.org/docs/misc/security_
tips.html ) provides information regarding security measures to be taken on Apache web
server (this same information is provided in Debian by the apache-doc package).

More information on further restricting Apache by setting up a chroot jail is provided in
‘Chroot environment for Apache ’ on page 247.

6Unless you use the instdir option when calling dpkg but then the chroot jail might be a little more complex.

http://people.debian.org/~pzn/howto/chroot-bind.sh.txt
http://people.debian.org/~pzn/howto/chroot-bind.sh.txt
http://www.cryptio.net/~ferlatte/config/
http://web.archive.org/web/20021216104548/http://www.psionic.com/papers/whitep01.html
http://web.archive.org/web/20021216104548/http://www.psionic.com/papers/whitep01.html
http://web.archive.org/web/20021216104548/http://www.psionic.com/papers/whitep01.html
http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm
http://csrc.nist.gov/fasp/FASPDocs/NISTSecuringDNS.htm
http://httpd.apache.org/docs/misc/security_tips.html
http://httpd.apache.org/docs/misc/security_tips.html


Chapter 5. Securing services running on your system 110

5.8.1 Disabling users from publishing web contents

The default Apache installation in Debian permits users to publish content under the
$HOME/public_html . This content can be retrieved remotely using an URL such as:
http://your_apache_server/~user.

If you do not want to permit this you must change the /etc/apache/http.conf configura-
tion file commenting out (in Apache 1.3) the following module:

LoadModule userdir_module /usr/lib/apache/1.3/mod_userdir.so

If you are using Apache 2.0 you must remove the file /etc/apache2/mods-enabled
/userdir.load or restrict the default configuration by modifying /etc/apache2
/mods-enabled/userdir.conf .

However, if the module was linked statically (you can list the modules that are compiled in
running apache -l ) you must add the following to the Apache configuration file:

Userdir disabled

An attacker might still do user enumeration, since the answer of the web server will be a 403
Permission Denied and not a 404 Not available. You can avoid this if you use the Rewrite module.

5.8.2 Logfiles permissions

Apache logfiles, since 1.3.22-1, are owned by user ’root’ and group ’adm’ with permissions 640.
These permissions are changed after rotation. An intruder that accessed the system through
the web server would not be able (without privilege escalation) to remove old log file entries.

5.8.3 Published web files

Apache files are located under /var/www . Just after installation the default file provides some
information on the system (mainly that it’s a Debian system running Apache). The default
webpages are owned by user root and group root by default, while the Apache process runs
as user www-data and group www-data. This should make attackers that compromise the
system through the web server harder to deface the site. You should, of course, substitute the
default web pages (which might provide information you do not want to show to outsiders)
with your own.

5.9 Securing finger

If you want to run the finger service first ask yourself if you need to do so. If you do, you
will find out that Debian provides many finger daemons (output from apt-cache search
fingerd ):



Chapter 5. Securing services running on your system 111

• cfingerd - Configurable finger daemon

• efingerd - Another finger daemon for unix, capable of fine-tuning your output.

• ffingerd - a secure finger daemon

• fingerd - Remote user information server.

• xfingerd - BSD-like finger daemon with qmail support.

ffingerd is the recommended finger daemon if you are going to use it for a public service.
In any case, you are encouraged to, when setting it up through inetd, xinetd or tcpserver to:
limit the number of processes that will be running at the same time, limit access to the finger
daemon from a given number of hosts (using tcp wrappers) and having it only listening to the
interface you need it to be in.

5.10 General chroot and suid paranoia

chroot is one of the most powerful possibilities to restrict a daemon or a user or another
service. Just imagine a jail around your target, which the target cannot escape from (normally,
but there are still a lot of conditions that allow one to escape out of such a jail). If you do not
trust a user or a service, you can create a modified root environment for him. This can use
quite a bit of disk space as you need to copy all needed executables, as well as libraries, into
the jail. But then, even if the user does something malicious, the scope of the damage is limited
to the jail.

Many services running as daemons could benefit from this sort of arrangement. The daemons
that you install with your Debian distribution will not come, however, chrooted7 per default.

This includes: name servers (such as bind ), web servers (such as apache ), mail servers (such
as sendmail ) and ftp servers (such as wu-ftpd ). It is probably fair to say that the complexity
of BIND is the reason why it has been exposed to a lot of attacks in recent years (see ‘Securing
BIND’ on page 102).

However, Debian does provide some software that can help set up chroot environments. See
‘Making chrooted environments automatically’ on the following page.

Anyway, if you run any service on your system, you should consider running them as secure
as possible. This includes: revoking root privileges, running in a restricted environment (such
as a chroot jail) or replacing them with a more secure equivalent.

However, be forewarned that a chroot jail can be broken if the user running in it is the su-
peruser. So, you need to make the service run as a non-privileged user. By limiting its envi-
ronment you are limiting the world readable/executable files the service can access, thus, you
limit the possibilities of a privilege escalation by use of local system security vulnerabilities.
Even in this situation you cannot be completely sure that there is no way for a clever attacker to

7It does try to run them under minimum priviledge which includes running daemons with their own users
instead of having them run as root.



Chapter 5. Securing services running on your system 112

somehow break out of the jail. Using only server programs which have a reputation for being
secure is a good additional safety measure. Even minuscule holes like open file handles can be
used by a skilled attacker for breaking into the system. After all, chroot was not designed as
a security tool but as a testing tool.

5.10.1 Making chrooted environments automatically

There are several programs to chroot automatically servers and services. Debian currently
(accepted in May 2002) provides Wietse Venema’s chrootuid in the chrootuid package,
as well as compartment and makejail . These programs can be used to set up a restricted
environment for executing any program (chrootuid enables you to even run it as a restricted
user).

Some of these tools can be used to set up the chroot environment easily. The makejail pro-
gram for example, can create and update a chroot jail with short configuration files (it provides
sample configuration files for bind , apache , postgresql and mysql ). It attempts to guess
and install into the jail all files required by the daemon using strace , stat and Debian’s pack-
age dependencies. More information at http://www.floc.net/makejail/ . Jailer is a
similar tool which can be retrieved from http://www.balabit.hu/downloads/jailer/
and is also available as a Debian package.

5.11 General cleartext password paranoia

You should try to avoid any network service which sends and receives passwords in cleartext
over a net like FTP/Telnet/NIS/RPC. The author recommends the use of ssh instead of telnet
and ftp to everybody.

Keep in mind that migrating from telnet to ssh, but using other cleartext protocols does not
increase your security in ANY way! Best would be to remove ftp, telnet, pop, imap, http and
to supersede them with their respective encrypted services. You should consider moving from
these services to their SSL versions, ftp-ssl, telnet-ssl, pop-ssl, https . . .

Most of these above listed hints apply to every Unix system (you will find them if reading any
other hardening-related document related to Linux and other Unices).

5.12 Disabling NIS

You should not use NIS, the Network Information Service, if possible, because it allows pass-
word sharing. This can be highly insecure if your setup is broken.

If you need password sharing between machines, you might want to consider using other
alternatives. For example, you can setup an LDAP server and configure PAM on your sys-
tem in order to contact the LDAP server for user authentication. You can find a detailed

http://www.floc.net/makejail/
http://www.balabit.hu/downloads/jailer/


Chapter 5. Securing services running on your system 113

setup in the LDAP-HOWTO (http://www.tldp.org/HOWTO/LDAP-HOWTO.html ) (/usr
/share/doc/HOWTO/en-txt/LDAP-HOWTO.txt.gz ).

You can read more about NIS security in the NIS-HOWTO (http://www.tldp.org/HOWTO/
NIS-HOWTO.html ) (/usr/share/doc/HOWTO/en-txt/NIS-HOWTO.txt.gz ).

FIXME (jfs): Add info on how to set this up in Debian.

5.13 Securing RPC services

You should disable RPC if you do not need it.

Remote Procedure Call (RPC) is a protocol that programs can use to request services from
other programs located on different computers. The portmap service controls RPC services
by mapping RPC program numbers into DARPA protocol port numbers; it must be running in
order to make RPC calls.

RPC-based services have had a bad record of security holes, although the portmapper itself
hasn’t (but still provides information to a remote attacker). Notice that some of the DDoS
(distributed denial of service) attacks use RPC exploits to get into the system and act as a so
called agent/handler.

You only need RPC if you are using an RPC-based service. The most common RPC-based ser-
vices are NFS (Network File System) and NIS (Network Information System). See the previous
section for more information about NIS. The File Alteration Monitor (FAM) provided by the
package fam is also an RPC service, and thus depends on portmap .

NFS services are quite important in some networks. If that is the case for you, then you will
need to find a balance of security and usability for your network (you can read more about NFS
security in the NFS-HOWTO (http://www.tldp.org/HOWTO/NFS-HOWTO.html ) (/usr
/share/doc/HOWTO/en-txt/NFS-HOWTO.txt.gz )).

5.13.1 Disabling RPC services completely

Disabling portmap is quite simple. There are several different methods. The simplest one in a
Debian 3.0 system and later releases is to uninstall the portmap package. If you are running
an older Debian version you will have to disable the service as seen in ‘Disabling daemon
services’ on page 39, because the program is part of the netbase package (which cannot be
de-installed without breaking the system).

Notice that some desktop environments (notably, GNOME) use RPC services and need the
portmapper for some of the file management features. If this is your case, you can limit the
access to RPC services as described below.

http://www.tldp.org/HOWTO/LDAP-HOWTO.html
http://www.tldp.org/HOWTO/NIS-HOWTO.html
http://www.tldp.org/HOWTO/NIS-HOWTO.html
http://www.tldp.org/HOWTO/NFS-HOWTO.html


Chapter 5. Securing services running on your system 114

5.13.2 Limiting access to RPC services

Unfortunately, in some cases removing RPC services from the system is not an option. Some
local desktop services (notably SGI’s fam ) are RPC based and thus need a local portmapper.
This means that under some situations, users installing a desktop environment (like GNOME)
will install the portmapper too.

There are several ways to limit access to the portmapper and to RPC services:

• Block access to the ports used by these services with a local firewall (see ‘Adding firewall
capabilities’ on this page).

• Block access to these services using tcp wrappers, since the portmapper (and some RPC
services) are compiled with libwrap (see ‘Using tcpwrappers’ on page 68). This means
that you can block access to them through the hosts.allow and hosts.deny tcp
wrappers configuration.

• Since version 5-5, the portmap package can be configured to listen only on the loopback
interface. To do this, modify /etc/default/portmap , uncomment the following line:
#OPTIONS=“-i 127.0.0.1” and restart the portmapper. This is sufficient to allow lo-
cal RPC services to work while at the same time prevents remote systems from accessing
them (see, however, ‘Disabling weak-end hosts issues’ on page 85).

5.14 Adding firewall capabilities

The Debian GNU/Linux operating system has the built-in capabilities provided by the Linux
kernel . If you install a recent Debian release (default kernel installed is 2.6) you will have
iptables (netfilter) firewalling available8.

5.14.1 Firewalling the local system

You can use firewall rules as a way to secure the access to your local system and, even, to limit
the outbound communications made by it. Firewall rules can also be used to protect processes
that cannot be properly configured not to provide services to some networks, IP addresses, etc.

However, this step is presented last in this manual basically because it is much better not to
depend solely on firewalling capabilities in order to protect a given system. Security in a sys-
tem is made up of layers, firewalling should be the last to include, once all services have been
hardened. You can easily imagine a setup in which the system is solely protected by a built-in

8Available since the kernel version 2.4 (which was the default kernel in Debian 3.0). Previous kernel ver-
sions (2.2, available in even older Debian releases) used ipchains . The main difference between ipchains and
iptables is that the latter is based on stateful packet inspection which provides for more secure (and easier to build)
filtering configurations. Older (and now unsupported) Debian distributions using the 2.0 kernel series needed the
appropriate kernel patch.



Chapter 5. Securing services running on your system 115

firewall and an administrator blissfully removes the firewall rules for whatever reason (prob-
lems with the setup, annoyance, human error. . . ), this system would be wide open to an attack
if there were no other hardening in the system to protect from it.

On the other hand, having firewall rules on the local system also prevents some bad things
from happening. Even if the services provided are configured securely, a firewall can protect
from misconfigurations or from fresh installed services that have not yet been properly con-
figured. Also, a tight configuration will prevent trojans calling home from working unless the
firewalling code is removed. Note that an intruder does not need superuser access to install a
trojan locally that could be remotely controlled (since binding on ports is allowed if they are
not priviledged ports and capabilities have not been removed).

Thus, a proper firewall setup would be one with a default deny policy, that is:

• incoming connections are allowed only to local services by allowed machines.

• outgoing connections are only allowed to services used by your system (DNS, web
browsing, POP, email. . . ).9

• the forward rule denies everything (unless you are protecting other systems, see below).

• all other incoming or outgoing connections are denied.

5.14.2 Using a firewall to protect other systems

A Debian firewall can also be installed in order to protect, with filtering rules, access to systems
behind it, limiting their exposure to the Internet. A firewall can be configured to prevent access
from systems outside of the local network to internal services (ports) that are not public. For
example, on a mail server, only port 25 (where the mail service is being given) needs to be
accessible from the outside. A firewall can be configured to, even if there are other network
services besides the public ones running in the mail server, throw away packets (this is known
as filtering) directed towards them.

You can even set up a Debian GNU/Linux box as a bridge firewall, i.e. a filtering firewall
completely transparent to the network that lacks an IP address and thus cannot be attacked
directly. Depending on the kernel you have installed, you might need to install the bridge
firewall patch and then go to 802.1d Ethernet Bridging when configuring the kernel and a new
option netfilter ( firewalling ) support. See the ‘Setting up a bridge firewall’ on page 219 for more
information on how to set this up in a Debian GNU/Linux system.

5.14.3 Setting up a firewall

The default Debian installation, unlike other Linux distributions, does not yet provide a way
for the administrator to setup a firewall configuration throughout the default installation but

9Unlike personal firewalls in other operating systems, Debian GNU/Linux does not (yet) provide firewall
generation interfaces that can make rules limiting them per process or user. However, the iptables code can be
configured to do this (see the owner module in the iptables(8) manpage).



Chapter 5. Securing services running on your system 116

you can install a number of firewall configuration packages (see ‘Using firewall packages’ on
this page).

Of course, the configuration of the firewall is always system and network dependant. An
administrator must know beforehand what is the network layout and the systems he wants to
protect, the services that need to be accessed, and whether or not other network considerations
(like NAT or routing) need to be taken into account. Be careful when configuring your firewall,
as Laurence J. Lane says in the iptables package:

The tools can easily be misused, causing enormous amounts of grief by completely crippling network
access to a system. It is not terribly uncommon for a remote system administrator to accidentally lock
himself out of a system hundreds or thousands of miles away. One can even manage to lock himself out
of a computer who’s keyboard is under his fingers. Please, use due caution.

Remember this: just installing the iptables (or the older firewalling code) does not give you
any protection, just provides the software. In order to have a firewall you need to configure it!

If you do not have a clue on how to set up your firewall rules manually consult the Packet Fil-
tering HOWTO and NAT HOWTO provided by iptables for offline reading at /usr/share
/doc/iptables/html/ .

If you do not know much about firewalling you should start by reading the Firewalling and
Proxy Server HOWTO (http://www.tldp.org/HOWTO/Firewall-HOWTO.html ), install
the doc-linux-text package if you want to read it offline. If you want to ask questions
or need help setting up a firewall you can use the debian-firewall mailing list, see http://
lists.debian.org/debian-firewall . Also see ‘Be aware of general security problems’
on page 31 for more (general) pointers on firewalls. Another good iptables tutorial is http:
//iptables-tutorial.frozentux.net/iptables-tutorial.html .

Using firewall packages

Setting up manually a firewall can be complicated for novice (and sometimes even expert)
administrators. However, the free software community has created a number of tools that
can be used to easily configure a local firewall. Be forewarned that some of these tools are
oriented more towards local-only protection (also known as personal firewall) and some are
more versatile and can be used to configure complex rules to protect whole networks.

Some software that can be used to set up firewall rules in a Debian system is:

• For desktop systems:

– firestarter , a GNOME application oriented towards end-users that includes a
wizard useful to quickly setup firewall rules. The application includes a GUI to be
able to monitor when a firewall rule blocks traffic.

– guarddog , a KDE based firewall configuration package oriented both to novice and
advanced users.

http://www.tldp.org/HOWTO/Firewall-HOWTO.html
http://lists.debian.org/debian-firewall
http://lists.debian.org/debian-firewall
http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://iptables-tutorial.frozentux.net/iptables-tutorial.html


Chapter 5. Securing services running on your system 117

– knetfilter , a KDE GUI to manage firewall and NAT rules for iptables (alterna-
tive/competitor to the guarddog tool although slightly oriented towards advanced
users).

– fireflier, an interactive tool to create iptables rules based on traffic seen on the sys-
tem and applications. It has a server-client model so you have to install both the
server (fireflier-server ) and one of the available clients, with one client avail-
able for different desktop environments: fireflier-client-gtk (Gtk+ client),
fireflier-client-kde (KDE client) and fireflier-client-qt (QT client).

• For servers (headless) systems:

– fwbuilder , an object oriented GUI which includes policy compilers for various
firewall platforms including Linux’ netfilter, BSD’s pf (used in OpenBSD, NetBSD,
FreeBSD and MacOS X) as well as router’s access-lists. It is similar to enterprise
firewall management software. Complete fwbuilder’s functionality is also available
from the command line.

– shorewall , a firewall configuration tool which provides support for IPsec as well
as limited support for traffic shaping as well as the definition of the firewall rules.
Configuration is done through a simple set of files that are used to generate the
iptables rules.

– bastille , this hardening application is described in ‘Automatic hardening of De-
bian systems’ on page 125. One of the hardening steps that the administrator can
configure is a definition of the allowed and disallowed network traffic that is used
to generate a set of firewall rules that the system will execute on startup.

Lots of other iptables frontends come with Debian; an extensive list comparing the different
packages in Debian is maintained at the Firewalls page on the Debian wiki (http://wiki.
debian.org/Firewalls ).

Notice that some of the packages outlined previously will introduce firewalling scripts to be
run when the system boots. Test them extensively before rebooting or you might find yourself
locked from the box. If you mix different firewalling packages you can have undesired effects,
usually, the firewalling script that runs last will be the one that configures the system (which
might not be what you intend). Consult the package documentation and use either one of these
setups.

As mentioned before, some programs, like firestarter , guarddog and knetfilter , are
administration GUIs using either GNOME or KDE (last two). These applications are much
more user-oriented (i.e. for home users) than some of the other packages in the list which might
be more administrator-oriented. Some of the programs mentioned before (like bastille )
are focused at setting up firewall rules to protect the host they run in but are not necessarily
designed to setup firewall rules for firewall hosts that protect a network (like shorewall or
fwbuilder ).

There is yet another type of firewall application: application proxies. If you are looking into
setting up an enterprise-level firewall that does packet filtering and provides a number of
transparent proxies that can do fine-grain traffic analysis you should consider using zorp ,

http://wiki.debian.org/Firewalls
http://wiki.debian.org/Firewalls


Chapter 5. Securing services running on your system 118

which provides this in a single program. You can also manually setup this type of firewall host
using the proxies available in Debian for different services like for DNS using bind (properly
configured), dnsmasq , pdnsd or totd for FTP using frox or ftp-proxy , for X11 using xfwp ,
for IMAP using imapproxy , for mail using smtpd , or for POP3 using p3scan . For other
protocols you can either use a generic TCP proxy like simpleproxy or a generic SOCKS proxy
like dante-server , tsocks or socks4-server . Typically, you will also use a web caching
system (like squid ) and a web filtering system (like squidguard or dansguardian ).

Manual init.d configuration

Another possibility is to manually configure your firewall rules through an init.d script that
will run all the iptables commands. Take the following steps:

• Review the script below and adapt it to your needs.

• Test the script and review the syslog messages to see which traffic is being dropped. If
you are testing from the network you will want to either run the sample shell snippet
to remove the firewall (if you don’t type anything in 20 seconds) or you might want to
comment out the default deny policy definitions (-P INPUT DROP and -P OUTPUT DROP)
and check that the system will not drop any legitimate traffic.

• Move the script to /etc/init.d/myfirewall

• Configure the system to run the script before any network is configured:

#update-rc.d myfirewall start 40 S . stop 89 0 6 .

This is the sample firewall script:

#!/bin/sh
# Simple example firewall configuration.
#
# Caveats:
# - This configuration applies to all network interfaces
# if you want to restrict this to only a given interface use
# ’-i INTERFACE’ in the iptables calls.
# - Remote access for TCP/UDP services is granted to any host,
# you probably will want to restrict this using ’--source’.
#
# chkconfig: 2345 9 91
# description: Activates/Deactivates the firewall at boot time
#
# You can test this script before applying with the following shell
# snippet, if you do not type anything in 10 seconds the firewall
# rules will be cleared.



Chapter 5. Securing services running on your system 119

#---------------------------------------------------------------
# while true; do test=""; read -t 20 -p "OK? " test ; \
# [ -z "$test" ] && /etc/init.d/myfirewall clear ; done
#---------------------------------------------------------------

PATH=/bin:/sbin:/usr/bin:/usr/sbin

# Services that the system will offer to the network
TCP_SERVICES="22" # SSH only
UDP_SERVICES=""
# Services the system will use from the network
REMOTE_TCP_SERVICES="80" # web browsing
REMOTE_UDP_SERVICES="53" # DNS
# Network that will be used for remote mgmt
# (if undefined, no rules will be setup)
# NETWORK_MGMT=192.168.0.0/24
# Port used for the SSH service, define this is you have setup a
# management network but remove it from TCP_SERVICES
# SSH_PORT="22"

if ! [ -x /sbin/iptables ]; then
exit 0

fi

fw_start () {

# Input traffic:
/sbin/iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
# Services
if [ -n "$TCP_SERVICES" ] ; then
for PORT in $TCP_SERVICES; do

/sbin/iptables -A INPUT -p tcp --dport ${PORT} -j ACCEPT
done
fi
if [ -n "$UDP_SERVICES" ] ; then
for PORT in $UDP_SERVICES; do

/sbin/iptables -A INPUT -p udp --dport ${PORT} -j ACCEPT
done
fi
# Remote management
if [ -n "$NETWORK_MGMT" ] ; then

/sbin/iptables -A INPUT -p tcp --src ${NETWORK_MGMT} --dport ${SSH_PORT} -j ACCEPT
else

/sbin/iptables -A INPUT -p tcp --dport ${SSH_PORT} -j ACCEPT
fi
# Remote testing



Chapter 5. Securing services running on your system 120

/sbin/iptables -A INPUT -p icmp -j ACCEPT
/sbin/iptables -A INPUT -i lo -j ACCEPT
/sbin/iptables -P INPUT DROP
/sbin/iptables -A INPUT -j LOG

# Output:
/sbin/iptables -A OUTPUT -j ACCEPT -o lo
/sbin/iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
# ICMP is permitted:
/sbin/iptables -A OUTPUT -p icmp -j ACCEPT
# So are security package updates:
# Note: You can hardcode the IP address here to prevent DNS spoofing
# and to setup the rules even if DNS does not work but then you
# will not "see" IP changes for this service:
/sbin/iptables -A OUTPUT -p tcp -d security.debian.org --dport 80 -j ACCEPT
# As well as the services we have defined:
if [ -n "$REMOTE_TCP_SERVICES" ] ; then
for PORT in $REMOTE_TCP_SERVICES; do

/sbin/iptables -A OUTPUT -p tcp --dport ${PORT} -j ACCEPT
done
fi
if [ -n "$REMOTE_UDP_SERVICES" ] ; then
for PORT in $REMOTE_UDP_SERVICES; do

/sbin/iptables -A OUTPUT -p udp --dport ${PORT} -j ACCEPT
done
fi
# All other connections are registered in syslog
/sbin/iptables -A OUTPUT -j LOG
/sbin/iptables -A OUTPUT -j REJECT
/sbin/iptables -P OUTPUT DROP
# Other network protections
# (some will only work with some kernel versions)
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
echo 0 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
echo 1 > /proc/sys/net/ipv4/conf/all/log_martians
echo 1 > /proc/sys/net/ipv4/ip_always_defrag
echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

}

fw_stop () {
/sbin/iptables -F



Chapter 5. Securing services running on your system 121

/sbin/iptables -t nat -F
/sbin/iptables -t mangle -F
/sbin/iptables -P INPUT DROP
/sbin/iptables -P FORWARD DROP
/sbin/iptables -P OUTPUT ACCEPT

}

fw_clear () {
/sbin/iptables -F
/sbin/iptables -t nat -F
/sbin/iptables -t mangle -F
/sbin/iptables -P INPUT ACCEPT
/sbin/iptables -P FORWARD ACCEPT
/sbin/iptables -P OUTPUT ACCEPT

}

case "$1" in
start|restart)

echo -n "Starting firewall.."
fw_stop
fw_start
echo "done."
;;

stop)
echo -n "Stopping firewall.."
fw_stop
echo "done."
;;

clear)
echo -n "Clearing firewall rules.."
fw_clear
echo "done."
;;

*)
echo "Usage: $0 {start|stop|restart|clear}"
exit 1
;;

esac
exit 0

Instead of including all of the iptables rules in the init.d script you can use the
iptables-restore program to restore the rules saved using iptables-save . In order
to do this you need to setup your rules, save the ruleset under a static location (such as /etc
/default/firewall )



Chapter 5. Securing services running on your system 122

Configuring firewall rules through ifup

You can use also the network configuration in /etc/network/interfaces to setup your
firewall rules. For this you will need to:

• Create your firewalling ruleset for when the interface is active.

• Save your ruleset with iptables-save to a file in /etc , for example /etc
/iptables.up.rules

• Configure /etc/network/interfaces to use the configured ruleset:

iface eth0 inet static
address x.x.x.x
[.. interface configuration ..]
pre-up iptables-restore < /etc/iptables.up.rules

You can optionally also setup a set of rules to be applied when the network interface is down
creating a set of rules, saving it in /etc/iptables.down.rules and adding this directive
to the interface configuration:

post-down iptables-restore < /etc/iptables.down.rules

For more advanced firewall configuration scripts through ifupdown you can use the
hooks available to each interface as in the *.d/ directories called with run-parts (see
run-parts(8) ).

Testing your firewall configuration

Testing your firewall configuration is as easy, and as dangerous, as just running your firewall
script (or enabling the configuration you defined in your firewall configuration application).
However, if you are not careful enough and you are configuring your firewall remotely (like
through an SSH connection) you could lock yourself out.

There are several ways to prevent this. One is running a script in a separate terminal that will
remove the firewall configuration if you don’t feed it input. An example of this is:

$ while true; do test=""; read -t 20 -p "OK? " test ; \
[ -z "$test" ] && /etc/init.d/firewall clear ; done

Another one is to introduce a backdoor in your system through an alternate mechanism that
allows you to either clear the firewall system or punch a hole in it if something goes awry. For
this you can use knockd and configure it so that a certain port connection attempt sequence
will clear the firewall (or add a temporary rule). Even though the packets will be dropped by



Chapter 5. Securing services running on your system 123

the firewall, since knockd binds to the interface and sees you will be able to work around the
problem.

Testing a firewall that is protecting an internal network is a different issue, you will want to
look at some of the tools used for remote vulnerability assessment (see ‘Remote vulnerability
assessment tools’ on page 153) to probe the network from the outside in (or from any other
direction) to test the effectiveness of the firewall configuation.



Chapter 5. Securing services running on your system 124



125

Chapter 6

Automatic hardening of Debian
systems

After reading through all the information in the previous chapters you might be wondering
“I have to do quite a lot of things in order to harden my system, couldn’t these things be
automated?”. The answer is yes, but be careful with automated tools. Some people believe,
that a hardening tool does not eliminate the need for good administration. So do not be fooled
to think that you can automate the whole process and will fix all the related issues. Security
is an ever-ongoing process in which the administrator must participate and cannot just stand
away and let the tools do all the work since no single tool can cope with all the possible security
policy implementations, all the attacks and all the environments.

Since woody (Debian 3.0) there are two specific packages that are useful for security hardening.
The harden package which takes an approach based on the package dependencies to quickly
install valuable security packages and remove those with flaws, configuration of the packages
must be done by the administrator. The bastille package that implements a given security
policy on the local system based on previous configuration by the administrator (the building
of the configuration can be a guided process done with simple yes/no questions).

6.1 Harden

The harden package tries to make it more easy to install and administer hosts that need good
security. This package should be used by people that want some quick help to enhance the
security of the system. It automatically installs some tools that should enhance security in
some way: intrusion detection tools, security analysis tools, etc. Harden installs the following
virtual packages (i.e. no contents, just dependencies or recommendations on others):

• harden-tools : tools to enhance system security (integrity checkers, intrusion detec-
tion, kernel patches. . . )

• harden-environment : helps configure a hardened environment (currently empty).



Chapter 6. Automatic hardening of Debian systems 126

• harden-servers : removes servers considered insecure for some reason.

• harden-clients : removes clients considered insecure for some reason.

• harden-remoteaudit : tools to remotely audit a system.

• harden-nids : helps to install a network intrusion detection system.

• harden-surveillance : helps to install tools for monitoring of networks and services.

Useful packages which are not a dependence:

• harden-doc : provides this same manual and other security-related documentation
packages.

• harden-development : development tools for creating more secure programs.

Be careful because if you have software you need (and which you do not wish to uninstall for
some reason) and it conflicts with some of the packages above you might not be able to fully use
harden . The harden packages do not (directly) do a thing. They do have, however, intentional
package conflicts with known non-secure packages. This way, the Debian packaging system
will not approve the installation of these packages. For example, when you try to install a
telnet daemon with harden-servers , apt will say:

# apt-get install telnetd
The following packages will be REMOVED:

harden-servers
The following NEW packages will be installed:

telnetd
Do you want to continue? [Y/n]

This should set off some warnings in the administrator head, who should reconsider his ac-
tions.

6.2 Bastille Linux

Bastille Linux (http://www.bastille-unix.org ) is an automatic hardening tool orig-
inally oriented towards the RedHat and Mandrake Linux distributions. However, the
bastille package provided in Debian (since woody) is patched in order to provide the same
functionality for the Debian GNU/Linux system.

Bastille can be used with different frontends (all are documented in their own manpage in the
Debian package) which enables the administrator to:

• Answer questions step by step regarding the desired security of your system (using
InteractiveBastille(8) ).

http://www.bastille-unix.org


Chapter 6. Automatic hardening of Debian systems 127

• Use a default setting for security (amongst three: Lax, Moderate or Paranoia) in a given
setup (server or workstation) and let Bastille decide which security policy to implement
(using BastilleChooser(8) ).

• Take a predefined configuration file (could be provided by Bastille or made by the ad-
ministrator) and implement a given security policy (using AutomatedBastille(8) ).



Chapter 6. Automatic hardening of Debian systems 128



129

Chapter 7

Debian Security Infrastructure

7.1 The Debian Security Team

Debian has a Security Team, made up of five members and two secretaries who handle secu-
rity in the stable distribution. Handling security means they keep track of vulnerabilities that
arise in software (watching forums such as Bugtraq, or vuln-dev) and determine if the stable
distribution is affected by it.

Also, the Debian Security Team is the contact point for problems that are coordinated by up-
stream developers or organizations such as CERT (http://www.cert.org ) which might af-
fect multiple vendors. That is, when problems are not Debian-specific. There are two contact
points with the Security Team:

• team@security.debian.org (mailto:team@security.debian.org ) which only the
members of the security team read.

• security@debian.org (mailto:security@debian.org ) which is read by all Debian
developers (including the security team). Mails sent to this list are not published in the
Internet (it’s not a public mailing list).

Sensitive information should be sent to the first address and, in some cases, should be en-
crypted with the Debian Security Contact key (key ID 363CCD95).

Once a probable problem is received by the Security Team it will investigate if the stable distri-
bution is affected and if it is, a fix is made for the source code base. This fix will sometimes in-
clude backporting the patch made upstream (which usually is some versions ahead of the one
distributed by Debian). After testing of the fix is done, new packages are prepared and pub-
lished in the security-master.debian.org site so they can be retrieved through apt (see
‘Execute a security update’ on page 46). At the same time a Debian Security Advisory (DSA) is
published on the web site and sent to public mailing lists including debian-security-announce
(http://lists.debian.org/debian-security-announce ) and Bugtraq.

Some other frequently asked questions on the Debian Security Team can be found at ‘Questions
regarding the Debian security team’ on page 201.

http://www.cert.org
mailto:team@security.debian.org
mailto:security@debian.org
security-master.debian.org
http://lists.debian.org/debian-security-announce


Chapter 7. Debian Security Infrastructure 130

7.2 Debian Security Advisories

Debian Security Advisories (DSAs) are made whenever a security vulnerability is discovered
that affects a Debian package. These advisories, signed by one of the Security Team members,
include information of the versions affected as well as the location of the updates and their
MD5 sums. This information is:

• version number for the fix.

• problem type.

• whether it is remote or locally exploitable.

• short description of the package.

• description of the problem.

• description of the exploit.

• description of the fix.

DSAs are published both in Debian’s mainserver frontpage (http://www.debian.org/ )
and in the Debian security pages (http://www.debian.org/security/ ). Usually this
does not happen until the website is rebuilt (every four hours) so they might not be present
immediately. The preferred channel is the debian-security-announce mailing list.

Interested users can, however (and this is done in some Debian-related portals) use the RDF
channel to download automatically the DSAs to their desktop. Some applications, such
as Evolution (an email client and personal information assistant) and Multiticker (a
GNOME applet), can be used to retrieve the advisories automatically. The RDF channel is
available at http://www.debian.org/security/dsa.rdf .

DSAs published on the website might be updated after being sent to the public-mailing lists.
A common update is adding cross references to security vulnerability databases. Also, transla-
tions1 of DSAs are not sent to the security mailing lists but are directly included in the website.

7.2.1 Vulnerability cross references

Debian provides a fully crossreferenced table (http://www.debian.org/security/
crossreferences ) including all the references available for all the advisories published
since 1998. This table is provided to complement the reference map available at CVE (http:
//cve.mitre.org/cve/refs/refmap/source-DEBIAN.html ).

You will notice that this table provides references to security databases such as Bugtraq
(http://www.securityfocus.com/bid ), CERT/CC Advisories (http://www.cert.
org/advisories/ ) and US-CERT Vulnerability Notes Database (http://www.kb.cert.

1Translations are available in up to ten different languages.

http://www.debian.org/
http://www.debian.org/security/
http://www.debian.org/security/dsa.rdf
http://www.debian.org/security/crossreferences
http://www.debian.org/security/crossreferences
http://cve.mitre.org/cve/refs/refmap/source-DEBIAN.html
http://cve.mitre.org/cve/refs/refmap/source-DEBIAN.html
http://www.securityfocus.com/bid
http://www.cert.org/advisories/
http://www.cert.org/advisories/
http://www.kb.cert.org/vuls
http://www.kb.cert.org/vuls
http://www.kb.cert.org/vuls


Chapter 7. Debian Security Infrastructure 131

org/vuls ) as well as CVE names (see below). These references are provided for convenience
use, but only CVE references are periodically reviewed and included. This feature was added
to the website on June 2002.

One of the advantages of adding cross references to these vulnerability databases is that:

• it makes it easier for Debian users to see and track which general (published) advisories
have already been covered by Debian.

• system administrators can learn more about the vulnerability and its impact by following
the cross references.

• this information can be used to cross-check output from vulnerability scanners that in-
clude references to CVE to remove false positives (see ‘Vulnerability assessment scanner
X says my Debian system is vulnerable!’ on page 197).

7.2.2 CVE compatibility

Debian Security Advisories were declared CVE-Compatible (http://www.debian.org/
security/CVE-certificate.jpg )2 in February 24, 2004.

Debian developers understand the need to provide accurate and up to date information of the
security status of the Debian distribution, allowing users to manage the risk associated with
new security vulnerabilities. CVE enables us to provide standardized references that allow
users to develop a CVE-enabled security management process (http://www.cve.mitre.
org/compatible/enterprise.html ).

The Common Vulnerabilities and Exposures (CVE) (http://cve.mitre.org ) project is
maintained by the MITRE Corporation and provides a list of standardized names for vulnera-
bilities and security exposures.

Debian believes that providing users with additional information related to security issues that
affect the Debian distribution is extremely important. The inclusion of CVE names in advi-
sories help users associate generic vulnerabilities with specific Debian updates, which reduces
the time spent handling vulnerabilities that affect our users. Also, it eases the management of
security in an environment where CVE-enabled security tools -such as network or host intru-
sion detection systems, or vulnerability assessment tools- are already deployed regardless of
whether or not they are based on the Debian distribution.

Debian started adding CVE names to DSAs in June 2002, and now provides CVE names
for all DSAs released since September 1998 after a review process started on August 2002.
All of the advisories can be retrieved on the Debian web site, and announcements related
to new vulnerabilities include CVE names if available at the time of their release. Advi-
sories associated with a given CVE name can be searched directly through the search engine
(http://search.debian.org/ ).

2The full capability questionnaire (http://cve.mitre.org/compatible/phase2/SPI_Debian.html )
is available at CVE

http://www.kb.cert.org/vuls
http://www.kb.cert.org/vuls
http://www.debian.org/security/CVE-certificate.jpg
http://www.debian.org/security/CVE-certificate.jpg
http://www.cve.mitre.org/compatible/enterprise.html
http://www.cve.mitre.org/compatible/enterprise.html
http://cve.mitre.org
http://search.debian.org/
http://cve.mitre.org/compatible/phase2/SPI_Debian.html


Chapter 7. Debian Security Infrastructure 132

Users who want to search for a particular CVE name can use the web search en-
gine available in debian.org to retrieve advisories available (in English and translated
to other languages) associated with CVE names. A search can be made for a spe-
cific name (like advisory CAN-2002-0001 (http://search.debian.org/?q=advisory+
%22CAN-2002-0001%22ps=50o=1m=all )) or for partial names (like all the 2002 candi-
dates included in advisories search for CAN-2002 (http://search.debian.org/?q=
advisory+%22CAN-2002%22ps=50o=1m=all )). Notice that you need to enter the word
“advisory” together with the CVE name in order to retrieve only security advisories.

In some cases you might not find a given CVE name in published advisories, for example
because:

• No Debian products are affected by that vulnerability.

• There is not yet an advisory covering that vulnerability (the security issue might have
been reported as a security bug (http://bugs.debian.org/cgi-bin/pkgreport.
cgi?tag=security ) but a fix has not been tested and uploaded).

• An advisory was published before a CVE name was assigned to a given vulnerability
(look for an update at the web site).

7.3 Debian Security Build Infrastructure

Since Debian is currently supported in a large number of architectures, administrators some-
times wonder if a given architecture might take more time to receive security updates than
another. As a matter of fact, except for rare circumstances, updates are available to all architec-
tures at the same time.

While previously the task to build security updates was done by hand, it is cur-
rently not (as Anthony Towns describes in a mail (http://lists.debian.org/
debian-devel-announce/2002/debian-devel-announce-200206/msg00002.
html ) sent to the debian-devel-announce mailing list dated 8th June 2002).

Packages uploaded by the security team (to ftp://security-master.debian.
org:/org/security.debian.org/queue/unchecked or ftp://security-master.
debian.org/pub/SecurityUploadQueue ) with an appropriate patch are checked for sig-
natures withing fifteen minutes of being uploaded. Once this is done they get added to the list
of the autobuilders (which no longer do a daily archive run). Thus, packages can get automati-
cally built for all architectures thirty minutes or an hour or so after they’re uploaded. However,
security updates are a little more different than normal uploads sent by package maintainers
since, in some cases, before being published they need to wait until they can be tested further,
an advisory written, or need to wait for a week or more to avoid publicizing the flaw until all
vendors have had a reasonable chance to fix it.

Thus, the security upload archive works with the following procedure (called “Accepted-
Autobuilding”):

http://search.debian.org/?q=advisory+%22CAN-2002-0001%22ps=50o=1m=all
http://search.debian.org/?q=advisory+%22CAN-2002-0001%22ps=50o=1m=all
http://search.debian.org/?q=advisory+%22CAN-2002%22ps=50o=1m=all
http://search.debian.org/?q=advisory+%22CAN-2002%22ps=50o=1m=all
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=security
http://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=security
http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00002.html
http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00002.html
http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00002.html
ftp://security-master.debian.org:/org/security.debian.org/queue/unchecked
ftp://security-master.debian.org:/org/security.debian.org/queue/unchecked
ftp://security-master.debian.org/pub/SecurityUploadQueue
ftp://security-master.debian.org/pub/SecurityUploadQueue


Chapter 7. Debian Security Infrastructure 133

• Someone finds a security problem.

• Someone fixes the problem, and makes an upload to security-master.debian.org’s incom-
ing (this someone is usually a Security Team member but can be also a package maintainer
with an appropriate fix that has contacted the Security Team previously). The Changelog
includes a testing-security or stable-security as target distribution.

• The upload gets checked and processed by a Debian system and moved into
queue/accepted, and the buildds are notified. Files in here can be accessed by the se-
curity team and (somewhat indirectly) by the buildds.

• Security-enabled buildds pick up the source package (prioritized over normal builds),
build it, and send the logs to the security team.

• The security team reply to the logs, and the newly built packages are uploaded to
queue/unchecked, where they’re processed by a Debian system, and moved into
queue/accepted.

• When the security team find the source package acceptable (i.e., that it’s been correctly
built for all applicable architectures and that it fixes the security hole and doesn’t intro-
duce new problems of its own) they run a script which:

– installs the package into the security archive.

– updates the Packages , Sources and Release files of security.debian.org in the
usual way (dpkg-scanpackages , dpkg-scansources , . . . ).

– sets up a template advisory that the security team can finish off.

– (optionally) forwards the packages to the appropriate proposed-updates so that it
can be included in the real archive as soon as possible.

This procedure, previously done by hand, was tested and put through during the freezing
stage of Debian 3.0 woody (July 2002). Thanks to this infrastructure the Security Team was
able to have updated packages ready for the apache and OpenSSH issues for all the supported
(almost twenty) architectures in less than a day.

7.3.1 Developer’s guide to security updates

This mail was sent by Wichert Akkerman to the Debian-devel-announce mail-
ing list (http://lists.debian.org/debian-devel-announce/2002/
debian-devel-announce-200206/msg00004.html ) in order to describe Debian
developer’s behavior for handling security problems in their packages. It is published here
both for the benefit of developers as well as for users to understand better how security is
handled in Debian.

FIXME: Please note that the up to date reference for this information is the Debian Devel-
oper’s Reference (http://www.debian.org/doc/manuals/developers-reference/
ch-pkgs#s-bug-security ), this section will be removed in the near future.

http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00004.html
http://lists.debian.org/debian-devel-announce/2002/debian-devel-announce-200206/msg00004.html
http://www.debian.org/doc/manuals/developers-reference/ch-pkgs#s-bug-security
http://www.debian.org/doc/manuals/developers-reference/ch-pkgs#s-bug-security


Chapter 7. Debian Security Infrastructure 134

Coordinating with the security team

If a developer learns of a security problem, either in his package or someone else’s he should
always contact the security team (at team@security.debian.org). They keep track of outstand-
ing security problems, can help maintainers with security problems or fix them themselves,
are responsible for sending security advisories and maintaining security.debian.org.

Please note that security advisories are only done for release distributions, not for testing,
unstable (see ‘How is security handled for testing and unstable ?’ on page 203) or older
distributions (see ‘I use an older version of Debian, is it supported by the Debian Security
Team?’ on page 203).

Learning of security problems

There are a few ways a developer can learn of a security problem:

• he notices it on a public forum (mailing list, website, etc.).

• someone files a bugreport (the Security tag should be used, or added by the developer).

• someone informs him via private email.

In the first two cases the information is public and it is important to have a fix as soon as
possible. In the last case however it might not be public information. In that case there are a
few possible options for dealing with the problem:

• if it is a trivial problem (like insecure temporary files) there is no need to keep the problem
a secret and a fix should be made and released.

• if the problem is severe (remote exploitable, possibility to gain root privileges) it is prefer-
able to share the information with other vendors and coordinate a release. The security
team keeps contacts with the various organizations and individuals and can take care of
that.

In all cases if the person who reports the problem asks to not disclose the information that
should be respected, with the obvious exception of informing the security team (the developer
should make sure he tells the security team that the information cannot be disclosed).

Please note that if secrecy is needed the developer can also not upload a fix to unstable (or
anywhere else), since the changelog information for unstable is public information.

There are two reasons for releasing information even though secrecy is requested/required:
the problem has been known for too long, or the information becomes public.



Chapter 7. Debian Security Infrastructure 135

Building a package

The most important guideline when making a new package that fixes a security problem is to
make as few changes as possible. People are relying on the exact behavior of a release once it
is made, so any change made to it can possibly break someone’s system. This is especially true
of libraries: the developer must make sure he never changes the API or ABI, no matter how
small the change.

This means that moving to a new upstream version is not a good solution, instead the relevant
changes should be backported. Generally upstream maintainers are willing to help if needed,
if not the Debian Security Team might be able to help.

In some cases it is not possible to backport a security fix, for example when large amounts of
source code need to be modified or rewritten. If that happens it might be necessary to move to a
new upstream version, but it should always be coordinated with the security team beforehand.

Related to this is another important aspect: developers must always test your change. If there
is an exploit the developer should try if it indeed succeeds on the unpatched package and fails
on the fixed package. The developer should try normal usage as well, sometimes a security fix
can break normal use subtly.

Finally a few technical things for developers to keep in mind:

• Make sure you target the right distribution in your debian/changelog. For stable this
is stable-security and for testing this is testing-security. Do not target <codename>-
proposed-updates.

• Make sure the version number is proper. It has to be higher than the current package,
but lower than package versions in later distributions. For testing this means there has to
be a higher version in unstable. If there is none yet (testing and unstable have the same
version for example) upload a new version to unstable first.

• Do not make source-only uploads if your package has any binary-all packages. The
buildd infrastructure will not build those.

• Make sure when compiling a package you compile on a clean system which
only has packages installed from the distribution you are building for. If
you do not have such a system yourself you can try a debian.org machine
(see http://db.debian.org/machines.cgi) or set up a chroot (the pbuilder and
debootstrap packages can be helpful in that case).

Uploading security fixes

After the developer has created and tested the new package it needs to be uploaded so it
can be installed in the archives. For security uploads the place to upload to is ftp://security-
master.debian.org/pub/SecurityUploadQueue/ .

Once an upload to the security queue has been accepted the package will automatically be
rebuilt for all architectures and stored for verification by the security team.



Chapter 7. Debian Security Infrastructure 136

Uploads waiting for acceptance or verification are only accessible by the security team. This is
necessary since there might be fixes for security problems that cannot be disclosed yet.

If a member of the security team accepts a package it will be installed on security.debian.org as
well as the proper <codename>-proposed-updates in ftp-master or non-US archive.

The security advisory

Security advisories are written and posted by the security team. However they certainly do
not mind if a maintainer can supply (part of) the text for them. Information that should be in
an advisory is described in ‘Debian Security Advisories’ on page 130.

7.4 Package signing in Debian

This section could also be titled “how to upgrade/update safely your Debian GNU/Linux
system” and it deserves its own section basically because it is an important part of the Security
Infrastructure. Package signing is an important issue since it avoids tampering of packages
distributed in mirrors and of downloads with man-in-the-middle attacks. Automatic software
update is an important feature but it’s also important to remove security threats that could
help the distribution of trojans and the compromise of systems during updates3.

Debian does not provide signed packages but provides a mechanism available since Debian
4.0 (codename etch) to check for downloaded package’s integrity4. For more information, see
‘Secure apt’ on the facing page.

This issue is better described in the Strong Distribution HOWTO (http://www.cryptnet.
net/fdp/crypto/strong_distro.html ) by V. Alex Brennen.

7.4.1 The current scheme for package signature checks

The current scheme for package signature checking using apt is:

• the Release file includes the MD5 sum of Packages.gz (which contains the MD5 sums
of packages) and will be signed. The signature is one of a trusted source.

• This signed Release file is downloaded by ’apt-get update’ and stored along with
Packages.gz .

• When a package is going to be installed, it is first downloaded, then the MD5 sum is
generated.

3Some operating systems have already been plagued with automatic-updates problems such as the Mac
OS X Software Update vulnerabity (http://www.cunap.com/~hardingr/projects/osx/exploit.html ).
FIXME: probably the Internet Explorer vulnerability handling certificate chains has an impact on security updates
on Microsoft Windows.

4Older releases, such as Debian 3.1 sarge can use this feature by using backported versions of this package
management tool

http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://www.cunap.com/~hardingr/projects/osx/exploit.html


Chapter 7. Debian Security Infrastructure 137

• The signed Release file is checked (signature ok) and it extracts from it the MD5 sum
for the Packages.gz file, the Packages.gz checksum is generated and (if ok) the MD5
sum of the downloaded package is extracted from it.

• If the MD5 sum from the downloaded package is the same as the one in the
Packages.gz file the package will be installed, otherwise the administrator will be
alerted and the package will be left in the cache (so the administrator can decide whether
to install it or not). If the package is not in the Packages.gz and the administrator has
configured the system to only install checked packages it will not be installed either.

By following the chain of MD5 sums apt is capable of verifying that a package originates
from a a specific release. This is less flexible than signing each package one by one, but can be
combined with that scheme too (see below).

This scheme is fully implemented (http://lists.debian.org/debian-devel/2003/
debian-devel-200312/msg01986.html ) in apt 0.6 and is available since the Debian 4.0
release. For more information see ‘Secure apt’ on the current page. Packages that pro-
vide a front-end to apt need to be modified to adapt to this new feature; this is the case
of aptitude which was modified (http://lists.debian.org/debian-devel/2005/
03/msg02641.html ) to adapt to this scheme. Front-ends currently known to work properly
with this feature include aptitude and synaptic .

Package signing has been discussed in Debian for quite some time, for more informa-
tion you can read: http://www.debian.org/News/weekly/2001/8/ and http://www.
debian.org/News/weekly/2000/11/ .

7.4.2 Secure apt

The apt 0.6 release, available since Debian 4.0 etch and later releases, includes apt-secure (also
known as secure apt) which is a tool that will allow a system administrator to test the in-
tegrity of the packages downloaded through the above scheme. This release includes the tool
apt-key for adding new keys to apt’s keyring, which by default includes only the current
Debian archive signing key.

These changes are based on the patch for apt (available in Bug #203741 (http://bugs.
debian.org/cgi-bin/bugreport.cgi?bug=203741 )) which provides this implementa-
tion.

Secure apt works by checking the distribution through the Release file, as discussed in ‘Per
distribution release check’ on the following page. Typically, this process will be transparent to
the administrator although you will need to intervene every year5 to add the new archive key
when it is rotated, for more information on the steps an administrator needs to take a look at
‘Safely adding a key’ on page 142.

This feature is still under development, if you believe you find bugs in it, please, make first
sure you are using the latest version (as this package might change quite a bit before it is
finally released) and, if running the latest version, submit a bug against the apt package.

5Until an automatic mechanism is developed.

http://lists.debian.org/debian-devel/2003/debian-devel-200312/msg01986.html
http://lists.debian.org/debian-devel/2003/debian-devel-200312/msg01986.html
http://lists.debian.org/debian-devel/2005/03/msg02641.html
http://lists.debian.org/debian-devel/2005/03/msg02641.html
http://www.debian.org/News/weekly/2001/8/
http://www.debian.org/News/weekly/2000/11/
http://www.debian.org/News/weekly/2000/11/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=203741
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=203741


Chapter 7. Debian Security Infrastructure 138

You can find more information at the wiki pages (http://wiki.debian.org/SecureApt )
and the official documentation: Migration to APT 0.6 (http://www.enyo.de/fw/
software/apt-secure/ ) and APT Signature Checking (http://www.syntaxpolice.
org/apt-secure/ ).

7.4.3 Per distribution release check

This section describes how the distribution release check mechanism works, it was writ-
ten by Joey Hess and is also available at the Debian Wiki (http://wiki.debian.org/
SecureApt ).

Basic concepts

Here are a few basic concepts that you’ll need to understand for the rest of this section.

A checksum is a method of taking a file and boiling it down to a reasonably short number that
uniquely identifies the content of the file. This is a lot harder to do well than it might seem, and
the most commonly used type of checksum, the MD5 sum, is in the process of being broken.

Public key cryptography is based on pairs of keys, a public key and a private key. The public
key is given out to the world; the private key must be kept a secret. Anyone possessing the
public key can encrypt a message so that it can only be read by someone possessing the private
key. It’s also possible to use a private key to sign a file, not encrypt it. If a private key is used to
sign a file, then anyone who has the public key can check that the file was signed by that key.
No one who doesn’t have the private key can forge such a signature.

These keys are quite long numbers (1024 to 2048 digits or longer), and to make them easier to
work with they have a key id, which is a shorter, 8 or 16 digit number that can be used to refer
to them.

gpg is the tool used in secure apt to sign files and check their signatures.

apt-key is a program that is used to manage a keyring of gpg keys for secure apt. The keyring
is kept in the file /etc/apt/trusted.gpg (not to be confused with the related but not very
interesting /etc/apt/trustdb.gpg ). apt-key can be used to show the keys in the keyring,
and to add or remove a key.

Release checksums

A Debian archive contains a Release file, which is updated each time any of the packages in
the archive change. Among other things, the Release file contains some MD5 sums of other
files in the archive. An excerpt of an example Release file:

MD5Sum:
6b05b392f792ba5a436d590c129de21f 3453 Packages
1356479a23edda7a69f24eb8d6f4a14b 1131 Packages.gz

http://wiki.debian.org/SecureApt
http://www.enyo.de/fw/software/apt-secure/
http://www.enyo.de/fw/software/apt-secure/
http://www.syntaxpolice.org/apt-secure/
http://www.syntaxpolice.org/apt-secure/
http://wiki.debian.org/SecureApt
http://wiki.debian.org/SecureApt


Chapter 7. Debian Security Infrastructure 139

2a5167881adc9ad1a8864f281b1eb959 1715 Sources
88de3533bf6e054d1799f8e49b6aed8b 658 Sources.gz

The Release files also include SHA-1 checksums, which will be useful once MD5 sums be-
come fully broken, however apt doesn’t use them yet.

Now if we look inside a Packages file, we’ll find more MD5 sums, one for each package listed
in it. For example:

Package: uqm
Priority: optional
...
Filename: unstable/uqm_0.4.0-1_i386.deb
Size: 580558
MD5sum: 864ec6157c1eea88acfef44d0f34d219

These two checksums can be used to verify that you have downloaded a correct copy of the
Packages file, with a md5sum that matches the one in the Release file. And when it down-
loads an individual package, it can also check its md5sum against the content of the Packages
file. If apt fails at either of these steps, it will abort.

None of this is new in secure apt, but it does provide the foundation. Notice that so far there is
one file that apt doesn’t have a way to check: The Release file. Secure apt is all about making
apt verify the Release file before it does anything else with it, and plugging this hole, so that
there is a chain of verification from the package that you are going to install all the way back
to the provider of the package.

Verification of the Release file

To verify the Release file, a gpg signature is added for the Release file. This is put in a file
named Release.gpg that is shipped alongside the Release file. It looks something like this
6 , although only gpg actually looks at its contents normally:

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.1 (GNU/Linux)

iD8DBQBCqKO1nukh8wJbxY8RAsfHAJ9hu8oGNRAl2MSmP5+z2RZb6FJ8kACfWvEx
UBGPVc7jbHHsg78EhMBlV/U=
=x6og
-----END PGP SIGNATURE-----

6Technically speaking, this is an ASCII-armored detached gpg signature.



Chapter 7. Debian Security Infrastructure 140

Check of Release.gpg by apt

Secure apt always downloads Release.gpg files when it’s downloading Release files, and
if it cannot download the Release.gpg , or if the signature is bad, it will complain, and will
make note that the Packages files that the Release file points to, and all the packages listed
therein, are from an untrusted source. Here’s how it looks during an apt-get update :

W: GPG error: http://ftp.us.debian.org testing Release: The following signatures
couldn’t be verified because the public key is not available: NO_PUBKEY 010908312D230C5F

Note that the second half of the long number is the key id of the key that apt doesn’t know
about, in this case that’s 2D230C5F.

If you ignore that warning and try to install a package later, apt will warn again:

WARNING: The following packages cannot be authenticated!
libglib-perl libgtk2-perl

Install these packages without verification [y/N]?

If you say Y here you have no way to know if the file you’re getting is the package you’re
supposed to install, or if it’s something else entirely that somebody that can intercept the com-
munication against the server7 has arranged for you, containing a nasty suprise.

Note that you can disable these checks by running apt with –allow-unauthenticated.

It’s also worth noting that newer versions of the Debian installer use the same signed Release
file mechanism during their debootstrap of the Debian base system, before apt is available, and
that the installer even uses this system to verify pieces of itself that it downloads from the net.
Also, Debian does not currently sign the Release files on its CDs; apt can be configured to
always trust packages from CDs so this is not a large problem.

How to tell apt what to trust

So the security of the whole system depends on there being a Release.gpg file, which signs
a Release file, and of apt checking that signature using gpg. To check the signature, it has
to know the public key of the person who signed the file. These keys are kept in apt’s own
keyring (/etc/apt/trusted.gpg ), and managing the keys is where secure apt comes in.

By default, Debian systems come preconfigured with the Debian archive key in the keyring.

# apt-key list
/etc/apt/trusted.gpg
--------------------
pub 1024D/4F368D5D 2005-01-31 [expires: 2006-01-31]
uid Debian Archive Automatic Signing Key (2005) <ftpmaster@debian.org>

7Or has poisoned your DNS, or is spoofing the server, or has replaced the file in the mirror you are using, etc.



Chapter 7. Debian Security Infrastructure 141

Here 4F368D5D is the key id, and notice that this key was only valid for a one year period.
Debian rotates these keys as a last line of defense against some sort of security breach breaking
a key.

That will make apt trust the official Debian archive, but if you add some other apt repository
to /etc/apt/sources.list , you’ll also have to give apt its key if you want apt to trust
it. Once you have the key and have verified it, it’s a simple matter of running apt-key add
file to add it. Getting the key and verifying it are the trickier parts.

Finding the key for a repository

The debian-archive-keyring package is used to distribute keys to apt . Upgrades to this pack-
age can add (or remove) gpg keys for the main Debian archive.

For other archives, there is not yet a standard location where you can find the key for a given
apt repository. There’s a rough standard of putting the key up on the web page for the repos-
itory or as a file in the repository itself, but no real standard, so you might have to hunt for
it.

The Debian archive signing key is available at http://ftp-master.debian.org/ziyi_
key_2006.asc (replace 2006 with current year).8

gpg itself has a standard way to distribute keys, using a keyserver that gpg can download a
key from and add it to its keyring. For example:

$ gpg --keyserver pgpkeys.mit.edu --recv-key 2D230C5F
gpg: requesting key 2D230C5F from hkp server pgpkeys.mit.edu
gpg: key 2D230C5F: public key "Debian Archive Automatic Signing Key (2006) <ftpm
aster@debian.org>" imported
gpg: Total number processed: 1
gpg: imported: 1

You can then export that key from your own keyring and feed it to apt-key :

$ gpg -a --export 2D230C5F | sudo apt-key add -
gpg: no ultimately trusted keys found
OK

The “gpg: no ultimately trusted keys found” warning means that gpg was not configured to
ultimately trust a specific key. Trust settings are part of OpenPGPs Web-of-Trust which does
not apply here. So there is no problem with this warning. In typical setups the user’s own key
is ultimately trusted.

8“ziyi” is the name of the tool used for signing on the Debian servers, the name is based on the name of a
Chinese actress (http://en.wikipedia.org/wiki/Zhang_Ziyi ).

http://ftp-master.debian.org/ziyi_key_2006.asc
http://ftp-master.debian.org/ziyi_key_2006.asc
http://en.wikipedia.org/wiki/Zhang_Ziyi


Chapter 7. Debian Security Infrastructure 142

Safely adding a key

By adding a key to apt’s keyring, you’re telling apt to trust everything signed by the key,
and this lets you know for sure that apt won’t install anything not signed by the person
who possesses the private key. But if you’re sufficiently paranoid, you can see that this just
pushes things up a level, now instead of having to worry if a package, or a Release file
is valid, you can worry about whether you’ve actually gotten the right key. Is the http:
//ftp-master.debian.org/ziyi_key_2006.asc file mentioned above really Debian’s
archive signing key, or has it been modified (or this document lies).

It’s good to be paranoid in security, but verifying things from here is harder. gpg has the
concept of a chain of trust, which can start at someone you’re sure of, who signs someone’s
key, who signs some other key, etc., until you get to the archive key. If you’re sufficiently
paranoid you’ll want to check that your archive key is signed by a key that you can trust, with
a trust chain that goes back to someone you know personally. If you want to do this, visit a
Debian conference or perhaps a local LUG for a key signing 9.

If you can’t afford this level of paranoia, do whatever feels appropriate to you when adding a
new apt source and a new key. Maybe you’ll want to mail the person providing the key and
verify it, or maybe you’re willing to take your chances with downloading it and assuming you
got the real thing. The important thing is that by reducing the problem to what archive keys to
trust, secure apt lets you be as careful and secure as it suits you to be.

Verifying key integrity

You can verify the fingerprint as well as the signatures on the key. Retrieving the finger-
print can be done for multiple sources, you can check The Debian System Book (http:
//debiansystem.info/readers/changes/547-ziyi-key-2006 ), talk to Debian De-
velopers on IRC, read the mailing list where the key change will be announced or any other
additional means to verify the fingerprint. For example you can do this:

$ GET http://ftp-master.debian.org/ziyi_key_2006.asc | gpg --import
gpg: key 2D230C5F: public key "Debian Archive Automatic Signing Key (2006)

<ftpmaster&debian.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
$ gpg --check-sigs --fingerprint 2D230C5F
pub 1024D/2D230C5F 2006-01-03 [expires: 2007-02-07]

Key fingerprint = 0847 50FC 01A6 D388 A643 D869 0109 0831 2D23 0C5F
uid Debian Archive Automatic Signing Key (2006) <ftpmaster@debian.org>
sig!3 2D230C5F 2006-01-03 Debian Archive Automatic Signing Key

(2006) <ftpmaster@debian.org>
sig! 2A4E3EAA 2006-01-03 Anthony Towns <aj@azure.humbug.org.au>

9Not all apt repository keys are signed at all by another key. Maybe the person setting up the repository doesn’t
have another key, or maybe they don’t feel comfortable signing such a role key with their main key. For information
on setting up a key for a repository see ‘Release check of non Debian sources’ on page 151.

http://ftp-master.debian.org/ziyi_key_2006.asc
http://ftp-master.debian.org/ziyi_key_2006.asc
http://debiansystem.info/readers/changes/547-ziyi-key-2006
http://debiansystem.info/readers/changes/547-ziyi-key-2006


Chapter 7. Debian Security Infrastructure 143

sig! 4F368D5D 2006-01-03 Debian Archive Automatic Signing Key
(2005) <ftpmaster@debian.org>

sig! 29982E5A 2006-01-04 Steve Langasek <vorlon@dodds.net>
sig! FD6645AB 2006-01-04 Ryan Murray <rmurray@cyberhqz.com>
sig! AB2A91F5 2006-01-04 James Troup <james@nocrew.org>

and then check the trust path (http://www.debian.org/doc/manuals/
securing-debian-howto/ch7.en.html#s-deb-pack-sign ) from your key (or a
key you trust) to at least one of the keys used to sign the archive key. If you are sufficiently
paranoid you will tell apt to trust the key only if you find an acceptable path:

$ gpg --export -a 2D230C5F | sudo apt-key add -
Ok

Note that the key is signed with the previous archive key, so theoretically you can just build on
your previous trust.

Debian archive key yearly rotation

As mentioned above, the Debian archive signing key is changed each year, in January. Since
secure apt is young, we don’t have a great deal of experience with changing the key and there
are still rough spots.

In January 2006, a new key for 2006 was made and the Release file began to be signed by it,
but to try to avoid breaking systems that had the old 2005 key, the Release file was signed by
that as well. The intent was that apt would accept one signature or the other depending on the
key it had, but apt turned out to be buggy and refused to trust the file unless it had both keys
and was able to check both signatures. This was fixed in apt version 0.6.43.1. There was also
confusion about how the key was distributed to users who already had systems using secure
apt; initially it was uploaded to the web site with no announcement and no real way to verify
it and users were forced to download it by hand.

In January 2006, a new key for 2006 was made and the Release file began to be signed by it,
but to try to avoid breaking systems that had the old 2005 key, the Release file was signed by
that as well. In order to prevent confusion on the best distribution mechanism for users who
already have systems using secure apt, the debian-archive-keyring package was introduced,
which manages apt keyring updates.

Known release checking problems

One not so obvious problem is that if your clock is very far off, secure apt will not work. If it’s
set to a date in the past, such as 1999, apt will fail with an unhelpful message such as this:

W: GPG error: http://archive.progeny.com sid Release: Unknown error executing gpg

http://www.debian.org/doc/manuals/securing-debian-howto/ch7.en.html#s-deb-pack-sign
http://www.debian.org/doc/manuals/securing-debian-howto/ch7.en.html#s-deb-pack-sign


Chapter 7. Debian Security Infrastructure 144

Although apt-key list will make the problem plain:

gpg: key 2D230C5F was created 192324901 seconds in the future (time warp or clock problem)
gpg: key 2D230C5F was created 192324901 seconds in the future (time warp or clock problem)
pub 1024D/2D230C5F 2006-01-03
uid Debian Archive Automatic Signing Key (2006) <ftpmaster@debian.org>

If it’s set to a date too far in the future, apt will treat the keys as expired.

Another problem you may encouter if using testing or unstable is that if you have not run
apt-get update lately and apt-get install a package, apt might complain that it can-
not be authenticated (why does it do this?). apt-get update will fix this.

Manual per distribution release check

In case you want to add now the additional security checks and don’t want or cannot run the
latest apt version10 you can use the script below, provided by Anthony Towns. This script
can automatically do some new security checks to allow the user to be sure that the software
s/he’s downloading matches the software Debian’s distributing. This stops Debian developers
from hacking into someone’s system without the accountability provided by uploading to the
main archive, or mirrors mirroring something almost, but not quite like Debian, or mirrors
providing out of date copies of unstable with known security problems.

This sample code, renamed as apt-check-sigs , should be used in the following way:

# apt-get update
# apt-check-sigs
(...results...)
# apt-get dist-upgrade

First you need to:

• get the keys the archive software uses to sign Release files, http://ftp-master.
debian.org/ziyi_key_2006.asc and add them to ~/.gnupg/trustedkeys.gpg
(which is what gpgv uses by default).

gpg --no-default-keyring --keyring trustedkeys.gpg --import ziyi_key_2006.asc

• remove any /etc/apt/sources.list lines that don’t use the normal “dists” struc-
ture, or change the script so that it works with them.

• be prepared to ignore the fact that Debian security updates don’t have signed Release
files, and that Sources files don’t have appropriate checksums in the Release file (yet).

10Either because you are using the stable, sarge, release or an older release or because you don’t want to use the
latest apt version, although we would really appreciate testing of it.

http://ftp-master.debian.org/ziyi_key_2006.asc
http://ftp-master.debian.org/ziyi_key_2006.asc


Chapter 7. Debian Security Infrastructure 145

• be prepared to check that the appropriate sources are signed by the appropriate keys.

This is the example code for apt-check-sigs , the latest version can be retrieved
from http://people.debian.org/~ajt/apt-check-sigs . This code is currently
in beta, for more information read http://lists.debian.org/debian-devel/2002/
debian-devel-200207/msg00421.html .

#!/bin/bash

# Copyright (c) 2001 Anthony Towns <ajt@debian.org>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.

rm -rf /tmp/apt-release-check
mkdir /tmp/apt-release-check || exit 1
cd /tmp/apt-release-check

>OK
>MISSING
>NOCHECK
>BAD

arch=‘dpkg --print-installation-architecture‘

am_root () {
[ ‘id -u‘ -eq 0 ]

}

get_md5sumsize () {
cat "$1" | awk ’/^MD5Sum:/,/^SHA1:/’ |

MYARG="$2" perl -ne ’@f = split /\s+/; if ($f[3] eq $ENV{"MYARG"}) {
print "$f[1] $f[2]\n"; exit(0); }’
}

checkit () {
local FILE="$1"
local LOOKUP="$2"

http://people.debian.org/~ajt/apt-check-sigs
http://lists.debian.org/debian-devel/2002/debian-devel-200207/msg00421.html
http://lists.debian.org/debian-devel/2002/debian-devel-200207/msg00421.html


Chapter 7. Debian Security Infrastructure 146

Y="‘get_md5sumsize Release "$LOOKUP"‘"
Y="‘echo "$Y" | sed ’s/^ *//;s/ */ /g’‘"

if [ ! -e "/var/lib/apt/lists/$FILE" ]; then
if [ "$Y" = "" ]; then

# No file, but not needed anyway
echo "OK"
return

fi
echo "$FILE" >>MISSING
echo "MISSING $Y"
return

fi
if [ "$Y" = "" ]; then

echo "$FILE" >>NOCHECK
echo "NOCHECK"
return

fi
X="‘md5sum < /var/lib/apt/lists/$FILE | cut -d\ -f1‘ ‘wc -c < /var/lib

/apt/lists/$FILE‘"
X="‘echo "$X" | sed ’s/^ *//;s/ */ /g’‘"
if [ "$X" != "$Y" ]; then

echo "$FILE" >>BAD
echo "BAD"
return

fi
echo "$FILE" >>OK
echo "OK"

}

echo
echo "Checking sources in /etc/apt/sources.list:"
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo
(echo "You should take care to ensure that the distributions you’re downloading
"
echo "are the ones you think you are downloading, and that they are as up to"
echo "date as you would expect (testing and unstable should be no more than"
echo "two or three days out of date, stable-updates no more than a few weeks"
echo "or a month)."
) | fmt
echo

cat /etc/apt/sources.list |
sed ’s/^ *//’ | grep ’^[^#]’ |



Chapter 7. Debian Security Infrastructure 147

while read ty url dist comps; do
if [ "${url%%:*}" = "http" -o "${url%%:*}" = "ftp" ]; then

baseurl="${url#*://}"
else

continue
fi

echo "Source: ${ty} ${url} ${dist} ${comps}"

rm -f Release Release.gpg
lynx -reload -dump "${url}/dists/${dist}/Release" >/dev/null 2>&1
wget -q -O Release "${url}/dists/${dist}/Release"

if ! grep -q ’^’ Release; then
echo " * NO TOP-LEVEL Release FILE"
>Release

else
origline=‘sed -n ’s/^Origin: *//p’ Release | head -1‘
lablline=‘sed -n ’s/^Label: *//p’ Release | head -1‘
suitline=‘sed -n ’s/^Suite: *//p’ Release | head -1‘
codeline=‘sed -n ’s/^Codename: *//p’ Release | head -1‘
dateline=‘grep "^Date:" Release | head -1‘
dscrline=‘grep "^Description:" Release | head -1‘
echo " o Origin: $origline/$lablline"
echo " o Suite: $suitline/$codeline"
echo " o $dateline"
echo " o $dscrline"

if [ "${dist%%/*}" != "$suitline" -a "${dist%%/*}" != "$codeline" ]; then
echo " * WARNING: asked for $dist, got $suitline/$codeline"

fi

lynx -reload -dump "${url}/dists/${dist}/Release.gpg" >/dev/null 2>&1
wget -q -O Release.gpg "${url}/dists/${dist}/Release.gpg"

gpgv --status-fd 3 Release.gpg Release 3>&1 >/dev/null 2>&1 | sed -n "s/^\[GNUPG:\] //p" | (okay=0; err=""; while read gpgcode rest; do
if [ "$gpgcode" = "GOODSIG" ]; then

if [ "$err" != "" ]; then
echo " * Signed by ${err# } key: ${rest#* }"

else
echo " o Signed by: ${rest#* }"
okay=1

fi
err=""

elif [ "$gpgcode" = "BADSIG" ]; then
echo " * BAD SIGNATURE BY: ${rest#* }"



Chapter 7. Debian Security Infrastructure 148

err=""
elif [ "$gpgcode" = "ERRSIG" ]; then

echo " * COULDN’T CHECK SIGNATURE BY KEYID: ${rest %% *}"
err=""

elif [ "$gpgcode" = "SIGREVOKED" ]; then
err="$err REVOKED"

elif [ "$gpgcode" = "SIGEXPIRED" ]; then
err="$err EXPIRED"

fi
done
if [ "$okay" != 1 ]; then

echo " * NO VALID SIGNATURE"
>Release

fi)
fi
okaycomps=""
for comp in $comps; do

if [ "$ty" = "deb" ]; then
X=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Release" | sed ’s,//*,_,g’‘" "${comp}/binary-${arch}/Release")
Y=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/binary-${arch}/Packages" | sed ’s,//*,_,g’‘" "${comp}/binary-${arch}/Packages")
if [ "$X $Y" = "OK OK" ]; then

okaycomps="$okaycomps $comp"
else

echo " * PROBLEMS WITH $comp ($X, $Y)"
fi

elif [ "$ty" = "deb-src" ]; then
X=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/source/Release" | sed ’s,//*,_,g’‘" "${comp}/source/Release")
Y=$(checkit "‘echo "${baseurl}/dists/${dist}/${comp}/source/Sources" | sed ’s,//*,_,g’‘" "${comp}/source/Sources")
if [ "$X $Y" = "OK OK" ]; then

okaycomps="$okaycomps $comp"
else

echo " * PROBLEMS WITH component $comp ($X, $Y)"
fi

fi
done
[ "$okaycomps" = "" ] || echo " o Okay:$okaycomps"
echo

done

echo "Results"
echo "~~~~~~~"
echo

allokay=true

cd /tmp/apt-release-check



Chapter 7. Debian Security Infrastructure 149

diff <(cat BAD MISSING NOCHECK OK | sort) <(cd /var/lib/apt/lists && find . -type f -maxdepth 1 | sed ’s,^\./,,g’ | grep ’_’ | sort) | sed -n ’s/^> //p’ >UNVALIDATED

cd /tmp/apt-release-check
if grep -q ^ UNVALIDATED; then

allokay=false
(echo "The following files in /var/lib/apt/lists have not been validated."
echo "This could turn out to be a harmless indication that this script"
echo "is buggy or out of date, or it could let trojaned packages get onto"
echo "your system."
) | fmt
echo
sed ’s/^/ /’ < UNVALIDATED
echo

fi

if grep -q ^ BAD; then
allokay=false
(echo "The contents of the following files in /var/lib/apt/lists does not"
echo "match what was expected. This may mean these sources are out of date,"
echo "that the archive is having problems, or that someone is actively"
echo "using your mirror to distribute trojans."
if am_root; then

echo "The files have been renamed to have the extension .FAILED and"
echo "will be ignored by apt."
cat BAD | while read a; do

mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
done

fi) | fmt
echo
sed ’s/^/ /’ < BAD
echo

fi

if grep -q ^ MISSING; then
allokay=false
(echo "The following files from /var/lib/apt/lists were missing. This"
echo "may cause you to miss out on updates to some vulnerable packages."
) | fmt
echo
sed ’s/^/ /’ < MISSING
echo

fi

if grep -q ^ NOCHECK; then
allokay=false
(echo "The contents of the following files in /var/lib/apt/lists could not"



Chapter 7. Debian Security Infrastructure 150

echo "be validated due to the lack of a signed Release file, or the lack"
echo "of an appropriate entry in a signed Release file. This probably"
echo "means that the maintainers of these sources are slack, but may mean"
echo "these sources are being actively used to distribute trojans."
if am_root; then

echo "The files have been renamed to have the extension .FAILED and"
echo "will be ignored by apt."
cat NOCHECK | while read a; do

mv /var/lib/apt/lists/$a /var/lib/apt/lists/${a}.FAILED
done

fi) | fmt
echo
sed ’s/^/ /’ < NOCHECK
echo

fi

if $allokay; then
echo ’Everything seems okay!’
echo

fi

rm -rf /tmp/apt-release-check

You might need to apply the following patch for sid since md5sumadds an ’-’ after the sum
when the input is stdin:

@@ -37,7 +37,7 @@
local LOOKUP="$2"

Y="‘get_md5sumsize Release "$LOOKUP"‘"
- Y="‘echo "$Y" | sed ’s/^ *//;s/ */ /g’‘"
+ Y="‘echo "$Y" | sed ’s/-//;s/^ *//;s/ */ /g’‘"

if [ ! -e "/var/lib/apt/lists/$FILE" ]; then
if [ "$Y" = "" ]; then

@@ -55,7 +55,7 @@
return

fi
X="‘md5sum < /var/lib/apt/lists/$FILE‘ ‘wc -c < /var/lib/apt/lists/$FILE‘"

- X="‘echo "$X" | sed ’s/^ *//;s/ */ /g’‘"
+ X="‘echo "$X" | sed ’s/-//;s/^ *//;s/ */ /g’‘"

if [ "$X" != "$Y" ]; then
echo "$FILE" >>BAD
echo "BAD"



Chapter 7. Debian Security Infrastructure 151

7.4.4 Release check of non Debian sources

Notice that, when using the latest apt version (with secure apt) no extra effort should be required
on your part unless you use non-Debian sources, in which case an extra confirmation step will
be required by apt-get. This is avoided by providing Release and Release.gpg files in the
non-Debian sources. The Release file can be generated with apt-ftparchive (available in
apt-utils 0.5.0 and later), the Release.gpg is just a detached signature. To generate both
follow this simple procedure:

$ rm -f dists/unstable/Release
$ apt-ftparchive release dists/unstable > dists/unstable/Release
$ gpg --sign -ba -o dists/unstable/Release.gpg dists/unstable/Release

7.4.5 Alternative per-package signing scheme

The additional scheme of signing each and every packages allows packages to be checked
when they are no longer referenced by an existing Packages file, and also third-party pack-
ages where no Packages ever existed for them can be also used in Debian but will not be
default scheme.

This package signing scheme can be implemented using debsig-verify and debsigs .
These two packages can sign and verify embedded signatures in the .deb itself. Debian al-
ready has the capability to do this now, but there is no feature plan to implement the policy or
other tools since the archive signing scheme is prefered. These tools are available for users and
archive administrators that would rather use this scheme instead.

Latest dpkg versions (since 1.9.21) incorporate a patch (http://lists.debian.org/
debian-dpkg/2001/debian-dpkg-200103/msg00024.html ) that provides this func-
tionality as soon as debsig-verify is installed.

NOTE: Currently /etc/dpkg/dpkg.cfg ships with “no-debsig” as per default.

NOTE2: Signatures from developers are currently stripped when they enter off the package
archive since the currently preferred method is release checks as described previously.

http://lists.debian.org/debian-dpkg/2001/debian-dpkg-200103/msg00024.html
http://lists.debian.org/debian-dpkg/2001/debian-dpkg-200103/msg00024.html


Chapter 7. Debian Security Infrastructure 152



153

Chapter 8

Security tools in Debian

FIXME: More content needed.

Debian provides also a number of security tools that can make a Debian box suited for security
purposes. These purposes include protection of information systems through firewalls (either
packet or application-level), intrusion detection (both network and host based), vulnerability
assessment, antivirus, private networks, etc.

Since Debian 3.0 (woody), the distribution features cryptographic software integrated into the
main distribution. OpenSSH and GNU Privacy Guard are included in the default install, and
strong encryption is now present in web browsers and web servers, databases, and so forth.
Further integration of cryptography is planned for future releases. This software, due to export
restrictions in the US, was not distributed along with the main distribution but included only
in non-US sites.

8.1 Remote vulnerability assessment tools

The tools provided by Debian to perform remote vulnerability assessment are: 1

• nessus

• raccess

• nikto (whisker ’s replacement)

By far, the most complete and up-to-date tools is nessus which is composed of a client
(nessus ) used as a GUI and a server (nessusd ) which launches the programmed attacks.
Nessus includes remote vulnerabilities for quite a number of systems including network ap-
pliances, ftp servers, www servers, etc. The latest security plugins are able even to parse a
web site and try to discover which interactive pages are available which could be attacked.

1Some of them are provided when installing the harden-remoteaudit package.



Chapter 8. Security tools in Debian 154

There are also Java and Win32 clients (not included in Debian) which can be used to contact
the management server.

nikto is a web-only vulnerability assessment scanner including anti-IDS tactics (most of
which are not anti-IDS anymore). It is one of the best cgi-scanners available, being able to
detect a WWW server and launch only a given set of attacks against it. The database used for
scanning can be easily modified to provide for new information.

8.2 Network scanner tools

Debian does provide some tools used for remote scanning of hosts (but not vulnerability as-
sessment). These tools are, in some cases, used by vulnerability assessment scanners as the first
type of “attack” run against remote hosts in an attempt to determine remote services available.
Currently Debian provides:

• nmap

• xprobe

• p0f

• knocker

• isic

• hping2

• icmpush

• nbtscan (for SMB /NetBIOS audits)

• fragrouter

• strobe (in the netdiag package)

• irpas

While xprobe provide only remote operating system detection (using TCP/IP fingerprinting,
nmapand knocker do both operating system detection and port scanning of the remote hosts.
On the other hand, hping2 and icmpush can be used for remote ICMP attack techniques.

Designed specifically for SMB networks, nbtscan can be used to scan IP networks and retrieve
name information from SMB-enabled servers, including: usernames, network names, MAC
addresses. . .

On the other hand, fragrouter can be used to test network intrusion detection systems and
see if the NIDS can be eluded by fragmentation attacks.

FIXME: Check Bug #153117 (http://bugs.debian.org/153117 ) (ITP fragrouter) to see if
it’s included.

http://bugs.debian.org/153117


Chapter 8. Security tools in Debian 155

FIXME add information based on Debian Linux Laptop for Road Warriors (http://www.
giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf ) which describes how to
use Debian and a laptop to scan for wireless (803.1) networks (link not there any more).

8.3 Internal audits

Currently, only the tiger tool used in Debian can be used to perform internal (also called
white box) audit of hosts in order to determine if the file system is properly set up, which
processes are listening on the host, etc.

8.4 Auditing source code

Debian provides several packages that can be used to audit C/C++ source code programs and
find programming errors that might lead to potential security flaws:

• flawfinder

• rats

• splint

• pscan

8.5 Virtual Private Networks

A virtual private network (VPN) is a group of two or more computer systems, typically con-
nected to a private network with limited public network access, that communicate securely
over a public network. VPNs may connect a single computer to a private network (client-
server), or a remote LAN to a private network (server-server). VPNs often include the use of
encryption, strong authentication of remote users or hosts, and methods for hiding the private
network’s topology.

Debian provides quite a few packages to set up encrypted virtual private networks:

• vtun

• tunnelv (non-US section)

• cipe-source , cipe-common

• tinc

• secvpn

http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf
http://www.giac.org/practical/gcux/Stephanie_Thomas_GCUX.pdf


Chapter 8. Security tools in Debian 156

• pptpd

• openvpn

• openswan (http://www.openswan.org/ )

FIXME: Update the information here since it was written with FreeSWAN in mind. Check Bug
#237764 and Message-Id: <200412101215.04040.rmayr@debian.org>.

The OpenSWAN package is probably the best choice overall, since it promises to interoperate
with almost anything that uses the IP security protocol, IPsec (RFC 2411). However, the other
packages listed above can also help you get a secure tunnel up in a hurry. The point to point
tunneling protocol (PPTP) is a proprietary Microsoft protocol for VPN. It is supported under
Linux, but is known to have serious security issues.

For more information see the VPN-Masquerade HOWTO (http://www.tldp.org/HOWTO/
VPN-Masquerade-HOWTO.html ) (covers IPsec and PPTP), VPN HOWTO (http://www.
tldp.org/HOWTO/VPN-HOWTO.html ) (covers PPP over SSH), Cipe mini-HOWTO (http:
//www.tldp.org/HOWTO/mini/Cipe+Masq.html ), and PPP and SSH mini-HOWTO
(http://www.tldp.org/HOWTO/mini/ppp-ssh/index.html ).

Also worth checking out is Yavipin (http://yavipin.sourceforge.net/ ), but no Debian
packages seem to be available yet.

8.5.1 Point to Point tunneling

If you want to provide a tunneling server for a mixed environment (both Microsoft operating
systems and Linux clients) and IPsec is not an option (since it’s only provided for Windows
2000 and Windows XP), you can use PoPToP (Point to Point Tunneling Server), provided in the
pptpd package.

If you want to use Microsoft’s authentication and encryption with the server provided in the
ppp package, note the following from the FAQ:

It is only necessary to use PPP 2.3.8 if you want Microsoft compatible
MSCHAPv2/MPPE authentication and encryption. The reason for this is that
the MSCHAPv2/MPPE patch currently supplied (19990813) is against PPP
2.3.8. If you don’t need Microsoft compatible authentication/encryption
any 2.3.x PPP source will be fine.

However, you also have to apply the kernel patch provided by the kernel-patch-mppe
package, which provides the pp_mppe module for pppd.

Take into account that the encryption in ppptp forces you to store user passwords in clear
text, and that the MS-CHAPv2 protocol contains known security holes (http://mopo.
informatik.uni-freiburg.de/pptp_mschapv2/ ).

http://www.openswan.org/
http://www.tldp.org/HOWTO/VPN-Masquerade-HOWTO.html
http://www.tldp.org/HOWTO/VPN-Masquerade-HOWTO.html
http://www.tldp.org/HOWTO/VPN-HOWTO.html
http://www.tldp.org/HOWTO/VPN-HOWTO.html
http://www.tldp.org/HOWTO/mini/Cipe+Masq.html
http://www.tldp.org/HOWTO/mini/Cipe+Masq.html
http://www.tldp.org/HOWTO/mini/ppp-ssh/index.html
http://yavipin.sourceforge.net/
http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/
http://mopo.informatik.uni-freiburg.de/pptp_mschapv2/


Chapter 8. Security tools in Debian 157

8.6 Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) is a security architecture introduced to provide an increased
level of confidence for exchanging information over insecure networks. It makes use of the
concept of public and private cryptographic keys to verify the identity of the sender (signing)
and to ensure privacy (encryption).

When considering a PKI, you are confronted with a wide variety of issues:

• a Certificate Authority (CA) that can issue and verify certificates, and that can work un-
der a given hierarchy.

• a Directory to hold user’s public certificates.

• a Database (?) to maintain Certificate Revocation Lists (CRL).

• devices that interoperate with the CA in order to print out smart cards/USB to-
kens/whatever to securely store certificates.

• certificate-aware applications that can use certificates issued by a CA to enroll in en-
crypted communication and check given certificates against CRL (for authentication and
full Single Sign On solutions).

• a Time stamping authority to digitally sign documents.

• a management console from which all of this can be properly used (certificate generation,
revocation list control, etc. . . ).

Debian GNU/Linux has software packages to help you with some of these PKI issues. They
include OpenSSL(for certificate generation), OpenLDAP(as a directory to hold the certificates),
gnupg and openswan (with X.509 standard support). However, as of the Woody release (De-
bian 3.0), Debian does not have any of the freely available Certificate Authorities such as pyCA,
OpenCA (http://www.openca.org ) or the CA samples from OpenSSL. For more informa-
tion read the Open PKI book (http://ospkibook.sourceforge.net/ ).

8.7 SSL Infrastructure

Debian does provide some SSL certificates with the distribution so that they can be installed
locally. They are found in the ca-certificates package. This package provides a central
repository of certificates that have been submitted to Debian and approved (that is, verified)
by the package maintainer, useful for any OpenSSL applications which verify SSL connections.

FIXME: read debian-devel to see if there was something added to this.

http://www.openca.org
http://ospkibook.sourceforge.net/


Chapter 8. Security tools in Debian 158

8.8 Antivirus tools

There are not many anti-virus tools included with Debian GNU/Linux, probably because
GNU/Linux users are not plagued by viruses. The Unix security model makes a distinction be-
tween privileged (root) processes and user-owned processes, therefore a “hostile” executable
that a non-root user receives or creates and then executes cannot “infect” or otherwise manipu-
late the whole system. However, GNU/Linux worms and viruses do exist, although there has
not (yet, hopefully) been any that has spread in the wild over any Debian distribution. In any
case, administrators might want to build up anti-virus gateways that protect against viruses
arising on other, more vulnerable systems in their network.

Debian GNU/Linux currently provides the following tools for building antivirus environ-
ments:

• Clam Antivirus (http://www.clamav.net ), provided since Debian sarge (3.1 release).
Packages are provided both for the virus scanner (clamav ) for the scanner daemon
(clamav-daemon ) and for the data files needed for the scanner. Since keeping an an-
tivirus up-to-date is critical for it to work properly there are two different ways to get
this data: clamav-freshclam provides a way to update the database through the In-
ternet automatically and clamav-data which provides the data files directly. 2

• mailscanner an e-mail gateway virus scanner and spam detector. Using sendmail
or exim as its basis, it can use more than 17 different virus scanning engines (including
clamav ).

• libfile-scan-perl which provides File::Scan, a Perl extension for scanning files for
viruses. This modules can be used to make platform independent virus scanners.

• Amavis Next Generation (http://www.sourceforge.net/projects/amavis ),
provided in the package amavis-ng and available in sarge, which is a mail virus scanner
which integrates with different MTA (Exim, Sendmail, Postfix, or Qmail) and supports
over 15 virus scanning engines (including clamav, File::Scan and openantivirus).

• sanitizer (http://packages.debian.org/sanitizer ), a tool that uses the
procmail package, which can scan email attachments for viruses, block attachments
based on their filenames, and more.

• amavis-postfix (http://packages.debian.org/amavis-postfix ), a script that
provides an interface from a mail transport agent to one or more commercial virus scan-
ners (this package is built with support for the postfix MTA only).

• exiscan , an e-mail virus scanner written in Perl that works with Exim.
2If you use this last package and are running an official Debian, the database will not be updated with secu-

rity updates. You should either use clamav-freshclam , clamav-getfiles to generate new clamav-data
packages or update from the maintainers location:

deb http://people.debian.org/~zugschlus/clamav-data/ / deb-src http://people.debian.org/~zugschlus/clamav-data/
/

http://www.clamav.net
http://www.sourceforge.net/projects/amavis
http://packages.debian.org/sanitizer
http://packages.debian.org/amavis-postfix


Chapter 8. Security tools in Debian 159

• blackhole-qmail a spam filter for Qmail with built-in support for Clamav.

Some gateway daemons support already tools extensions to build antivirus environments in-
cluding exim4-daemon-heavy (the heavy version of the Exim MTA), frox (a transparent
caching ftp proxy server), messagewall (an SMTP proxy daemon) and pop3vscan (a trans-
parent POP3 proxy).

Debian currently provide clamav as the only antivirus scanning software in the main official
distribution and it also provides multiple interfaces to build gateways with antivirus capabili-
ties for different protocols.

Some other free software antivirus projects which might be included in future Debian
GNU/Linux releases:

• Open Antivirus (http://sourceforge.net/projects/openantivirus/ ) (see
Bug #150698 (ITP oav-scannerdaemon) (http://bugs.debian.org/150698 ) and
Bug #150695 (ITP oav-update) (http://bugs.debian.org/150695 ) ).

FIXME: Is there a package that provides a script to download the latest virus signatures from
http://www.openantivirus.org/latest.php ?

FIXME: Check if scannerdaemon is the same as the open antivirus scanner daemon (read ITPs).

However, Debian will never provide propietary (non-free and undistributable) antivirus soft-
ware such as: Panda Antivirus, NAI Netshield, Sophos Sweep (http://www.sophos.
com/ ), TrendMicro Interscan (http://www.antivirus.com ), or RAV (http://www.
ravantivirus.com ). For more pointers see the Linux antivirus software mini-FAQ
(http://www.computer-networking.de/~link/security/av-linux_e.txt ). This
does not mean that this software cannot be installed properly in a Debian system3.

For more information on how to set up a virus detection system read Dave Jones’ article Build-
ing an E-mail Virus Detection System for Your Network (http://www.linuxjournal.
com/article.php?sid=4882 ).

8.9 GPG agent

It is very common nowadays to digitally sign (and sometimes encrypt) e-mail. You might, for
example, find that many people participating on mailing lists sign their list e-mail. Public key
signatures are currently the only means to verify that an e-mail was sent by the sender and not
by some other person.

Debian GNU/Linux provides a number of e-mail clients with built-in e-mail signing capabili-
ties that interoperate either with gnupg or pgp :

3Actually, there is an installer package for the F-prot antivirus, which is non-free but gratis for home users,
called f-prot-installer . This installer, however, just downloads F-prot’s software (http://www.f-prot.
com/products/home_use/linux/ ) and installs it in the system.

http://sourceforge.net/projects/openantivirus/
http://bugs.debian.org/150698
http://bugs.debian.org/150695
http://www.openantivirus.org/latest.php
http://www.sophos.com/
http://www.sophos.com/
http://www.antivirus.com
http://www.ravantivirus.com
http://www.ravantivirus.com
http://www.computer-networking.de/~link/security/av-linux_e.txt
http://www.linuxjournal.com/article.php?sid=4882
http://www.linuxjournal.com/article.php?sid=4882
http://www.f-prot.com/products/home_use/linux/
http://www.f-prot.com/products/home_use/linux/


Chapter 8. Security tools in Debian 160

• evolution .

• mutt .

• kmail .

• mozilla or Thunderbird (provided in the mozilla-thunderbird package) if the
Enigmail (http://enigmail.mozdev.org/ ) plugin is installed which is provided by
mozilla-enigmail and mozilla-thunderbird-enigmail .

• sylpheed . Depending on how the stable version of this package evolves, you may need
to use the bleeding edge version, sylpheed-claws .

• gnus , which when installed with the mailcrypt package, is an emacs interface to
gnupg .

• kuvert , which provides this functionality independently of your chosen mail user agent
(MUA) by interacting with the mail transport agent (MTA).

Key servers allow you to download published public keys so that you may verify signatures.
One such key server is http://wwwkeys.pgp.net . gnupg can automatically fetch public
keys that are not already in your public keyring. For example, to configure gnupg to use the
above key server, edit the file ~/.gnupg/options and add the following line: 4

keyserver wwwkeys.pgp.net

Most key servers are linked, so that when your public key is added to one server, the addition
is propagated to all the other public key servers. There is also a Debian GNU/Linux package
debian-keyring , that provides all the public keys of the Debian developers. The gnupg
keyrings are installed in /usr/share/keyrings/ .

For more information:

• GnuPG FAQ (http://www.gnupg.org/faq.html ).

• GnuPG Handbook (http://www.gnupg.org/gph/en/manual.html ).

• GnuPG Mini Howto (English) (http://www.dewinter.com/gnupg_howto/
english/GPGMiniHowto.html ).

• comp.security.pgp FAQ (http://www.uk.pgp.net/pgpnet/pgp-faq/ ).

• Keysigning Party HOWTO (http://www.cryptnet.net/fdp/crypto/
gpg-party.html ).

4For more examples of how to configure gnupg check /usr/share/doc/mutt/examples/gpg.rc .

http://enigmail.mozdev.org/
http://wwwkeys.pgp.net
http://www.gnupg.org/faq.html
http://www.gnupg.org/gph/en/manual.html
http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
http://www.dewinter.com/gnupg_howto/english/GPGMiniHowto.html
http://www.uk.pgp.net/pgpnet/pgp-faq/
http://www.cryptnet.net/fdp/crypto/gpg-party.html
http://www.cryptnet.net/fdp/crypto/gpg-party.html


161

Chapter 9

Developer’s Best Practices for OS
Security

This chapter introduces some best secure coding practices for developers writing Debian
packages. If you are really interested in secure coding I recommend you read David
Wheeler’s Secure Programming for Linux and Unix HOWTO (http://www.dwheeler.
com/secure-programs/ ) and Secure Coding: Principles and Practices (http://www.
securecoding.org ) by Mark G. Graff and Kenneth R. van Wyk (O’Reilly, 2003).

9.1 Best practices for security review and design

Developers that are packaging software should make a best effort to ensure that the installation
of the software, or its use, does not introduce security risks to either the system it is installed
on or its users.

In order to do so, they should make their best to review the source code of the package and
detect any flaws that might introduce security bugs before releasing the software or distribut-
ing a new version. It is acknowledged that the cost of fixing bugs grows for different stages
of its development, so it is easier (and cheaper) to fix bugs when designing than when the
software has been deployed and is in maintenance mode (some studies say that the cost in
this later phase is sixty times higher). Although there are some tools that try to automatically
detect these flaws, developers should strive to learn about the different kind of security flaws
in order to understand them and be able to spot them in the code they (or others) have written.

The programming bugs which lead to security bugs typically include: buffer overflows (http:
//en.wikipedia.org/wiki/Buffer_overflow ), format string overflows, heap over-
flows and integer overflows (in C/C++ programs), temporary symlink race conditions (http:
//en.wikipedia.org/wiki/Symlink_race ) (in scripts), directory traversal (http://
en.wikipedia.org/wiki/Directory_traversal ) and command injection (in servers)
and cross-site scripting (http://en.wikipedia.org/wiki/Cross_site_scripting ),
and SQL injection bugs (http://en.wikipedia.org/wiki/SQL_injection ) (in the case

http://www.dwheeler.com/secure-programs/
http://www.dwheeler.com/secure-programs/
http://www.securecoding.org
http://www.securecoding.org
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Symlink_race
http://en.wikipedia.org/wiki/Symlink_race
http://en.wikipedia.org/wiki/Directory_traversal
http://en.wikipedia.org/wiki/Directory_traversal
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/SQL_injection


Chapter 9. Developer’s Best Practices for OS Security 162

of web-oriented applications). For a more complete information on security bugs review For-
tify’s Taxonomy of Software Security Errors (http://vulncat.fortifysoftware.com/ ).

Some of these issues might not be easy to spot unless you are an expert in the programming
language the software uses, but some security problems are easy to detect and fix. For example,
finding temporary race conditions due to misuse of temporary directories can easily be done
just by running grep -r “/tmp/” . . Those calls can be reviewed and replace the hardcoded
filenames using temporary directories to calls to either mktemp or tempfile in shell scripts,
File::Temp(3perl) in Perl scripts, or tmpfile(3) in C/C++.

There are a set of tools available to assist to the security code review phase. These include
rats , flawfinder and pscan . For more information, read the list of tools used by the Debian
Security Audit Team (http://www.debian.org/security/audit/tools ).

When packaging software developers have to make sure that they follow common security
principles, including:

• The software runs with the minimum privileges it needs:

– The package does install binaries setuid or setgid. Lintian will warn of setuid
(http://lintian.debian.org/reports/Tsetuid-binary.html ), set-
gid (http://lintian.debian.org/reports/Tsetgid-binary.html )
and setuid and setgid (http://lintian.debian.org/reports/
Tsetuid-gid-binary.html ) binaries.

– The daemons the package provide run with a low privilege user (see ‘Creating users
and groups for software daemons’ on the current page)

• Programmed (i.e., cron ) tasks running in the system do NOT run as root or, if they do,
do not implement complex tasks.

If you have to do any of the above make sure the programs that might run with higher priv-
ileges have been audited for security bugs. If you are unsure, or need help, contact the De-
bian Security Audit team (http://www.debian.org/security/audit/ ). In the case of
setuid/setgid binaries, follow the Debian policy section regarding permissions and owners
(http://www.debian.org/doc/debian-policy/ch-files.html#s10.9 )

For more information, specific to secure programming, make sure you read (or point your
upstream to) Secure Programming for Linux and Unix HOWTO (http://www.dwheeler.
com/secure-programs/ ) and the Build Security In (https://buildsecurityin.
us-cert.gov/portal/ ) portal.

9.2 Creating users and groups for software daemons

If your software runs a daemon that does not need root privileges, you need to create a user
for it. There are two kind of Debian users that can be used by packages: static uids (assigned

http://vulncat.fortifysoftware.com/
http://www.debian.org/security/audit/tools
http://lintian.debian.org/reports/Tsetuid-binary.html
http://lintian.debian.org/reports/Tsetgid-binary.html
http://lintian.debian.org/reports/Tsetuid-gid-binary.html
http://lintian.debian.org/reports/Tsetuid-gid-binary.html
http://www.debian.org/security/audit/
http://www.debian.org/doc/debian-policy/ch-files.html#s10.9
http://www.dwheeler.com/secure-programs/
http://www.dwheeler.com/secure-programs/
https://buildsecurityin.us-cert.gov/portal/
https://buildsecurityin.us-cert.gov/portal/


Chapter 9. Developer’s Best Practices for OS Security 163

by base-passwd , for a list of static users in Debian see ‘Operating system users and groups’
on page 190) and dynamic uids in the range assigned to system users.

In the first case, you need to ask for a user or group id to the base-passwd . Once the user is
available there the package needs to be distributed including a proper versioned depends to
the base-passwd package.

In the second case, you need to create the system user either in the preinst or in the postinst and
make the package depend on adduser (>= 3.11) .

The following example code creates the user and group the daemon will run as when the
package is installed or upgraded:

[...]
case "$1" in

install|upgrade)

# If the package has default file it could be sourced, so that
# the local admin can overwrite the defaults

[ -f "/etc/default/ packagename " ] && . /etc/default/ packagename

# Sane defaults:

[ -z "$SERVER_HOME" ] && SERVER_HOME=server_dir
[ -z "$SERVER_USER" ] && SERVER_USER=server_user
[ -z "$SERVER_NAME" ] && SERVER_NAME="Server description "
[ -z "$SERVER_GROUP" ] && SERVER_GROUP=server_group

# Groups that the user will be added to, if undefined, then none.
ADDGROUP=""

# create user to avoid running server as root
# 1. create group if not existing
if ! getent group | grep -q "^$SERVER_GROUP:" ; then

echo -n "Adding group $SERVER_GROUP.."
addgroup --quiet --system $SERVER_GROUP 2>/dev/null ||true
echo "..done"

fi
# 2. create homedir if not existing
test -d $SERVER_HOME || mkdir $SERVER_HOME
# 3. create user if not existing
if ! getent passwd | grep -q "^$SERVER_USER:"; then

echo -n "Adding system user $SERVER_USER.."
adduser --quiet \

--system \
--ingroup $SERVER_GROUP \



Chapter 9. Developer’s Best Practices for OS Security 164

--no-create-home \
--disabled-password \
$SERVER_USER 2>/dev/null || true

echo "..done"
fi
# 4. adjust passwd entry
usermod -c "$SERVER_NAME" \

-d $SERVER_HOME \
-g $SERVER_GROUP \

$SERVER_USER
# 5. adjust file and directory permissions
if ! dpkg-statoverride --list $SERVER_HOME >/dev/null
then

chown -R $SERVER_USER:adm $SERVER_HOME
chmod u=rwx,g=rxs,o= $SERVER_HOME

fi
# 6. Add the user to the ADDGROUP group
if test -n $ADDGROUP
then

if ! groups $SERVER_USER | cut -d: -f2 | \
grep -qw $ADDGROUP; then

adduser $SERVER_USER $ADDGROUP
fi

fi
;;
configure)

[...]

You have to make sure that the init.d script file:

• Starts the daemon dropping privileges: if the software does not do the setuid(2) or
seteuid(2) call itself, you can use the --chuid call of start-stop-daemon .

• Stops the daemon only if the user id matches, you can use the start-stop-daemon
--user option for this.

• Does not run if either the user or the group do not exist:

if ! getent passwd | grep -q "^ server_user :"; then
echo "Server user does not exist. Aborting" >&2
exit 1

fi
if ! getent group | grep -q "^ server_group :" ; then

echo "Server group does not exist. Aborting" >&2
exit 1

fi



Chapter 9. Developer’s Best Practices for OS Security 165

If the package creates the system user it can remove it when it is purged in its postrm. This
has some drawbacks, however. For example, files created by it will be orphaned and might be
taken over by a new system user in the future if it is assigned the same uid1. Consequently,
removing system users on purge is not yet mandatory and depends on the package needs. If
unsure, this action could be handled by asking the administrator for the prefered action when
the package is installed (i.e. through debconf ).

The following example code2 removes the user and groups created before only, and only if, the
uid is in the range of dynamic assigned system uids and the gid is belongs to a system group:

case "$1" in
purge)

[...]
# find first and last SYSTEM_UID numbers
for LINE in ‘grep SYSTEM_UID /etc/adduser.conf | grep -v "^#"‘; do

case $LINE in
FIRST_SYSTEM_UID*)

FIST_SYSTEM_UID=‘echo $LINE | cut -f2 -d ’=’‘
;;

LAST_SYSTEM_UID*)
LAST_SYSTEM_UID=‘echo $LINE | cut -f2 -d ’=’‘
;;

*)
;;

esac
done
# Remove system account if necessary
CREATEDUSER="server_user "
if [ -n "$FIST_SYSTEM_UID" ] && [ -n "$LAST_SYSTEM_UID" ]; then

if USERID=‘getent passwd $CREATEDUSER | cut -f 3 -d ’:’‘; then
if [ -n "$USERID" ]; then

if [ "$FIST_SYSTEM_UID" -le "$USERID" ] && \
[ "$USERID" -le "$LAST_SYSTEM_UID" ]; then

echo -n "Removing $CREATEDUSER system user.."
deluser --quiet $CREATEDUSER || true
echo "..done"

fi
fi

fi
fi
# Remove system group if necessary

1Some relevant threads discussing these drawbacks include http://lists.debian.org/
debian-mentors/2004/10/msg00338.html and http://lists.debian.org/debian-devel/2004/
05/msg01156.html

2This might eventually be introduced as a dh_adduser in debhelper. See #81967 (http://bugs.
debian.org/81697 ), #291177 (http://bugs.debian.org/291177 ) and #118787 (http://bugs.debian.
org/118787 ).

http://lists.debian.org/debian-mentors/2004/10/msg00338.html
http://lists.debian.org/debian-mentors/2004/10/msg00338.html
http://lists.debian.org/debian-devel/2004/05/msg01156.html
http://lists.debian.org/debian-devel/2004/05/msg01156.html
http://bugs.debian.org/81697
http://bugs.debian.org/81697
http://bugs.debian.org/291177
http://bugs.debian.org/118787
http://bugs.debian.org/118787


Chapter 9. Developer’s Best Practices for OS Security 166

CREATEDGROUP=server_group
FIRST_USER_GID=‘grep ^USERS_GID /etc/adduser.conf | cut -f2 -d ’=’‘
if [ -n "$FIST_USER_GID" ] then

if GROUPGID=‘getent group $CREATEDGROUP | cut -f 3 -d ’:’‘; then
if [ -n "$GROUPGID" ]; then

if [ "$FIST_USER_GID" -gt "$GROUPGID" ]; then
echo -n "Removing $CREATEDGROUP group.."
delgroup --only-if-empty $CREATEDGROUP || true
echo "..done"

fi
fi

fi
fi

[...]

Running programs with a user with limited privileges makes sure that any security issue will
not be able to damage the full system. It also follows the principle of least privilege. Also con-
sider you can limit privileges in programs through other mechanisms besides running as non-
root3. For more information, read the Minimize Privileges (http://www.dwheeler.com/
secure-programs/Secure-Programs-HOWTO/minimize-privileges.html ) chapter
of the Secure Programming for Linux and Unix HOWTO book.

3You can even provide a SELinux policy for it

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/minimize-privileges.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/minimize-privileges.html


167

Chapter 10

Before the compromise

10.1 Keep your system secure

You should strive to keep your system secure by monitoring its usage and also the vulnerabili-
ties that might affect it, patching them as soon as patches are available. Even though you might
have installed a really secure system initially you have to remember that security in a system
degrades with time, security vulnerabilities might be found for exposed system services and
users might expose the system security either because of lack of understanding (e.g. accessing
a system remotely with a clear-text protocol or using easy to guess passwords) or because they
are actively trying to subvert the system’s security (e.g. install additional services locally on
their accounts).

10.1.1 Tracking security vulnerabilities

Although most administrators are aware of security vulnerabilities affecting their systems
when they see a patch that is made available you can strive to keep ahead of attacks and intro-
duce temporary countermeasures for security vulnerabilities by detecting when your system
is vulnerable. This is specially true when running an exposed system (i.e. connected to the
Internet) and providing a service. In such case the system’s administrators should take care
to monitor known information sources to be the first to know when a vulnerability is detected
that might affect a critical service.

This typically includes subscribing to the announcement mailing lists, project websites or bug
tracking systems provided by the software developers for a specific piece of code. For exam-
ple, Apache users should regularly review Apache’s lists of security vulnerabilities (http:
//httpd.apache.org/security_report.html ) and subscribe to the Apache Server An-
nouncements (http://httpd.apache.org/lists.html#http-announce ) mailing list.

In order to track known vulnerabilities affecting the Debian distribution, the Debian Testing
Security Team provides a security tracker (http://security-tracker.debian.net/ )
that lists all the known vulnerabilities which have not been yet fixed in Debian pack-
ages. The information in that tracker is obtained through different public channels and

http://httpd.apache.org/security_report.html
http://httpd.apache.org/security_report.html
http://httpd.apache.org/lists.html#http-announce
http://security-tracker.debian.net/


Chapter 10. Before the compromise 168

includes known vulnerabilities which are available either through security vulnerability
databases or Debian’s Bug Tracking system (http://www.debian.org/Bugs/ ). Ad-
ministrators can search for the known security issues being tracked for stable (http:
//security-tracker.debian.net/tracker/status/release/stable ), oldstable
(http://security-tracker.debian.net/tracker/status/release/oldstable ),
testing (http://security-tracker.debian.net/tracker/status/release/
testing ), or unstable (http://security-tracker.debian.net/tracker/status/
release/unstable ).

The tracker has searchable interfaces (by CVE (http://cve.mitre.org/ ) name and pack-
age name) and some tools (such as debsecan , see ‘Automatically checking for security issues
with debsecan’ on page 170) use that database to provide information of vulnerabilities affect-
ing a given system which have not yet been addressed (i.e. those who are pending a fix).

Concious administrators can use that information to determine which security bugs might
affect the system they are managing, determine the severity of the bug and apply (if available)
temporary countermeasures before a patch is available fixing this issue.

Security issues tracked for releases supported by the Debian Security Team should eventually
be handled through Debian Security Advisories (DSA) and will be available for all users (see
‘Continuously update the system’ on this page). Once security issues are fixed through an
advisory they will not be available in the tracker, but you will be able to search security vul-
nerabilities (by CVE name) using the security cross references table (http://www.debian.
org/security/crossreferences ) available for published DSAs.

Notice, however, that the information tracked by the Debian Testing Security Team only in-
volves disclosed vulnerabilities (i.e. those already public). In some occasions the Debian Se-
curity Team might be handling and preparing DSAs for packages based on undisclosed infor-
mation provided to them (for example, through closed vendor mailing lists or by upstream
maintainers of software). So do not be surprised to find security issues that only show up as
an advisory but never get to show up in the security tracker.

10.1.2 Continuously update the system

You should conduct security updates frequently. The vast majority of exploits result from
known vulnerabilities that have not been patched in time, as this paper by Bill Arbaugh (http:
//www.cs.umd.edu/~waa/vulnerability.html ) (presented at the 2001 IEEE Sympo-
sium on Security and Privacy) explains. Updates are described under ‘Execute a security up-
date’ on page 46.

Manually checking which security updates are available

Debian does have a specific tool to check if a system needs to be updated but many users will
just want to manually check if any security updates are available for their system.

If you have configured your system as described in ‘Execute a security update’ on page 46 you
just need to do:

http://www.debian.org/Bugs/
http://security-tracker.debian.net/tracker/status/release/stable
http://security-tracker.debian.net/tracker/status/release/stable
http://security-tracker.debian.net/tracker/status/release/oldstable
http://security-tracker.debian.net/tracker/status/release/testing
http://security-tracker.debian.net/tracker/status/release/testing
http://security-tracker.debian.net/tracker/status/release/unstable
http://security-tracker.debian.net/tracker/status/release/unstable
http://cve.mitre.org/
http://www.debian.org/security/crossreferences
http://www.debian.org/security/crossreferences
http://www.cs.umd.edu/~waa/vulnerability.html
http://www.cs.umd.edu/~waa/vulnerability.html


Chapter 10. Before the compromise 169

# apt-get update
# apt-get upgrade -s
[ ... review packages to be upgraded ... ]
# apt-get upgrade
# checkrestart
[ ... restart services that need to be restarted ... ]

And restart those services whose libraries have been updated if any. Note: Read ‘Execute a
security update’ on page 46 for more information on library (and kernel) upgrades.

The first line will download the list of packages available from your configured package
sources. The -s will do a simulation run, that is, it will not download or install the pack-
ages but rather tell you which ones should be downloaded/installed. From the output you
can derive which packages have been fixed by Debian and are available as a security update.
Sample:

# apt-get upgrade -s
Reading Package Lists... Done
Building Dependency Tree... Done
2 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Inst cvs (1.11.1p1debian-8.1 Debian-Security:3.0/stable)
Inst libcupsys2 (1.1.14-4.4 Debian-Security:3.0/stable)
Conf cvs (1.11.1p1debian-8.1 Debian-Security:3.0/stable)
Conf libcupsys2 (1.1.14-4.4 Debian-Security:3.0/stable)

In this example, you can see that the system needs to be updated with new cvs and cupsys
packages which are being retrieved from woody’s security update archive. If you want to un-
derstand why these packages are needed, you should go to http://security.debian.org
and check which recent Debian Security Advisories have been published related to these pack-
ages. In this case, the related DSAs are DSA-233 (http://www.debian.org/security/
2003/dsa-233 ) (for cvs ) and DSA-232 (http://www.debian.org/security/2003/
dsa-232 ) (for cupsys ).

Notice that you will need to reboot your system if there has been a kernel upgrade.

Checking for updates at the Desktop

Since Debian 4.0 lenny Debian provides and installs in a default installation
update-notifier . This is a GNOME application that will startup when you enter
your Desktop and can be used to keep track of updates available for your system and install
them. It uses update-manager for this.

In a stable system updates are only available when a security patch is available or at point
releases. Consequently, if the system is properly configured to receive security updates as
described in ‘Execute a security update’ on page 46 and you have a cron task running to update
the package information you will be notified through an icon in the desktop notifcation area.

http://security.debian.org
http://www.debian.org/security/2003/dsa-233
http://www.debian.org/security/2003/dsa-233
http://www.debian.org/security/2003/dsa-232
http://www.debian.org/security/2003/dsa-232


Chapter 10. Before the compromise 170

The notification is not intrusive and users are not forced to install updates. From the notifica-
tion icon a desktop user (with the administrator’s password) can access a simple GUI to show
available updates and install them.

This application works by checking the package database and comparing the system with its
contents. If the package database is updated periodically through a cron task then the contents
of the database will be newer than the packages installed in the system and the application will
notify you.

Apt installs such a task (/etc/cron.d/apt ) which will run based on Apt’s configura-
tion (more specifically APT::Periodic). In the GNOME environment this configuration value
can be adjusted by going to System > Admin > Software origins > Updates, or running
/usr/bin/software-properties .

If the system is set to download the packages list daily but not download the packages them-
selves your /etc/apt/apt.conf.d/10periodic should look like this:

APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Download-Upgradeable-Packages "0";

You can use a different cron task, such as the one installed by cron-apt (see ‘Automatically
checking for updates with cron-apt’ on the current page). You can also just manually check for
upgrades using this application.

Users of the KDE desktop environment will probably prefer to install adept and
adept-notifier instead which offers a similar functionality but is not part of the standard
installation.

Automatically checking for updates with cron-apt

Another method for automatic security updates is the use of cron-apt . This package provides
a tool to update the system at regular intervals (using a cron job), and can also be configured
to send mails to the system administrator using the local mail transport agent. It will just
update the package list and download new packages by default but it can be configured to
automatically install new updates.

Notice that you might want to check the distribution release, as described in ‘Per distribution
release check’ on page 138, if you intend to automatically updated your system (even if only
downloading the packages). Otherwise, you cannot be sure that the downloaded packages
really come from a trusted source.

More information is available at the Debian Administration site (http://www.
debian-administration.org/articles/162 ).

Automatically checking for security issues with debsecan

The debsecan program evaluates the security status of by reporting both missing security up-
dates and security vulnerabilities. Unlike cron-apt , which only provides information related

http://www.debian-administration.org/articles/162
http://www.debian-administration.org/articles/162


Chapter 10. Before the compromise 171

to security updates available, but this tool obtains information from the security vulnerability
database maintained by the Debian Security Team which includes also information on vulner-
abilities which are not yet fixed through a security update. Consequently, it is more efficient
at helping administrators track security vulnerabilities (as described in ‘Tracking security vul-
nerabilities’ on page 167).

Upon installing the Debian package debsecan , and if the administrator consents to it, it will
generate a cron task that will make it run and send the output to a specific user whenever
it finds a vulnerable package. It will also download the information from the Internet. The
location of the security database is also part of the questions ask on installation and are later
defined /etc/default/debsecan , it can be easily adjusted for systems that do not have
Internet access so that they all pull from a local mirror so that there is a single point that access
the vulnerability database.

Notice, however, that the Security Team tracks many vulnerabilities including low-risk issues
which might not be fixed through a security update and some vulnerabilities initially reported
as affecting Debian might, later on, upon investigation, be dismissed. Debsecan will report
on all the vulnerabilities, which makes it a quite more verbose than the other tools described
above.

More information is available at the author’s siste (http://www.enyo.de/fw/software/
debsecan/ ).

Other methods for security updates

There is also the apticron , which, similarly to cron-apt will check for updates and send
mails to the administrator. More information on apticron is available at the Debian Adminis-
tration site (http://www.debian-administration.org/articles/491 ).

You might also want to take a look at secpack (http://clemens.endorphin.org/
secpack/ ) which is an unofficial program to do security updates from security.debian.org
with signature checking written by Fruhwirth Clemens. Or to the Nagios Plu-
gin check_debian_updates.sh (http://www.unixdaemon.net/nagios_plugins.html#
check_debian_packages ) written by Dean Wilson.

10.1.3 Avoid using the unstable branch

Unless you want to dedicate time to patch packages yourself when a vulnerability arises, you
should not use Debian’s unstable branch for production-level systems. The main reason for this
is that there are no security updates for unstable (see ‘How is security handled for testing and
unstable ?’ on page 203).

The fact is that some security issues might appear in unstable and not in the stable distribution.
This is due to new functionality constantly being added to the applications provided there, as
well as new applications being included which might not yet have been thoroughly tested.

In order to do security upgrades in the unstable branch, you might have to do full upgrades
to new versions (which might update much more than just the affected package). Although

http://www.enyo.de/fw/software/debsecan/
http://www.enyo.de/fw/software/debsecan/
http://www.debian-administration.org/articles/491
http://clemens.endorphin.org/secpack/
http://clemens.endorphin.org/secpack/
http://www.unixdaemon.net/nagios_plugins.html#check_debian_packages
http://www.unixdaemon.net/nagios_plugins.html#check_debian_packages


Chapter 10. Before the compromise 172

there have been some exceptions, security patches are usually only back ported into the stable
branch. The main idea being that between updates, no new code should be added, just fixes for
important issues.

Notice, however, that you can use the security tracker (as described in ‘Tracking security vul-
nerabilities’ on page 167) to track known security vulnerabilities affecting this branch.

10.1.4 Security support for the testing branch

If you are using the testing branch, there are some issues that you must take into account re-
garding the availability of security updates:

• When a security fix is prepared, the Security Team backports the patch to stable (since
stable is usually some minor or major versions behind). Package maintainers are respon-
sible for preparing packages for the unstable branch, usually based on a new upstream
release. Sometimes the changes happen at nearly the same time and sometimes one of
the releases gets the security fix before. Packages for the stable distribution are more thor-
oughly tested than unstable, since the latter will in most cases provide the latest upstream
release (which might include new, unknown bugs).

• Security updates are available for the unstable branch usually when the package main-
tainer makes a new package and for the stable branch when the Security Team make a
new upload and publish a DSA. Notice that neither of these change the testing branch.

• If no (new) bugs are detected in the unstable version of the package, it moves to testing
after several days. The time this takes is usually ten days, although that depends on the
upload priority of the change and whether the package is blocked from entering testing
by its dependency relationships. Note that if the package is blocked from entering testing
the upload priority will not change the time it takes to enter.

This behavior might change based on the release state of the distribution. When a release is
almost imminent, the Security Team or package maintainers might provide updates directly to
testing.

Additionally, the Debian Testing Security Team (http://secure-testing-master.
debian.net ) can issue Debian Testing Security Advisories (DTSAs) for packages in the test-
ing branch if there is an inmediate need to fix a security issue in that branch and cannot wait
for the normal procedure (or the normal procedure is being blocked by some other packages).

Users willing to take advantage of this support should add the following lines to their
/etc/apt/sources.list (instead of the lines described in ‘Execute a security update’ on
page 46):

deb http://security.debian.org testing/updates main contrib non-free
# This line makes it possible to donwload source packages too

deb-src http://security.debian.org testing/updates main contrib non-free

http://secure-testing-master.debian.net
http://secure-testing-master.debian.net


Chapter 10. Before the compromise 173

For additional information on this support please read the announcement (http:
//lists.debian.org/debian-devel-announce/2006/05/msg00006.html ).
This support officially started in September 2005 (http://lists.debian.org/
debian-devel-announce/2005/09/msg00006.html ) in a separate repository and
was later integrated into the main security archive.

10.1.5 Automatic updates in a Debian GNU/Linux system

First of all, automatic updates are not fully recommended, since administrators should review
the DSAs and understand the impact of any given security update.

If you want to update your system automatically you should:

• Configure apt so that those packages that you do not want to update stay at their cur-
rent version, either with apt ’s pinning feature or marking them as hold with dpkg or
dselect .

To pin the packages under a given release, you must edit /etc/apt/preferences (see
apt_preferences(5) ) and add:

Package: *
Pin: release a=stable
Pin-Priority: 100

FIXME: verify if this configuration is OK.

• Either use cron-apt as described in ‘Automatically checking for updates with cron-apt’
on page 170 and enable it to install downloaded packages or add a cron entry yourself
so that the update is run daily, for example:

apt-get update && apt-get -y upgrade

The -y option will have apt assume ’yes’ for all the prompts that might arise during the
update. In some cases, you might want to use the --trivial-only option instead of
the --assume-yes (equivalent to -y ).1

• Configure debconf so no questions will be asked during upgrades, so that they can be
done non-interactively. 2

• Check the results of the cron execution, which will be mailed to the superuser (unless
changed with MAILTOenvironment variable in the script).

1You may also want to use the --quiet (-q ) option to reduce the output of apt-get , which will stop the
generation of any output if no packages are installed.

2Note that some packages might not use debconf and updates will stall due to packages asking for user input
during configuration.

http://lists.debian.org/debian-devel-announce/2006/05/msg00006.html
http://lists.debian.org/debian-devel-announce/2006/05/msg00006.html
http://lists.debian.org/debian-devel-announce/2005/09/msg00006.html
http://lists.debian.org/debian-devel-announce/2005/09/msg00006.html


Chapter 10. Before the compromise 174

A safer alternative might be to use the -d (or --download-only ) option, which will down-
load but not install the necessary packages. Then if the cron execution shows that the system
needs to be updated, it can be done manually.

In order to accomplish any of these tasks, the system must be properly configured to download
security updates as discussed in ‘Execute a security update’ on page 46.

However, this is not recommended for unstable without careful analysis, since you might bring
your system into an unusable state if some serious bug creeps into an important package and
gets installed in your system. Testing is slightly more secure with regard to this issue, since
serious bugs have a better chance of being detected before the package is moved into the testing
branch (although, you may have no security updates available whatsoever).

If you have a mixed distribution, that is, a stable installation with some packages up-
dated to testing or unstable, you can fiddle with the pinning preferences as well as the
--target-release option in apt-get to update only those packages that you have up-
dated.3

10.2 Do periodic integrity checks

Based on the baseline information you generated after installation (i.e. the snapshot described
in ‘Taking a snapshot of the system’ on page 87), you should be able to do an integrity check
from time to time. An integrity check will be able to detect filesystem modifications made by
an intruder or due to a system administrators mistake.

Integrity checks should be, if possible, done offline.4 That is, without using the operating
system of the system to review, in order to avoid a false sense of security (i.e. false negatives)
produced by, for example, installed rootkits. The integrity database that the system is checked
against should also be used from read-only media.

You can consider doing integrity checks online using any of the filesystem integrity tools avail-
able (described in ‘Checking file system integrity’ on page 79) if taking offline the system is not
an option. However, precaution should be taken to use a read-only integrity database and also
assure that the integrity checking tool (and the operating system kernel) has not been tampered
with.

Some of the tools mentioned in the integrity tools section, such as aide , integrit or
samhain are already prepared to do periodic reviews (through the crontab in the first two
cases and through a standalone daemon in samhain ) and can warn the administrator through
different channels (usually e-mail, but samhain can also send pages, SNMP traps or syslog
alerts) when the filesystem changes.

Of course, if you execute a security update of the system, the snapshot taken for the system
should be re-taken to accommodate the changes done by the security update.

3This is a common issue since many users want to maintain a stable system while updating some packages to
unstable to gain the latest functionality. This need arises due to some projects evolving faster than the time between
Debian’s stable releases.

4An easy way to do this is using a Live CD, such as Knoppix Std (http://www.knoppix-std.org/ ) which
includes both the file integrity tools and the integrity database for your system.

http://www.knoppix-std.org/


Chapter 10. Before the compromise 175

10.3 Set up Intrusion Detection

Debian GNU/Linux includes tools for intrusion detection, which is the practice of detecting
inappropriate or malicious activity on your local system, or other systems in your private net-
work. This kind of defense is important if the system is very critical or you are truly para-
noid. The most common approaches to intrusion detection are statistical anomaly detection
and pattern-matching detection.

Always be aware that in order to really improve the system’s security with the introduction of
any of these tools, you need to have an alert+response mechanism in place. Intrusion detection
is a waste of time if you are not going to alert anyone.

When a particular attack has been detected, most intrusion detection tools will either log the
event with syslogd or send e-mail to the root user (the mail recipient is usually configurable).
An administrator has to properly configure the tools so that false positives do not trigger alerts.
Alerts may also indicate an ongoing attack and might not be useful, say, one day later, since
the attack might have already succeeded. So be sure that there is a proper policy on handling
alerts and that the technical mechanisms to implement this policy are in place.

An interesting source of information is CERT’s Intrusion Detection Checklist (http://www.
cert.org/tech_tips/intruder_detection_checklist.html )

10.3.1 Network based intrusion detection

Network based intrusion detection tools monitor the traffic on a network segment and use this
information as a data source. Specifically, the packets on the network are examined, and they
are checked to see if they match a certain signature.

snort is a flexible packet sniffer or logger that detects attacks using an attack signature dic-
tionary. It detects a variety of attacks and probes, such as buffer overflows, stealth port scans,
CGI attacks, SMB probes, and much more. snort also has real-time alerting capability. You
can use snort for a range of hosts on your network as well as for your own host. This is a
tool which should be installed on every router to keep an eye on your network. Just install it
with apt-get install snort , follow the questions, and watch it log. For a little broader
security framework, see Prelude (http://www.prelude-ids.org ).

Debian’s snort package has many security checks enabled by default. However, you should
customize the setup to take into account the particular services you run on your system. You
may also want to seek additional checks specific to these services.

There are other, simpler tools that can be used to detect network attacks. portsentry is an
interesting package that can tip you off to port scans against your hosts. Other tools like ippl
or iplogger will also detect some IP (TCP and ICMP) attacks, even if they do not provide the
kind of advanced techniques snort does.

You can test any of these tools with the Debian package idswakeup , a shell script which
generates false alarms, and includes many common attack signatures.

http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.prelude-ids.org


Chapter 10. Before the compromise 176

10.3.2 Host based intrusion detection

Host based intrusion detection involves loading software on the system to be monitored which
uses log files and/or the systems auditing programs as a data source. It looks for suspicious
processes, monitors host access, and may even monitor changes to critical system files.

tiger is an older intrusion detection tool which has been ported to Debian since the Woody
branch. tiger provides checks of common issues related to security break-ins, like password
strength, file system problems, communicating processes, and other ways root might be com-
promised. This package includes new Debian-specific security checks including: MD5sums
checks of installed files, locations of files not belonging to packages, and analysis of local lis-
tening processes. The default installation sets up tiger to run each day, generating a report
that is sent to the superuser about possible compromises of the system.

Log analysis tools, such as logcheck can also be used to detect intrusion attempts. See ‘Using
and customizing logcheck ’ on page 70.

In addition, packages which monitor file system integrity (see ‘Checking file system integrity’
on page 79) can be quite useful in detecting anomalies in a secured environment. It is most
likely that an effective intrusion will modify some files in the local file system in order to
circumvent local security policy, install Trojans, or create users. Such events can be detected
with file system integrity checkers.

10.4 Avoiding root-kits

10.4.1 Loadable Kernel Modules (LKM)

Loadable kernel modules are files containing dynamically loadable kernel components used
to expand the functionality of the kernel. The main benefit of using modules is the ability to
add additional devices, like an Ethernet or sound card, without patching the kernel source and
recompiling the entire kernel. However, crackers are now using LKMs for root-kits (knark and
adore), opening up back doors in GNU/Linux systems.

LKM back doors are more sophisticated and less detectable than traditional root-kits. They can
hide processes, files, directories and even connections without modifying the source code of
binaries. For example, a malicious LKM can force the kernel into hiding specific processes from
procfs , so that even a known good copy of the binary ps would not list accurate information
about the current processes on the system.

10.4.2 Detecting root-kits

There are two approaches to defending your system against LKM root-kits, a proactive defense
and a reactive defense. The detection work can be simple and painless, or difficult and tiring,
depending on the approach taken.



Chapter 10. Before the compromise 177

Proactive defense

The advantage of this kind of defense is that it prevents damage to the system in the first
place. One such strategy is getting there first, that is, loading an LKM designed to protect the
system from other malicious LKMs. A second strategy is to remove capabilities from the kernel
itself. For example, you can remove the capability of loadable kernel modules entirely. Note,
however, that there are rootkits which might work even in this case, there are some that tamper
with /dev/kmem (kernel memory) directly to make themselves undetectable.

Debian GNU/Linux has a few packages that can be used to mount a proactive defense:

• lcap - A user friendly interface to remove capabilities (kernel-based access con-
trol) in the kernel, making the system more secure. For example, executing lcap
CAP_SYS_MODULE5 will remove module loading capabilities (even for the root user).6

There is some (old) information on capabilities at Jon Corbet’s Kernel development
(http://lwn.net/1999/1202/kernel.php3 ) section on LWN (dated December
1999).

If you don’t really need many kernel features on your GNU/Linux system, you may want
to disable loadable modules support during kernel configuration. To disable loadable mod-
ule support, just set CONFIG_MODULES=n during the configuration stage of building your
kernel, or in the .config file. This will prevent LKM root-kits, but you lose this powerful fea-
ture of the Linux kernel. Also, disabling loadable modules can sometimes overload the kernel,
making loadable support necessary.

Reactive defense

The advantage of a reactive defense is that it does not overload system resources. It works
by comparing the system call table with a known clean copy in a disk file, System.map . Of
course, a reactive defense will only notify the system administrator after the system has already
been compromised.

Detection of some root-kits in Debian can be accomplished with the chkrootkit package.
The Chkrootkit (http://www.chkrootkit.org ) program checks for signs of several known
root-kits on the target system, but is not a definitive test.

5There are over 28 capabilities including: CAP_BSET, CAP_CHOWN, CAP_FOWNER, CAP_FSETID,
CAP_FS_MASK, CAP_FULL_SET, CAP_INIT_EFF_SET , CAP_INIT_INH_SET , CAP_IPC_LOCK,
CAP_IPC_OWNER, CAP_KILL , CAP_LEASE, CAP_LINUX_IMMUTABLE, CAP_MKNOD, CAP_NET_ADMIN,
CAP_NET_BIND_SERVICE, CAP_NET_RAW, CAP_SETGID, CAP_SETPCAP, CAP_SETUID, CAP_SYS_ADMIN,
CAP_SYS_BOOT, CAP_SYS_CHROOT, CAP_SYS_MODULE, CAP_SYS_NICE, CAP_SYS_PACCT, CAP_SYS_PTRACE,
CAP_SYS_RAWIO, CAP_SYS_RESOURCE, CAP_SYS_TIME, and CAP_SYS_TTY_CONFIG. All of them can be
de-activated to harden your kernel.

6You don’t need to install lcap to do this, but it’s easier than setting /proc/sys/kernel/cap-bound by
hand.

http://lwn.net/1999/1202/kernel.php3
http://www.chkrootkit.org


Chapter 10. Before the compromise 178

10.5 Genius/Paranoia Ideas — what you could do

This is probably the most unstable and funny section, since I hope that some of the “duh,
that sounds crazy” ideas might be realized. The following are just some ideas for increasing
security — maybe genius, paranoid, crazy or inspired depending on your point of view.

• Playing around with Pluggable Authentication Modules (PAM). As quoted in the Phrack
56 PAM article, the nice thing about PAM is that “You are limited only by what you can
think of.” It is true. Imagine root login only being possible with fingerprint or eye scan
or cryptocard (why did I use an OR conjunction instead of AND?).

• Fascist Logging. I would refer to all the previous logging discussion above as “soft log-
ging”. If you want to perform real logging, get a printer with fanfold paper, and send all
logs to it. Sounds funny, but it’s reliable and it cannot be tampered with or removed.

• CD distribution. This idea is very easy to realize and offers pretty good security. Create
a hardened Debian distribution, with proper firewall rules. Turn it into a boot-able ISO
image, and burn it on a CDROM. Now you have a read-only distribution, with about 600
MB space for services. Just make sure all data that should get written is done over the
network. It is impossible for intruders to get read/write access on this system, and any
changes an intruder does make can be disabled with a reboot of the system.

• Switch module capability off. As discussed earlier, when you disable the usage of ker-
nel modules at kernel compile time, many kernel based back doors are impossible to
implement because most are based on installing modified kernel modules.

• Logging through serial cable (contributed by Gaby Schilders). As long as servers still
have serial ports, imagine having one dedicated logging system for a number of servers.
The logging system is disconnected from the network, and connected to the servers via
a serial-port multiplexer (Cyclades or the like). Now have all your servers log to their
serial ports, write only. The log-machine only accepts plain text as input on its serial
ports and only writes to a log file. Connect a CD/DVD-writer, and transfer the log file
to it when the log file reaches the capacity of the media. Now if only they would make
CD writers with auto-changers. . . Not as hard copy as direct logging to a printer, but this
method can handle larger volumes and CD-ROMs use less storage space.

• Change file attributes using chattr (taken from the Tips-HOWTO, written by Jim Den-
nis). After a clean install and initial configuration, use the chattr program with the +i
attribute to make files unmodifiable (the file cannot be deleted, renamed, linked or writ-
ten to). Consider setting this attribute on all the files in /bin , /sbin/ , /usr/bin , /usr
/sbin , /usr/lib and the kernel files in root. You can also make a copy of all files in
/etc/ , using tar or the like, and mark the archive as immutable.

This strategy will help limit the damage that you can do when logged in as root. You
won’t overwrite files with a stray redirection operator, and you won’t make the system
unusable with a stray space in a rm -fr command (you might still do plenty of damage
to your data — but your libraries and binaries will be safer).



Chapter 10. Before the compromise 179

This strategy also makes a variety of security and denial of service (DoS) exploits either
impossible or more difficult (since many of them rely on overwriting a file through the
actions of some SETUID program that isn’t providing an arbitrary shell command).

One inconvenience of this strategy arises during building and installing various system
binaries. On the other hand, it prevents the make install from over-writing the files.
When you forget to read the Makefile and chattr -i the files that are to be overwritten,
(and the directories to which you want to add files) - the make command fails, and you
just use the chattr command and rerun it. You can also take that opportunity to move
your old bin’s and libs out of the way, into a .old/ directory or tar archive for example.

Note that this strategy also prevents you from upgrading your system’s packages, since
the files updated packages provide cannot be overwritten. You might want to have a
script or other mechanism to disable the immutable flag on all binaries right before doing
an apt-get update .

• Play with UTP cabling in a way that you cut 2 or 4 wires and make the cable one-way
traffic only. Then use UDP packets to send information to the destination machine which
can act as a secure log server or a credit card storage system.

10.5.1 Building a honeypot

A honeypot is a system designed to teach system administrators how crackers probe for and
exploit a system. It is a system setup with the expectation and goal that the system will be
probed, attacked and potentially exploited. By learning the tools and methods employed by
the cracker, a system administrator can learn to better protect their own systems and network.

Debian GNU/Linux systems can easily be used to setup a honeynet, if you dedicate the time
to implement and monitor it. You can easily setup the fake honeypot server as well as the
firewall7 that controls the honeynet and some sort of network intrusion detector, put it on the
Internet, and wait. Do take care that if the system is exploited, you are alerted in time (see
‘The importance of logs and alerts’ on page 70) so that you can take appropriate measures
and terminate the compromise when you’ve seen enough. Here are some of the packages and
issues to consider when setting up your honeypot:

• The firewall technology you will use (provided by the Linux kernel).

• syslog-ng , useful for sending logs from the honeypot to a remote syslog server.

• snort , to set up capture of all the incoming network traffic to the honeypot and detect
the attacks.

• osh , a SETUID root, security enhanced, restricted shell with logging (see Lance
Spitzner’s article below).

7You will typically use a bridge firewall so that the firewall itself is not detectable, see ‘Setting up a bridge
firewall’ on page 219.



Chapter 10. Before the compromise 180

• Of course, all the daemons you will be using for your fake server honeypot. Depending
on what type of attacker you want to analyse you will or will not harden the honeypot
and keep it up to date with security patches.

• Integrity checkers (see ‘Checking file system integrity’ on page 79) and The Coroner’s
Toolkit (tct ) to do post-attack audits.

• honeyd and farpd to setup a honeypot that will listen to connections to unused
IP addresses and forward them to scripts simulating live services. Also check out
iisemulator .

• tinyhoneypot to setup a simple honeypot server with fake services.

If you cannot use spare systems to build up the honeypots and the network systems to
protect and control it you can use the virtualisation technology available in xen or uml
(User-Mode-Linux). If you take this route you will need to patch your kernel with either
kernel-patch-xen or kernel-patch-uml .

You can read more about building honeypots in Lanze Spitzner’s excellent article To Build a
Honeypot (http://www.net-security.org/text/articles/spitzner/honeypot.
shtml ) (from the Know your Enemy series). Also, the Honeynet Project (http://project.
honeynet.org/ ) provides valuable information about building honeypots and auditing the
attacks made on them.

http://www.net-security.org/text/articles/spitzner/honeypot.shtml
http://www.net-security.org/text/articles/spitzner/honeypot.shtml
http://project.honeynet.org/
http://project.honeynet.org/


181

Chapter 11

After the compromise (incident
response)

11.1 General behavior

If you are physically present when an attack is happening, your first response should be to re-
move the machine from the network by unplugging the network card (if this will not adversely
affect any business transactions). Disabling the network at layer 1 is the only true way to keep
the attacker out of the compromised box (Phillip Hofmeister’s wise advice).

However, some tools installed by rootkits, trojans and, even, a rogue user connected through
a back door, might be capable of detecting this event and react to it. Seeing a rm -rf /
executed when you unplug the network from the system is not really much fun. If you are
unwilling to take the risk, and you are sure that the system is compromised, you should unplug
the power cable (all of them if more than one) and cross your fingers. This may be extreme but,
in fact, will avoid any logic-bomb that the intruder might have programmed. In this case,
the compromised system should not be re-booted. Either the hard disks should be moved to
another system for analysis, or you should use other media (a CD-ROM) to boot the system
and analyze it. You should not use Debian’s rescue disks to boot the system, but you can use
the shell provided by the installation disks (remember, Alt+F2 will take you to it) to analyze 1

the system.

The most recommended method for recovering a compromised system is to use a live-
filesystem on CD-ROM with all the tools (and kernel modules) you might need to access the
compromised system. You can use the mkinitrd-cd package to build such a CD-ROM2. You
might find the FIRE (http://biatchux.dmzs.com/ ) (previously called Biatchux) CD-ROM
useful here too, since it’s also a live CD-ROM with forensic tools useful in these situations.
There is not (yet) a Debian-based tool such as this, nor an easy way to build the CD-ROM

1If you are adventurous, you can login to the system and save information on all running processes (you’ll get a
lot from /proc/nnn/). It is possible to get the whole executable code from memory, even if the attacker has deleted
the executable files from disk. Then pull the power cord.

2In fact, this is the tool used to build the CD-ROMs for the Gibraltar (http://www.gibraltar.at/ ) project
(a firewall on a live CD-ROM based on the Debian distribution).

http://biatchux.dmzs.com/
http://www.gibraltar.at/


Chapter 11. After the compromise (incident response) 182

using your own selection of Debian packages and mkinitrd-cd (so you’ll have to read the
documentation provided with it to make your own CD-ROMs).

If you really want to fix the compromise quickly, you should remove the compromised host
from your network and re-install the operating system from scratch. Of course, this may
not be effective because you will not learn how the intruder got root in the first place. For
that case, you must check everything: firewall, file integrity, log host, log files and so on.
For more information on what to do following a break-in, see CERT’s Steps for Recover-
ing from a UNIX or NT System Compromise (http://www.cert.org/tech_tips/root_
compromise.html ) or SANS’s Incident Handling whitepapers (http://www.sans.org/
reading_room/whitepapers/incident/ ).

Some common questions on how to handle a compromised Debian GNU/Linux system are
also available in ‘My system is vulnerable! (Are you sure?)’ on page 197.

11.2 Backing up the system

Remember that if you are sure the system has been compromised you cannot trust the installed
software or any information that it gives back to you. Applications might have been trojanized,
kernel modules might be installed, etc.

The best thing to do is a complete file system backup copy (using dd) after booting from a safe
medium. Debian GNU/Linux CD-ROMs can be handy for this since they provide a shell in
console 2 when the installation is started (jump to it using Alt+2 and pressing Enter). From this
shell, backup the information to another host if possible (maybe a network file server through
NFS/FTP). Then any analysis of the compromise or re-installation can be performed while the
affected system is offline.

If you are sure that the only compromise is a Trojan kernel module, you can try to run the
kernel image from the Debian CD-ROM in rescue mode. Make sure to startup in single user
mode, so no other Trojan processes run after the kernel.

11.3 Contact your local CERT

The CERT (Computer and Emergency Response Team) is an organization that can help you
recover from a system compromise. There are CERTs worldwide 3 and you should contact

3This is a list of some CERTs, for a full list look at the FIRST Member Team information (http://www.first.
org/about/organization/teams/index.html ) (FIRST is the Forum of Incident Response and Security
Teams): AusCERT (http://www.auscert.org.au ) (Australia), UNAM-CERT (http://www.unam-cert.
unam.mx/ ) (Mexico) CERT-Funet (http://www.cert.funet.fi ) (Finland), DFN-CERT (http://www.
dfn-cert.de ) (Germany), RUS-CERT (http://cert.uni-stuttgart.de/ ) (Germany), CERT-IT (http://
security.dico.unimi.it/ ) (Italy), JPCERT/CC (http://www.jpcert.or.jp/ ) (Japan), UNINETT CERT
(http://cert.uninett.no ) (Norway), HR-CERT (http://www.cert.hr ) (Croatia) CERT Polskay (http:
//www.cert.pl ) (Poland), RU-CERT (http://www.cert.ru ) (Russia), SI-CERT (http://www.arnes.
si/si-cert/ ) (Slovenia) IRIS-CERT (http://www.rediris.es/cert/ ) (Spain), SWITCH-CERT (http://
www.switch.ch/cert/ ) (Switzerland), TWCERT/CC (http://www.cert.org.tw ) (Taiwan), and CERT/CC
(http://www.cert.org ) (US).

http://www.cert.org/tech_tips/root_compromise.html
http://www.cert.org/tech_tips/root_compromise.html
http://www.sans.org/reading_room/whitepapers/incident/
http://www.sans.org/reading_room/whitepapers/incident/
http://www.first.org/about/organization/teams/index.html
http://www.first.org/about/organization/teams/index.html
http://www.auscert.org.au
http://www.unam-cert.unam.mx/
http://www.unam-cert.unam.mx/
http://www.cert.funet.fi
http://www.dfn-cert.de
http://www.dfn-cert.de
http://cert.uni-stuttgart.de/
http://security.dico.unimi.it/
http://security.dico.unimi.it/
http://www.jpcert.or.jp/
http://cert.uninett.no
http://www.cert.hr
http://www.cert.pl
http://www.cert.pl
http://www.cert.ru
http://www.arnes.si/si-cert/
http://www.arnes.si/si-cert/
http://www.rediris.es/cert/
http://www.switch.ch/cert/
http://www.switch.ch/cert/
http://www.cert.org.tw
http://www.cert.org


Chapter 11. After the compromise (incident response) 183

your local CERT in the event of a security incident which has lead to a system compromise.
The people at your local CERT can help you recover from it.

Providing your local CERT (or the CERT coordination center) with information on the compro-
mise even if you do not seek assistance can also help others since the aggregate information
of reported incidents is used in order to determine if a given vulnerability is in wide spread
use, if there is a new worm aloft, which new attack tools are being used. This information
is used in order to provide the Internet community with information on the current secu-
rity incidents activity (http://www.cert.org/current/ ), and to publish incident notes
(http://www.cert.org/incident_notes/ ) and even advisories (http://www.cert.
org/advisories/ ). For more detailed information read on how (and why) to report an in-
cident read CERT’s Incident Reporting Guidelines (http://www.cert.org/tech_tips/
incident_reporting.html ).

You can also use less formal mechanisms if you need help for recovering from a compro-
mise or want to discuss incident information. This includes the incidents mailing list (http:
//marc.theaimsgroup.com/?l=incidents ) and the Intrusions mailing list (http://
marc.theaimsgroup.com/?l=intrusions ).

11.4 Forensic analysis

If you wish to gather more information, the tct (The Coroner’s Toolkit from Dan Farmer and
Wietse Venema) package contains utilities which perform a post mortem analysis of a system.
tct allows the user to collect information about deleted files, running processes and more.
See the included documentation for more information. These same utilities and some others
can be found in Sleuthkit and Autopsy (http://www.sleuthkit.org/ ) by Brian Carrier,
which provides a web front-end for forensic analysis of disk images. In Debian you can find
both sleuthkit (the tools) and autopsy (the graphical front-end).

Remember that forensics analysis should be done always on the backup copy of the data, never
on the data itself, in case the data is altered during analysis and the evidence is lost.

You will find more information on forensic analysis in Dan Farmer’s and Wi-
etse Venema’s Forensic Discovery (http://www.porcupine.org/forensics/
forensic-discovery/ ) book (available online), as well as in their Computer Foren-
sics Column (http://www.porcupine.org/forensics/column.html ) and their
Computer Forensic Analysis Class handouts (http://www.porcupine.org/forensics/
handouts.html ). Brian Carrier’s newsletter The Sleuth Kit Informer (http://www.
sleuthkit.org/informer/index.php ) is also a very good resource on forensic analysis
tips. Finally, the Honeynet Challenges (http://www.honeynet.org/misc/chall.html )
are an excellent way to hone your forensic analysis skills as they include real attacks against
honeypot systems and provide challenges that vary from forensic analysis of disks to firewall
logs and packet captures.

FIXME: This paragraph will hopefully provide more information about forensics in a Debian
system in the coming future.

http://www.cert.org/current/
http://www.cert.org/incident_notes/
http://www.cert.org/advisories/
http://www.cert.org/advisories/
http://www.cert.org/tech_tips/incident_reporting.html
http://www.cert.org/tech_tips/incident_reporting.html
http://marc.theaimsgroup.com/?l=incidents
http://marc.theaimsgroup.com/?l=incidents
http://marc.theaimsgroup.com/?l=intrusions
http://marc.theaimsgroup.com/?l=intrusions
http://www.sleuthkit.org/
http://www.porcupine.org/forensics/forensic-discovery/
http://www.porcupine.org/forensics/forensic-discovery/
http://www.porcupine.org/forensics/column.html
http://www.porcupine.org/forensics/handouts.html
http://www.porcupine.org/forensics/handouts.html
http://www.sleuthkit.org/informer/index.php
http://www.sleuthkit.org/informer/index.php
http://www.honeynet.org/misc/chall.html


Chapter 11. After the compromise (incident response) 184

FIXME: Talk on how to do a debsums on a stable system with the MD5sums on CD and with
the recovered file system restored on a separate partition.

FIXME: Add pointers to forensic analysis papers (like the Honeynet’s reverse challenge or
David Dittrich’s papers (http://staff.washington.edu/dittrich/ )).

11.4.1 Analysis of malware

Some other tools that can be used for forensic analysis provided in the Debian distribution are:

• strace .

• ltrace .

Any of these packages can be used to analyze rogue binaries (such as back doors), in order to
determine how they work and what they do to the system. Some other common tools include
ldd (in libc6 ), strings and objdump (both in binutils ).

If you try to do forensic analysis with back doors or suspected binaries retrieved from com-
promised systems, you should do so in a secure environment (for example in a bochs or xen
image or a chroot ’ed environment using a user with low privileges4). Otherwise your own
system can be back doored/r00ted too!

If you are interested in malware analysis then you should read the Malware Analysis
Basics (http://www.porcupine.org/forensics/forensic-discovery/chapter6.
html ) chapter of Dan Farmer’s and Wietse Venema’s forensics book.

4Be very careful if using chroots, since if the binary uses a kernel-level exploit to increase its privileges it might
still be able to infect your system

http://staff.washington.edu/dittrich/
http://www.porcupine.org/forensics/forensic-discovery/chapter6.html
http://www.porcupine.org/forensics/forensic-discovery/chapter6.html


185

Chapter 12

Frequently asked Questions (FAQ)

This chapter introduces some of the most common questions from the Debian security mailing
list. You should read them before posting there or else people might tell you to RTFM.

12.1 Security in the Debian operating system

12.1.1 Is Debian more secure than X?

A system is only as secure as its administrator is capable of making it. Debian’s default installa-
tion of services aims to be secure, but may not be as paranoid as some other operating systems
which install all services disabled by default. In any case, the system administrator needs to
adapt the security of the system to his local security policy.

For a collection of data regarding security vulnerabilities for many operating systems, see the
US-CERT stats (http://www.cert.org/stats/cert_stats.html ) or generate stats us-
ing the National Vulnerability Database (http://nvd.nist.gov/statistics.cfm ) (for-
merly ICAT) Is this data useful? There are several factors to consider when interpreting the
data, and it is worth noticing that the data cannot be used to compare the vulnerabilities of
one operating system versus another.1 Also, keep in mind that some reported vulnerabilities
regarding Debian apply only to the unstable (i.e. unreleased) branch.

Is Debian more secure than other Linux distributions (such as Red Hat, SuSE. . . )?

There are not really many differences between Linux distributions, with exceptions to the base
installation and package management system. Most distributions share many of the same

1For example, based on some data, it might seem that Windows NT is more secure than Linux, which is a ques-
tionable assertion. After all, Linux distributions usually provide many more applications compared to Microsoft’s
Windows NT. This counting vulnerabilities issues are better described in Why Open Source Software / Free Software
(OSS/FS)? Look at the Numbers! (http://www.dwheeler.com/oss_fs_why.html#security ) by David A.
Wheeler

http://www.cert.org/stats/cert_stats.html
http://nvd.nist.gov/statistics.cfm
http://www.dwheeler.com/oss_fs_why.html#security


Chapter 12. Frequently asked Questions (FAQ) 186

applications, with differences mainly in the versions of these applications that are shipped
with the distribution’s stable release. For example, the kernel, Bind, Apache, OpenSSH, Xorg,
gcc, zlib, etc. are all common across Linux distributions.

For example, Red Hat was unlucky and shipped when foo 1.2.3 was current, which was then
later found to have a security hole. Debian, on the other hand, was lucky enough to ship foo
1.2.4, which incorporated the bug fix. That was the case in the big rpc.statd (http://www.
cert.org/advisories/CA-2000-17.html ) problem from a couple years ago.

There is a lot of collaboration between the respective security teams for the major Linux dis-
tributions. Known security updates are rarely, if ever, left unfixed by a distribution vendor.
Knowledge of a security vulnerability is never kept from another distribution vendor, as fixes
are usually coordinated upstream, or by CERT (http://www.cert.org ). As a result, nec-
essary security updates are usually released at the same time, and the relative security of the
different distributions is very similar.

One of Debian’s main advantages with regards to security is the ease of system updates
through the use of apt . Here are some other aspects of security in Debian to consider:

• Debian provides more security tools than other distributions, see ‘Security tools in De-
bian’ on page 153.

• Debian’s standard installation is smaller (less functionality), and thus more secure. Other
distributions, in the name of usability, tend to install many services by default, and some-
times they are not properly configured (remember the Lion (http://www.sophos.
com/security/analyses/linuxlion.htm ) Ramen (http://www.sophos.com/
security/analyses/linuxramen.htm )). Debian’s installation is not as limited as
OpenBSD (no daemons are active per default), but it’s a good compromise. 2

• Debian documents best security practices in documents like this one.

12.1.2 There are many Debian bugs in Bugtraq. Does this mean that it is very
vulnerable?

The Debian distribution boasts a large and growing number of software packages, probably
more than provided by many proprietary operating systems. The more packages installed, the
greater the potential for security issues in any given system.

More and more people are examining source code for flaws. There are many advisories related
to source code audits of the major software components included in Debian. Whenever such
source code audits turn up security flaws, they are fixed and an advisory is sent to lists such as
Bugtraq.

Bugs that are present in the Debian distribution usually affect other vendors and distributions
as well. Check the “Debian specific: yes/no” section at the top of each advisory (DSA).

2Without diminishing the fact that some distributions, such as Red Hat or Mandrake, are also taking into
account security in their standard installations by having the user select security profiles, or using wizards to help
with configuration of personal firewalls.

http://www.cert.org/advisories/CA-2000-17.html
http://www.cert.org/advisories/CA-2000-17.html
http://www.cert.org
http://www.sophos.com/security/analyses/linuxlion.htm
http://www.sophos.com/security/analyses/linuxlion.htm
http://www.sophos.com/security/analyses/linuxramen.htm
http://www.sophos.com/security/analyses/linuxramen.htm


Chapter 12. Frequently asked Questions (FAQ) 187

12.1.3 Does Debian have any certification related to security?

Short answer: no.

Long answer: certification costs money (specially a serious security certification), nobody has
dedicated the resources in order to certify Debian GNU/Linux to any level of, for example,
the Common Criteria (http://niap.nist.gov/cc-scheme/st/ ). If you are interested in
having a security-certified GNU/Linux distribution, try to provide the resources needed to
make it possible.

There are currently at least two linux distributions certified at different EAL (http://en.
wikipedia.org/wiki/Evaluation_Assurance_Level ) levels. Notice that some of the
CC tests are being integrated into the Linux Testing Project (http://ltp.sourceforge.
net ) which is available in Debian in the ltp .

12.1.4 Are there any hardening programs for Debian?

Yes. Bastille Linux (http://www.bastille-unix.org ), originally oriented toward other
Linux distributions (Red Hat and Mandrake), currently works for Debian. Steps are being
taken to integrate the changes made to the upstream version into the Debian package, named
bastille .

Some people believe, however, that a hardening tool does not eliminate the need for good
administration.

12.1.5 I want to run XYZ service, which one should I choose?

One of Debian’s great strengths is the wide variety of choice available between packages that
provide the same functionality (DNS servers, mail servers, ftp servers, web servers, etc.). This
can be confusing to the novice administrator when trying to determine which package is right
for you. The best match for a given situation depends on a balance between your feature
and security needs. Here are some questions to ask yourself when deciding between similar
packages:

• Is the software maintained upstream? When was the last release?

• Is the package mature? The version number really does not tell you about its maturity.
Try to trace the software’s history.

• Is the software bug-ridden? Have there been security advisories related to it?

• Does the software provide all the functionality you need? Does it provide more than you
really need?

http://niap.nist.gov/cc-scheme/st/
http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://en.wikipedia.org/wiki/Evaluation_Assurance_Level
http://ltp.sourceforge.net
http://ltp.sourceforge.net
http://www.bastille-unix.org


Chapter 12. Frequently asked Questions (FAQ) 188

12.1.6 How can I make service XYZ more secure in Debian?

You will find information in this document to make some services (FTP, Bind) more secure
in Debian GNU/Linux. For services not covered here, check the program’s documentation,
or general Linux information. Most of the security guidelines for Unix systems also apply to
Debian. In most cases, securing service X in Debian is like securing that service in any other
Linux distribution (or Un*x, for that matter).

12.1.7 How can I remove all the banners for services?

If you do not like users connecting to your POP3 daemon, for example, and retrieving informa-
tion about your system, you might want to remove (or change) the banner the service shows to
users. 3 Doing so depends on the software you are running for a given service. For example,
in postfix , you can set your SMTP banner in /etc/postfix/main.cf :

smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)

Other software is not as easy to change. ssh will need to be recompiled in order to change the
version that it prints. Take care not to remove the first part (SSH-2.0 ) of the banner, which
clients use to identify which protocol(s) is supported by your package.

12.1.8 Are all Debian packages safe?

The Debian security team cannot possibly analyze all the packages included in Debian for po-
tential security vulnerabilities, since there are just not enough resources to source code audit
the whole project. However, Debian does benefit from the source code audits made by up-
stream developers.

As a matter of fact, a Debian developer could distribute a Trojan in a package, and there is no
possible way to check it out. Even if introduced into a Debian branch, it would be impossible
to cover all the possible situations in which the Trojan would execute. This is why Debian has
a “no guarantees” license clause.

However, Debian users can take confidence in the fact that the stable code has a wide audience
and most problems would be uncovered through use. Installing untested software is not rec-
ommended in a critical system (if you cannot provide the necessary code audit). In any case, if
there were a security vulnerability introduced into the distribution, the process used to include
packages (using digital signatures) ensures that the problem can be ultimately traced back to
the developer. The Debian project has not taken this issue lightly.

3Note that this is ’security by obscurity’, and will probably not be worth the effort in the long term.



Chapter 12. Frequently asked Questions (FAQ) 189

12.1.9 Why are some log files/configuration files world-readable, isn’t this inse-
cure?

Of course, you can change the default Debian permissions on your system. The current policy
regarding log files and configuration files is that they are world readable unless they provide
sensitive information.

Be careful if you do make changes since:

• Processes might not be able to write to log files if you restrict their permissions.

• Some applications may not work if the configuration file they depend on cannot be
read. For example, if you remove the world-readable permission from /etc/samba
/smb.conf , the smbclient program will not work when run by a normal user.

FIXME: Check if this is written in the Policy. Some packages (i.e. ftp daemons) seem to enforce
different permissions.

12.1.10 Why does /root/ (or UserX) have 755 permissions?

As a matter of fact, the same questions stand for any other user. Since Debian’s installation
does not place any file under that directory, there’s no sensitive information to protect there. If
you feel these permissions are too broad for your system, consider tightening them to 750. For
users, read ‘Limiting access to other user’s information’ on page 66.

This Debian security mailing list thread (http://lists.debian.org/debian-devel/
2000/debian-devel-200011/msg00783.html ) has more on this issue.

12.1.11 After installing a grsec/firewall, I started receiving many console messages!
How do I remove them?

If you are receiving console messages, and have configured /etc/syslog.conf to redirect
them to either files or a special TTY, you might be seeing messages sent directly to the console.

The default console log level for any given kernel is 7, which means that any message with
lower priority will appear in the console. Usually, firewalls (the LOG rule) and some other
security tools log lower that this priority, and thus, are sent directly to the console.

To reduce messages sent to the console, you can use dmesg (-n option, see dmesg(8) ), which
examines and controls the kernel ring buffer. To fix this after the next reboot, change /etc
/init.d/klogd from:

KLOGD=""

to:

http://lists.debian.org/debian-devel/2000/debian-devel-200011/msg00783.html
http://lists.debian.org/debian-devel/2000/debian-devel-200011/msg00783.html


Chapter 12. Frequently asked Questions (FAQ) 190

KLOGD="-c 4"

Use a lower number for -c if you are still seeing them. A description of the different log levels
can be found in /usr/include/sys/syslog.h :

#define LOG_EMERG 0 /* system is unusable */
#define LOG_ALERT 1 /* action must be taken immediately */
#define LOG_CRIT 2 /* critical conditions */
#define LOG_ERR 3 /* error conditions */
#define LOG_WARNING 4 /* warning conditions */
#define LOG_NOTICE 5 /* normal but significant condition */
#define LOG_INFO 6 /* informational */
#define LOG_DEBUG 7 /* debug-level messages */

12.1.12 Operating system users and groups

Are all system users necessary?

Yes and no. Debian comes with some predefined users (user id (UID) < 99 as described in
Debian Policy (http://www.debian.org/doc/debian-policy/ ) or /usr/share/doc
/base-passwd/README ) to ease the installation of some services that require that they run
under an appropriate user/UID. If you do not intend to install new services, you can safely
remove those users who do not own any files in your system and do not run any services. In
any case, the default behavior is that UID’s from 0 to 99 are reserved in Debian, and UID’s
from 100 to 999 are created by packages on install (and deleted when the package is purged).

To easily find users who don’t own any files, execute the following command4 (run it as root,
since a common user might not have enough permissions to go through some sensitive direc-
tories):

cut -f 1 -d : /etc/passwd | \
while read i; do find / -user "$i" | grep -q . || echo "$i"; done

These users are provided by base-passwd . Look in its documentation for more information
on how these users are handled in Debian. The list of default users (with a corresponding
group) follows:

• root: Root is (typically) the superuser.

• daemon: Some unprivileged daemons that need to write to files on disk run as dae-
mon.daemon (e.g., portmap , atd , probably others). Daemons that don’t need to own
any files can run as nobody.nogroup instead, and more complex or security conscious
daemons run as dedicated users. The daemon user is also handy for locally installed
daemons.

4Be careful, as this will traverse your whole system. If you have a lot of disk and partitions you might want to
reduce it in scope.

http://www.debian.org/doc/debian-policy/


Chapter 12. Frequently asked Questions (FAQ) 191

• bin: maintained for historic reasons.

• sys: same as with bin. However, /dev/vcs* and /var/spool/cups are owned by
group sys.

• sync: The shell of user sync is /bin/sync . Thus, if its password is set to something easy
to guess (such as “”), anyone can sync the system at the console even if they have don’t
have an account.

• games: Many games are SETGID to games so they can write their high score files. This is
explained in policy.

• man: The man program (sometimes) runs as user man, so it can write cat pages to /var
/cache/man

• lp: Used by printer daemons.

• mail: Mailboxes in /var/mail are owned by group mail, as explained in policy. The
user and group are used for other purposes by various MTA’s as well.

• news: Various news servers and other associated programs (such as suck ) use user and
group news in various ways. Files in the news spool are often owned by user and group
news. Programs such as inews that can be used to post news are typically SETGID news.

• uucp: The uucp user and group is used by the UUCP subsystem. It owns spool and
configuration files. Users in the uucp group may run uucico.

• proxy: Like daemon, this user and group is used by some daemons (specifically, proxy
daemons) that don’t have dedicated user id’s and that need to own files. For example,
group proxy is used by pdnsd , and squid runs as user proxy.

• majordom: Majordomo has a statically allocated UID on Debian systems for historical
reasons. It is not installed on new systems.

• postgres: Postgresql databases are owned by this user and group. All files in /var
/lib/postgresql are owned by this user to enforce proper security.

• www-data: Some web servers run as www-data. Web content should not be owned by
this user, or a compromised web server would be able to rewrite a web site. Data written
out by web servers, including log files, will be owned by www-data.

• backup: So backup/restore responsibilities can be locally delegated to someone without
full root permissions.

• operator: Operator is historically (and practically) the only ’user’ account that can login
remotely, and doesn’t depend on NIS/NFS.

• list: Mailing list archives and data are owned by this user and group. Some mailing list
programs may run as this user as well.

• irc: Used by irc daemons. A statically allocated user is needed only because of a bug in
ircd , which SETUID()s itself to a given UID on startup.



Chapter 12. Frequently asked Questions (FAQ) 192

• gnats.

• nobody, nogroup: Daemons that need not own any files run as user nobody and group
nogroup. Thus, no files on a system should be owned by this user or group.

Other groups which have no associated user:

• adm: Group adm is used for system monitoring tasks. Members of this group can read
many log files in /var/log , and can use xconsole. Historically, /var/log was /usr
/adm (and later /var/adm ), thus the name of the group.

• tty: TTY devices are owned by this group. This is used by write and wall to enable them
to write to other people’s TTYs.

• disk: Raw access to disks. Mostly equivalent to root access.

• kmem: /dev/kmem and similar files are readable by this group. This is mostly a BSD
relic, but any programs that need direct read access to the system’s memory can thus be
made SETGID kmem.

• dialout: Full and direct access to serial ports. Members of this group can reconfigure the
modem, dial anywhere, etc.

• dip: The group’s name stands for “Dial-up IP”, and membership in dip allows you to use
tools like ppp , dip , wvdial , etc. to dial up a connection. The users in this group cannot
configure the modem, but may run the programs that make use of it.

• fax: Allows members to use fax software to send / receive faxes.

• voice: Voicemail, useful for systems that use modems as answering machines.

• cdrom: This group can be used locally to give a set of users access to a CDROM drive.

• floppy: This group can be used locally to give a set of users access to a floppy drive.

• tape: This group can be used locally to give a set of users access to a tape drive.

• sudo: Members of this group don’t need to type their password when using sudo . See
/usr/share/doc/sudo/OPTIONS .

• audio: This group can be used locally to give a set of users access to an audio device.

• src: This group owns source code, including files in /usr/src . It can be used locally to
give a user the ability to manage system source code.

• shadow: /etc/shadow is readable by this group. Some programs that need to be able
to access the file are SETGID shadow.

• utmp: This group can write to /var/run/utmp and similar files. Programs that need to
be able to write to it are SETGID utmp.



Chapter 12. Frequently asked Questions (FAQ) 193

• video: This group can be used locally to give a set of users access to a video device.

• staff: Allows users to add local modifications to the system (/usr/local , /home ) with-
out needing root privileges. Compare with group “adm”, which is more related to mon-
itoring/security.

• users: While Debian systems use the private user group system by default (each user has
their own group), some prefer to use a more traditional group system, in which each user
is a member of this group.

I removed a system user! How can I recover?

If you have removed a system user and have not made a backup of your password and group
files you can try recovering from this issue using update-passwd (see update-passwd(8) ).

What is the difference between the adm and the staff group?

The ’adm’ group are usually administrators, and this group permission allows them to read log
files without having to su . The ’staff’ group are usually help-desk/junior sysadmins, allowing
them to work in /usr/local and create directories in /home .

12.1.13 Why is there a new group when I add a new user? (or Why does Debian
give each user one group?)

The default behavior in Debian is that each user has its own, private group. The traditional
UN*X scheme assigned all users to the users group. Additional groups were created and used
to restrict access to shared files associated with different project directories. Managing files be-
came difficult when a single user worked on multiple projects because when someone created
a file, it was associated with the primary group to which they belong (e.g. ’users’).

Debian’s scheme solves this problem by assigning each user to their own group; so that with
a proper umask (0002) and the SETGID bit set on a given project directory, the correct group
is automatically assigned to files created in that directory. This makes it easier for people
who work on multiple projects, because they will not have to change groups or umasks when
working on shared files.

You can, however, change this behavior by modifying /etc/adduser.conf . Change the
USERGROUPS variable to ’no’, so that a new group is not created when a new user is created.
Also, set USERS_GID to the GID of the users group which all users will belong to.

12.1.14 Questions regarding services and open ports

Why are all services activated upon installation?

That’s just an approach to the problem of being, on one side, security conscious and on the
other side user friendly. Unlike OpenBSD, which disables all services unless activated by the



Chapter 12. Frequently asked Questions (FAQ) 194

administrator, Debian GNU/Linux will activate all installed services unless deactivated (see
‘Disabling daemon services’ on page 39 for more information). After all you installed the
service, didn’t you?

There has been much discussion on Debian mailing lists (both at debian-devel and at debian-
security) regarding which is the better approach for a standard installation. However, as of
this writing (March 2002), there still isn’t a consensus.

Can I remove inetd ?

Inetd is not easy to remove since netbase depends on the package that provides it
(netkit-inetd ). If you want to remove it, you can either disable it (see ‘Disabling daemon
services’ on page 39) or remove the package by using the equivs package.

Why do I have port 111 open?

Port 111 is sunrpc’s portmapper, and it is installed by default as part of Debian’s base installa-
tion since there is no need to know when a user’s program might need RPC to work correctly.
In any case, it is used mostly for NFS. If you do not need it, remove it as explained in ‘Securing
RPC services’ on page 113.

In versions of the portmap package later than 5-5 you can actually have the portmapper in-
stalled but listening only on localhost (by modifying /etc/default/portmap )

What use is identd (port 113) for?

Identd service is an authentication service that identifies the owner of a specific TCP/IP con-
nection to the remote server accepting the connection. Typically, when a user connects to a
remote host, inetd on the remote host sends back a query to port 113 to find the owner in-
formation. It is often used by mail, FTP and IRC servers, and can also be used to track down
which user in your local system is attacking a remote system.

There has been extensive discussion on the security of identd (See mailing list archives
(http://lists.debian.org/debian-security/2001/debian-security-200108/
msg00297.html )). In general, identd is more helpful on a multi-user system than on a single
user workstation. If you don’t have a use for it, disable it, so that you are not leaving a service
open to the outside world. If you decide to firewall the identd port, please use a reject policy and
not a deny policy, otherwise a connection to a server utilizing identd will hang until a timeout
expires (see reject or deny issues (http://logi.cc/linux/reject_or_deny.php3 )).

I have services using port 1 and 6, what are they and how can I remove them?

If you have run the command netstat -an and receive:

http://lists.debian.org/debian-security/2001/debian-security-200108/msg00297.html
http://lists.debian.org/debian-security/2001/debian-security-200108/msg00297.html
http://logi.cc/linux/reject_or_deny.php3


Chapter 12. Frequently asked Questions (FAQ) 195

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
-
raw 0 0 0.0.0.0:6 0.0.0.0:* 7
-

You are not seeing processes listening on TCP/UDP port 1 and 6. In fact, you are seeing a
process listening on a raw socket for protocols 1 (ICMP) and 6 (TCP). Such behavior is common
to both Trojans and some intrusion detection systems such as iplogger and portsentry . If
you have these packages simply remove them. If you do not, try netstat’s -p (process) option
to see which process is running these listeners.

I found the port XYZ open, can I close it?

Yes, of course. The ports you are leaving open should adhere to your individual site’s pol-
icy regarding public services available to other networks. Check if they are being opened by
inetd (see ‘Disabling inetd or its services’ on page 41), or by other installed packages and
take the appropriate measures (i.e, configure inetd, remove the package, avoid it running on
boot-up).

Will removing services from /etc/services help secure my box?

No, /etc/services only provides a mapping between a virtual name and a given port num-
ber. Removing names from this file will not (usually) prevent services from being started. Some
daemons may not run if /etc/services is modified, but that’s not the norm. To properly
disable the service, see ‘Disabling daemon services’ on page 39.

12.1.15 Common security issues

I have lost my password and cannot access the system!

The steps you need to take in order to recover from this depend on whether or not you have
applied the suggested procedure for limiting access to lilo and your system’s BIOS.

If you have limited both, you need to disable the BIOS setting that only allows booting from
the hard disk before proceeding. If you have also forgotten your BIOS password, you will have
to reset your BIOS by opening the system and manually removing the BIOS battery.

Once you have enabled booting from a CD-ROM or diskette enable, try the following:

• Boot-up from a rescue disk and start the kernel



Chapter 12. Frequently asked Questions (FAQ) 196

• Go to the virtual console (Alt+F2)

• Mount the hard disk where your /root is

• Edit (Debian 2.2 rescue disk comes with the editor ae , and Debian 3.0 comes with
nano-tiny which is similar to vi ) /etc/shadow and change the line:

root:asdfjl290341274075:XXXX:X:XXXX:X::: (X=any number)

to:

root::XXXX:X:XXXX:X:::

This will remove the forgotten root password, contained in the first colon separated field after
the user name. Save the file, reboot the system and login with root using an empty password.
Remember to reset the password. This will work unless you have configured the system more
tightly, i.e. if you have not allowed users to have null passwords or not allowed root to login
from the console.

If you have introduced these features, you will need to enter into single user mode. If LILO has
been restricted, you will need to rerun lilo just after the root reset above. This is quite tricky
since your /etc/lilo.conf will need to be tweaked due to the root (/) file system being a
ramdisk and not the real hard disk.

Once LILO is unrestricted, try the following:

• Press the Alt, shift or Control key just before the system BIOS finishes, and you should
get the LILO prompt.

• Type linux single , linux init=/bin/sh or linux 1 at the prompt.

• This will give you a shell prompt in single-user mode (it will ask for a password, but you
already know it)

• Re-mount read/write the root (/) partition, using the mount command.

# mount -o remount,rw /

• Change the superuser password with passwd (since you are superuser it will not ask for
the previous password).



Chapter 12. Frequently asked Questions (FAQ) 197

12.1.16 How do I accomplish setting up a service for my users without giving out
shell accounts?

For example, if you want to set up a POP service, you don’t need to set up a user account
for each user accessing it. It’s best to set up directory-based authentication through an exter-
nal service (like Radius, LDAP or an SQL database). Just install the appropriate PAM library
(libpam-radius-auth , libpam-ldap , libpam-pgsql or libpam-mysql ), read the doc-
umentation (for starters, see ‘User authentication: PAM’ on page 55) and configure the PAM-
enabled service to use the back end you have chosen. This is done by editing the files under
/etc/pam.d/ for your service and modifying the

auth required pam_unix_auth.so shadow nullok use_first_pass

to, for example, ldap:

auth required pam_ldap.so

In the case of LDAP directories, some services provide LDAP schemas to be included in your
directory that are required in order to use LDAP authentication. If you are using a relational
database, a useful trick is to use the where clause when configuring the PAM modules. For
example, if you have a database with the following table attributes:

(user_id, user_name, realname, shell, password, UID, GID, homedir, sys, pop, imap, ftp)

By making the services attributes boolean fields, you can use them to enable or disable access
to the different services just by inserting the appropriate lines in the following files:

• /etc/pam.d/imap :where=imap=1 .

• /etc/pam.d/qpopper :where=pop=1 .

• /etc/nss-mysql*.conf :users.where_clause = user.sys = 1; .

• /etc/proftpd.conf :SQLWhereClause “ftp=1” .

12.2 My system is vulnerable! (Are you sure?)

12.2.1 Vulnerability assessment scanner X says my Debian system is vulnerable!

Many vulnerability assessment scanners give false positives when used on Debian systems,
since they only use version checks to determine if a given software package is vulnerable,
but do not really test the security vulnerability itself. Since Debian does not change software



Chapter 12. Frequently asked Questions (FAQ) 198

versions when fixing a package (many times the fix made for newer releases is back ported),
some tools tend to think that an updated Debian system is vulnerable when it is not.

If you think your system is up to date with security patches, you might want to use the cross
references to security vulnerability databases published with the DSAs (see ‘Debian Security
Advisories’ on page 130) to weed out false positives, if the tool you are using includes CVE
references.

12.2.2 I’ve seen an attack in my system’s logs. Is my system compromised?

A trace of an attack does not always mean that your system has been compromised, and you
should take the usual steps to determine if the system is indeed compromised (see ‘After the
compromise (incident response)’ on page 181). Even if your system was not vulnerable to
the attack that was logged, a determined attacker might have used some other vulnerability
besides the ones you have detected.

12.2.3 I have found strange ’MARK’ lines in my logs: Am I compromised?

You might find the following lines in your system logs:

Dec 30 07:33:36 debian -- MARK --
Dec 30 07:53:36 debian -- MARK --
Dec 30 08:13:36 debian -- MARK --

This does not indicate any kind of compromise, and users changing between Debian releases
might find it strange. If your system does not have high loads (or many active services), these
lines might appear throughout your logs. This is an indication that your syslogd daemon is
running properly. From syslogd(8) :

-m interval
The syslogd logs a mark timestamp regularly. The
default interval between two -- MARK -- lines is 20
minutes. This can be changed with this option.
Setting the interval to zero turns it off entirely.

12.2.4 I found users using ’su’ in my logs: Am I compromised?

You might find lines in your logs like:

Apr 1 09:25:01 server su[30315]: + ??? root-nobody
Apr 1 09:25:01 server PAM_unix[30315]: (su) session opened for user nobody by (UID=0)



Chapter 12. Frequently asked Questions (FAQ) 199

Don’t worry too much. Check to see if these entries are due to cron jobs (usually /etc
/cron.daily/find or logrotate ):

$ grep 25 /etc/crontab
25 9 * * * root test -e /usr/sbin/anacron || run-parts --report
/etc/cron.daily
$ grep nobody /etc/cron.daily/*
find:cd / && updatedb --localuser=nobody 2>/dev/null

12.2.5 I have found ’possible SYN flooding’ in my logs: Am I under attack?

If you see entries like these in your logs:

May 1 12:35:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 12:36:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 12:37:25 linux kernel: possible SYN flooding on port X. Sending cookies.
May 1 13:43:11 linux kernel: possible SYN flooding on port X. Sending cookies.

Check if there is a high number of connections to the server using netstat , for example:

linux:~# netstat -ant | grep SYN_RECV | wc -l
9000

This is an indication of a denial of service (DoS) attack against your system’s X port (most
likely against a public service such as a web server or mail server). You should activate TCP
syncookies in your kernel, see ‘Configuring syncookies’ on page 81. Note, however, that a DoS
attack might flood your network even if you can stop it from crashing your systems (due to file
descriptors being depleted, the system might become unresponsive until the TCP connections
timeout). The only effective way to stop this attack is to contact your network provider.

12.2.6 I have found strange root sessions in my logs: Am I compromised?

You might see these kind of entries in your /var/log/auth.log file:

May 2 11:55:02 linux PAM_unix[1477]: (cron) session closed for user root
May 2 11:55:02 linux PAM_unix[1476]: (cron) session closed for user root
May 2 12:00:01 linux PAM_unix[1536]: (cron) session opened for user root by
(UID=0)
May 2 12:00:02 linux PAM_unix[1536]: (cron) session closed for user root

These are due to a cron job being executed (in this example, every five minutes). To determine
which program is responsible for these jobs, check entries under: /etc/crontab , /etc
/cron.d , /etc/crond.daily and root’s crontab under /var/spool/cron/crontabs .



Chapter 12. Frequently asked Questions (FAQ) 200

12.2.7 I have suffered a break-in, what do I do?

There are several steps you might want to take in case of a break-in:

• Check if your system is up to date with security patches for published vulnerabilities.
If your system is vulnerable, the chances that the system is in fact compromised are in-
creased. The chances increase further if the vulnerability has been known for a while,
since there is usually more activity related to older vulnerabilities. Here is a link to SANS
Top 20 Security Vulnerabilities (http://www.sans.org/top20/ ).

• Read this document, especially the ‘After the compromise (incident response)’ on
page 181 section.

• Ask for assistance. You might use the debian-security mailing list and ask for advice on
how to recover/patch your system.

• Notify your local CERT (http://www.cert.org ) (if it exists, otherwise you may want
to consider contacting CERT directly). This might or might not help you, but, at the
very least, it will inform CERT of ongoing attacks. This information is very valuable in
determining which tools and attacks are being used by the blackhat community.

12.2.8 How can I trace an attack?

By watching the logs (if they have not been tampered with), using intrusion detection systems
(see ‘Set up Intrusion Detection’ on page 175), traceroute , whois and similar tools (includ-
ing forensic analysis), you may be able to trace an attack to the source. The way you should
react to this information depends solely on your security policy, and what you consider is an
attack. Is a remote scan an attack? Is a vulnerability probe an attack?

12.2.9 Program X in Debian is vulnerable, what do I do?

First, take a moment to see if the vulnerability has been announced in public security mailing
lists (like Bugtraq) or other forums. The Debian Security Team keeps up to date with these
lists, so they may also be aware of the problem. Do not take any further actions if you see an
announcement at http://security.debian.org .

If no information seems to be published, please send e-mail about the affected package(s),
as well as a detailed description of the vulnerability (proof of concept code is also OK), to
team@security.debian.org (mailto:team@security.debian.org ). This will get you in
touch with Debian’s security team.

12.2.10 The version number for a package indicates that I am still running a vul-
nerable version!

Instead of upgrading to a new release, Debian backports security fixes to the version that was
shipped in the stable release. The reason for this is to make sure that the stable release changes

http://www.sans.org/top20/
http://www.cert.org
http://security.debian.org
mailto:team@security.debian.org


Chapter 12. Frequently asked Questions (FAQ) 201

as little as possible, so that things will not change or break unexpectedly as a result of a security
fix. You can check if you are running a secure version of a package by looking at the package
changelog, or comparing its exact (upstream version -slash- debian release) version number
with the version indicated in the Debian Security Advisory.

12.2.11 Specific software

proftpd is vulnerable to a Denial of Service attack.

Add DenyFilter \*.*/ to your configuration file, and for more information see http:
//www.proftpd.org/bugs.html .

After installing portsentry , there are a lot of ports open.

That’s just the way portsentry works. It opens about twenty unused ports to try to detect
port scans.

12.3 Questions regarding the Debian security team

This information is derived from the Debian Security FAQ (http://www.debian.org/
security/faq ). It includes the information as of January, 2006, and provides answers for
some other common questions asked in the debian-security mailing list.

12.3.1 What is a Debian Security Advisory (DSA)?

It is information sent by the Debian Security Team (see below) regarding the discovery and fix
for a security related vulnerability in a package available in Debian GNU/Linux. Signed DSAs
are sent to public mailing lists (debian-security-announce) and posted on Debian’s web site
(both in the front page and in the security area (http://www.debian.org/security/ )).

DSAs include information on the affected package(s), the security flaw that was discovered
and where to retrieve the updated packages (and their MD5 sums).

12.3.2 The signature on Debian advisories does not verify correctly!

This is most likely a problem on your end. The debian-security-announce (http://www.
debian.org/security/faq ) list has a filter that only allows messages with a correct signa-
ture from one of the security team members to be posted.

Most likely some piece of mail software on your end slightly changes the message, thus break-
ing the signature. Make sure your software does not do any MIME encoding or decoding, or
tab/space conversions.

http://www.proftpd.org/bugs.html
http://www.proftpd.org/bugs.html
http://www.debian.org/security/faq
http://www.debian.org/security/faq
http://www.debian.org/security/
http://www.debian.org/security/faq
http://www.debian.org/security/faq


Chapter 12. Frequently asked Questions (FAQ) 202

Known culprits fetchmail (with the mimedecode option enabled), formail (from procmail 3.14
only) and evolution.

12.3.3 How is security handled in Debian?

Once the Security Team receives a notification of an incident, one or more members review
it and consider its impact on the stable release of Debian (i.e. if it’s vulnerable or not). If our
system is vulnerable, we work on a fix for the problem. The package maintainer is contacted as
well, if he didn’t contact the Security Team already. Finally, the fix is tested and new packages
are prepared, which then are compiled on all stable architectures and uploaded afterwards.
After all of that is done, an advisory is published.

12.3.4 Why are you fiddling with an old version of that package?

The most important guideline when making a new package that fixes a security problem is to
make as few changes as possible. Our users and developers are relying on the exact behavior
of a release once it is made, so any change we make can possibly break someone’s system. This
is especially true in case of libraries: make sure you never change the Application Program
Interface (API) or Application Binary Interface (ABI), no matter how small the change is.

This means that moving to a new upstream version is not a good solution, instead the relevant
changes should be backported. Generally upstream maintainers are willing to help if needed,
if not the Debian security team might be able to help.

In some cases it is not possible to backport a security fix, for example when large amounts of
source code need to be modified or rewritten. If that happens it might be necessary to move to
a new upstream version, but this has to be coordinated with the security team beforehand.

12.3.5 What is the policy for a fixed package to appear in security.debian.org?

Security breakage in the stable distribution warrants a package on security.debian.org. Any-
thing else does not. The size of a breakage is not the real problem here. Usually the security
team will prepare packages together with the package maintainer. Provided someone (trusted)
tracks the problem and gets all the needed packages compiled and submit them to the security
team, even very trivial security problem fixes will make it to security.debian.org. Please see
below.

Security updates serve one purpose: to supply a fix for a security vulnerability. They are not a
method for sneaking additional changes into the stable release without going through normal
point release procedure.

12.3.6 What does “local (remote)” mean?

Some advisories cover vulnerabilities that cannot be identified with the classic scheme of local
and remote exploitability. Some vulnerabilities cannot be exploited from remote, i.e. don’t



Chapter 12. Frequently asked Questions (FAQ) 203

correspond to a daemon listening to a network port. If they can be exploited by special files that
could be provided via the network while the vulnerable service is not permanently connected
with the network, we write “local (remote)” in such cases.

Such vulnerabilities are somewhat between local and remote vulnerabilities and often cover
archives that could be provided through the network, e.g. as mail attachment or from a down-
load page.

12.3.7 The version number for a package indicates that I am still running a vulner-
able version!

See ‘The version number for a package indicates that I am still running a vulnerable version!’
on page 200.

12.3.8 How is security handled for testing and unstable ?

The short answer is: it’s not. Testing and unstable are rapidly moving targets and the se-
curity team does not have the resources needed to properly support those. If you want to
have a secure (and stable) server you are strongly encouraged to stay with stable. How-
ever, work is in progress to change this, with the formation of a testing security team (http:
//secure-testing-master.debian.net/ ) which has begun work to offer security sup-
port for testing, and to some extent, for unstable. For more information see ‘Security support
for the testing branch’ on page 172

In some cases, however, the unstable branch usually gets security fixes quite quickly, because
those fixes are usually available upstream faster (other versions, like those in the stable branch,
usually need to be back ported).

You can review public vulnerabilities affecting the testing and unstable release at the Se-
curity Bug Tracker (http://security-tracker.debian.net/tracker/ ).

12.3.9 I use an older version of Debian, is it supported by the Debian Security
Team?

No. Unfortunately, the Debian Security Team cannot handle both the stable release (unoffi-
cially, also the unstable) and other older releases. However, you can expect security updates
for a limited period of time (usually several months) immediately following the release of a
new Debian distribution.

12.3.10 How does testing get security updates?

Security updates will migrate into the testing distribution via unstable. They are usually up-
loaded with their priority set to high, which will reduce the quarantine time to two days. After

http://secure-testing-master.debian.net/
http://secure-testing-master.debian.net/
http://security-tracker.debian.net/tracker/


Chapter 12. Frequently asked Questions (FAQ) 204

this period, the packages will migrate into testing automatically, given that they are built for
all architectures and their dependencies are fulfilled in testing.

The testing security team (http://secure-testing-master.debian.net/ ) also makes
security fixes available in their repository when the normal migration process is not fast
enough.

12.3.11 How is security handled for contrib and non-free?

The short answer is: it’s not. Contrib and non-free aren’t official parts of the Debian Distribu-
tion and are not released, and thus not supported by the security team. Some non-free packages
are distributed without source or without a license allowing the distribution of modified ver-
sions. In those cases no security fixes can be made at all. If it is possible to fix the problem, and
the package maintainer or someone else provides correct updated packages, then the security
team will generally process them and release an advisory.

12.3.12 Why are there no official mirrors for security.debian.org?

Actually, there are. There are several official mirrors, implemented through DNS aliases. The
purpose of security.debian.org is to make security updates available as quickly and easily as
possible.

Encouraging the use of unofficial mirrors would add extra complexity that is usually not
needed and that can cause frustration if these mirrors are not kept up to date.

12.3.13 I’ve seen DSA 100 and DSA 102, now where is DSA 101?

Several vendors (mostly of GNU/Linux, but also of BSD derivatives) coordinate security advi-
sories for some incidents and agree to a particular timeline so that all vendors are able to release
an advisory at the same time. This was decided in order to not discriminate against some ven-
dors that need more time (e.g. when the vendor has to pass packages through lengthy QA
tests or has to support several architectures or binary distributions). Our own security team
also prepares advisories in advance. Every now and then, other security issues have to be dealt
with before the parked advisory could be released, and hence temporarily leaving out one or
more advisories by number.

12.3.14 I tried to download a package listed in one of the security advisories, but I
got a ‘file not found’ error.

Whenever a newer bugfix supersedes an older package on security.debian.org, chances are
high that the old package will be removed by the time the new one gets installed. Hence,
you’ll get this ‘file not found’ error. We don’t want to distribute packages with known security
bugs longer than absolutely necessary.

http://secure-testing-master.debian.net/


Chapter 12. Frequently asked Questions (FAQ) 205

Please use the packages from the latest security advisories, which are distributed
through the debian-security-announce mailing list (http://lists.debian.org/
debian-security-announce ). It’s best to simply run apt-get update before upgrading
the package.

12.3.15 How can I reach the security team?

Security information can be sent to security@debian.org (mailto:security@debian.org ),
which is read by all Debian developers. If you have sensitive information please use
team@security.debian.org (mailto:team@security.debian.org ) which only the mem-
bers of the team can read. If desired, email can be encrypted with the Debian Security
Contact key (key ID 0x363CCD95 (http://pgpkeys.pca.dfn.de:11371/pks/lookup?
search=0x363CCD95op=vindex )). See also the PGP/GPG keys for the security team
(http://www.debian.org/security/keys.txt ).

12.3.16 What difference is there between security@debian.org and debian-
security@lists.debian.org?

When you send messages to security@debian.org, they are sent to the developers’ mailing
list (debian-private). All Debian developers are subscribed to this list and posts are kept
private 5 (i.e. are not archived at the public website). The public mailing list, debian-
security@lists.debian.org, is open to anyone that wants to subscribe (http://www.debian.
org/MailingLists/ ), and there are searchable archives available here (http://lists.
debian.org/search.html ).

12.3.17 I guess I found a security problem, what should I do?

If you learn about a security problem, either in one of your own packages or in someone else’s
please always contact the security team. If the Debian security team confirms the vulnerability
and other vendors are likely to be vulnerable as well, they usually contact other vendors as
well. If the vulnerability is not yet public they will try to coordinate security advisories with
the other vendors, so all major distributions are in sync.

If the vulnerability is already publicly known, be sure to file a bug report in the Debian BTS,
and tag it security.

12.3.18 How can I contribute to the Debian security team?

• By contributing to this document, fixing FIXMEs or providing new content. Documenta-
tion is important and reduces the overhead of answering common issues. Translation of
this documentation into other languages is also of great help.

5There has been a declassification decision, voted in GR-2005-002 (http://www.debian.org/vote/2005/
vote_002 ), that might make some posts available in the future, however.

http://lists.debian.org/debian-security-announce
http://lists.debian.org/debian-security-announce
mailto:security@debian.org
mailto:team@security.debian.org
http://pgpkeys.pca.dfn.de:11371/pks/lookup?search=0x363CCD95op=vindex
http://pgpkeys.pca.dfn.de:11371/pks/lookup?search=0x363CCD95op=vindex
http://www.debian.org/security/keys.txt
http://www.debian.org/MailingLists/
http://www.debian.org/MailingLists/
http://lists.debian.org/search.html
http://lists.debian.org/search.html
http://www.debian.org/vote/2005/vote_002
http://www.debian.org/vote/2005/vote_002


Chapter 12. Frequently asked Questions (FAQ) 206

• By packaging applications that are useful for checking or enhancing security in a De-
bian GNU/Linux system. If you are not a developer, file a WNPP bug (http://www.
debian.org/devel/wnpp/ ) and ask for software you think would be useful, but is not
currently provided.

• Audit applications in Debian or help solve security bugs and report issues to secu-
rity@debian.org.

In all cases, please review each problem before reporting it to security@debian.org. If you are
able to provide patches, that would speed up the process. Do not simply forward Bugtraq
mails, since they are already received. Providing additional information, however, is always a
good idea.

12.3.19 Who is the Security Team composed of?

The Debian security team consists of several officers and secretaries (http://www.debian.
org/intro/organization ). The security team itself appoints people to join the team.

12.3.20 Does the Debian Security team check every new package in Debian?

No, the Debian security team does not check every new package and there is no automatic (lin-
tian) check to detect new packages including malicious codes, since those checks are rather im-
possible to perform automatically. Maintainers, however, are fully responsible for the packages
they introduce into Debian, and all packages are first signed by an authorized developer(s).
The developer is in charge of analyzing the security of all packages that they maintain.

12.3.21 How much time will it take Debian to fix vulnerability XXXX?

The Debian security team works quickly to send advisories and produce fixed pack-
ages for the stable branch once a vulnerability is discovered. A report published in
the debian-security mailing list (http://lists.debian.org/debian-security/2001/
debian-security-200112/msg00257.html ) showed that in the year 2001, it took the De-
bian Security Team an average of 35 days to fix security-related vulnerabilities. However, over
50% of the vulnerabilities where fixed in a 10-day time frame, and over 15% of them where
fixed the same day the advisory was released.

However, when asking this question people tend to forget that:

• DSAs are not sent until:

– packages are available for all architectures supported by Debian (which takes some
time for packages that are part of the system core, especially considering the number
of architectures supported in the stable release).

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/intro/organization
http://www.debian.org/intro/organization
http://lists.debian.org/debian-security/2001/debian-security-200112/msg00257.html
http://lists.debian.org/debian-security/2001/debian-security-200112/msg00257.html


Chapter 12. Frequently asked Questions (FAQ) 207

– new packages are thoroughly tested in order to ensure that no new bugs are intro-
duced

• Packages might be available before the DSA is sent (in the incoming queue or on the
mirrors).

• Debian is a volunteer-based project.

• Debian is licensed with a “no guarantees” clause.

If you want more in-depth analysis on the time it takes for the Security Team to work on vul-
nerabilities, you should consider that new DSAs (see ‘Debian Security Advisories’ on page 130)
published on the security website (http://security.debian.org ), and the metadata used
to generate them, include links to vulnerability databases. You could download the sources
from the web server (from the CVS (http://cvs.debian.org )) or use the HTML pages to
determine the time that it takes for Debian to fix vulnerabilities and correlate this data with
public databases.

12.3.22 How long will security updates be provided?

The security team tries to support a stable distribution for about one year after the next stable
distribution has been released, except when another stable distribution is released within this
year. It is not possible to support three distributions; supporting two simultaneously is already
difficult enough.

12.3.23 How can I check the integrity of packages?

This process involve checking the Release file signature against the public key (available at
http://ftp-master.debian.org/ziyi_key_2006.asc , substitute 2006 for the current
year) for the archive. The Release file contains the MD5 checksums of Packages and Sources
files, which contain MD5 checksums of binary and source packages. Detailed instruction on
how to check packages integrity can be found here (deb-pack-sign ).

12.3.24 What to do if a random package breaks after a security update?

First of all, you should figure out why the package breaks and how it is connected to the
security update, then contact the security team if it is serious or the stable release manager if
it is less serious. We’re talking about random packages that break after a security update of a
different package. If you can’t figure out what’s going wrong but have a correction, talk to the
security team as well. You may be redirected to the stable release manager though.

http://security.debian.org
http://cvs.debian.org
http://ftp-master.debian.org/ziyi_key_2006.asc
deb-pack-sign


Chapter 12. Frequently asked Questions (FAQ) 208



209

Appendix A

The hardening process step by step

Below is a post-installation, step-by-step procedure for hardening a Debian 2.2 GNU/Linux
system. This is one possible approach to such a procedure and is oriented toward the hard-
ening of network services. It is included to show the entire process you might use during
configuration. Also, see ‘Configuration checklist’ on page 213.

• Install the system, taking into account the information regarding partitioning included
earlier in this document. After base installation, go into custom install. Do not select task
packages. Select shadow passwords.

• Using dselect , remove all unneeded but selected packages before doing [I]nstall. Keep
the bare minimum of packages for the system.

• Update all software from the latest packages available at security.debian.org as explained
previously in ‘Execute a security update’ on page 46.

• Implement the suggestions presented in this manual regarding user quotas, login defini-
tions and lilo

• Make a list of services currently running on your system. Try:

$ ps aux
$ netstat -pn -l -A inet
# /usr/sbin/lsof -i | grep LISTEN

You will need to install lsof-2.2 for the third command to work (run it as root). You
should be aware that lsof can translate the word LISTEN to your locale settings.

• In order to remove unnecessary services, first determine what package provides the ser-
vice and how it is started. This can be accomplished by checking the program that listens
in the socket. The following shell script, which uses the programs lsof and dpkg , does
just that:



Chapter A. The hardening process step by step 210

#!/bin/sh
# FIXME: this is quick and dirty; replace with a more robust script snippet
for i in ‘sudo lsof -i | grep LISTEN | cut -d " " -f 1 |sort -u‘ ; do

pack=‘dpkg -S $i |grep bin |cut -f 1 -d : | uniq‘
echo "Service $i is installed by $pack";
init=‘dpkg -L $pack |grep init.d/ ‘
if [ ! -z "$init" ]; then

echo "and is run by $init"
fi

done

• Once you find any unwanted services, remove the associated package (with dpkg
-purge ), or disable the service from starting automatically at boot time using
update-rc.d (see ‘Disabling daemon services’ on page 39).

• For inetd services (launched by the superdaemon), check which services are enabled in
/etc/inetd.conf using:

$ grep -v "^#" /etc/inetd.conf | sort -u

Then disable those services that are not needed by commenting out the line that includes
them in /etc/inetd.conf , removing the package, or using update-inetd .

• If you have wrapped services (those using /usr/sbin/tcpd ), check that the files /etc
/hosts.allow and /etc/hosts.deny are configured according to your service pol-
icy.

• If the server uses more than one external interface, depending on the service, you may
want to limit the service to listen on a specific interface. For example, if you want internal
FTP access only, make the FTP daemon listen only on your management interface, not on
all interfaces (i.e, 0.0.0.0:21).

• Re-boot the machine, or switch to single user mode and then back to multiuser using the
commands:

# init 1
(....)
# init 2

• Check the services now available, and, if necessary, repeat the steps above.

• Now install the needed services, if you have not done so already, and configure them
properly.

• Use the following shell command to determine what user each available service is run-
ning as:



Chapter A. The hardening process step by step 211

# for i in ‘/usr/sbin/lsof -i |grep LISTEN |cut -d " " -f 1 |sort -u‘; \
> do user=‘ps ef |grep $i |grep -v grep |cut -f 1 -d " "‘ ; \
> echo "Service $i is running as user $user"; done

Consider changing these services to a specific user/group and maybe chroot ’ing them
for increased security. You can do this by changing the /etc/init.d scripts which
start the service. Most services in Debian use start-stop-daemon , which has options
(--change-uid and --chroot ) for accomplishing this. A word of warning regarding
the chroot ’ing of services: you may need to put all the files installed by the package (use
dpkg -L) providing the service, as well as any packages it depends on, in the chroot ’ed
environment. Information about setting up a chroot environment for the ssh program
can be found in ‘Chroot environment for SSH’ on page 229.

• Repeat the steps above in order to check that only desired services are running and that
they are running as the desired user/group combination.

• Test the installed services in order to see if they work as expected.

• Check the system using a vulnerability assessment scanner (like nessus ), in order to
determine vulnerabilities in the system (i.e., misconfiguration, old services or unneeded
services).

• Install network and host intrusion measures like snort and logcheck .

• Repeat the network scanner step and verify that the intrusion detection systems are
working correctly.

For the truly paranoid, also consider the following:

• Add firewalling capabilities to the system, accepting incoming connections only to of-
fered services and limiting outgoing connections only to those that are authorized.

• Re-check the installation with a new vulnerability assessment using a network scanner.

• Using a network scanner, check outbound connections from the system to an outside host
and verify that unwanted connections do not find their way out.

FIXME: this procedure considers service hardening but not system hardening at the user level,
include information regarding checking user permissions, SETUID files and freezing changes
in the system using the ext2 file system.



Chapter A. The hardening process step by step 212



213

Appendix B

Configuration checklist

This appendix briefly reiterates points from other sections in this manual in a con-
densed checklist format. This is intended as a quick summary for someone who has
already read the manual. There are other good checklists available, including Kurt
Seifried’s Securing Linux Step by Step (http://seifried.org/security/os/linux/
20020324-securing-linux-step-by-step.html ) and CERT’s Unix Security Checklist
(http://www.cert.org/tech_tips/usc20_full.html ).

FIXME: This is based on v1.4 of the manual and might need to be updated.

• Limit physical access and booting capabilities

– Enable a password in the BIOS.

– Disable floppy/cdrom/. . . booting in the system’s BIOS.

– Set a LILO or GRUB password (/etc/lilo.conf or /boot/grub/menu.lst ,
respectively); check that the LILO or GRUB configuration file is read-protected.

• Partitioning

– Separate user-writable data, non-system data, and rapidly changing run-time data
to their own partitions

– Set nosuid,noexec,nodev mount options in /etc/fstab on ext2/3 partitions
that should not hold binaries such as /home or /tmp .

• Password hygiene and login security

– Set a good root password

– Enable password shadowing and MD5

– Install and use PAM

* Add MD5 support to PAM and make sure that (generally speaking) entries in
/etc/pam.d/ files which grant access to the machine have the second field in
the pam.d file set to requisite or required .

http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://seifried.org/security/os/linux/20020324-securing-linux-step-by-step.html
http://www.cert.org/tech_tips/usc20_full.html


Chapter B. Configuration checklist 214

* Tweak /etc/pam.d/login so as to only permit local root logins.

* Also mark authorized tty:s in /etc/security/access.conf and generally
set up this file to limit root logins as much as possible.

* Add pam_limits.so if you want to set per-user limits

* Tweak /etc/pam.d/passwd : set minimum length of passwords higher (6
characters maybe) and enable MD5

* Add group wheel to /etc/group if desired; add pam_wheel.so group=wheel
entry to /etc/pam.d/su

* For custom per-user controls, use pam_listfile.so entries where appropriate

* Have an /etc/pam.d/other file and set it up with tight security

– Set up limits in /etc/security/limits.conf (note that /etc/limits is not
used if you are using PAM)

– Tighten up /etc/login.defs ; also, if you enabled MD5 and/or PAM, make sure
you make the corresponding changes here, too

– Disable root ftp access in /etc/ftpusers

– Disable network root login; use su(1) or sudo(1) . (consider installing sudo )

– Use PAM to enforce additional constraints on logins?

• Other local security issues

– Kernel tweaks (see ‘Configuring kernel network features’ on page 80)

– Kernel patches (see ‘Adding kernel patches’ on page 73)

– Tighten up log file permissions (/var/log/{last,fail}log , Apache logs)

– Verify that SETUID checking is enabled in /etc/checksecurity.conf

– Consider making some log files append-only and configuration files immutable us-
ing chattr (ext2/3 file systems only)

– Set up file integrity (see ‘Checking file system integrity’ on page 79). Install
debsums

– Log everything to a local printer?

– Burn your configuration on a boot-able CD and boot off that?

– Disable kernel modules?

• Limit network access

– Install and configure ssh (suggest PermitRootLogin No in /etc/ssh
/sshd_config , PermitEmptyPasswords No; note other suggestions in text
also)

– Disable or remove in.telnetd , if installed

– Generally, disable gratuitous services in /etc/inetd.conf using update-inetd
-disable (or disable inetd altogether, or use a replacement such as xinetd or
rlinetd )



Chapter B. Configuration checklist 215

– Disable other gratuitous network services; ftp, DNS, WWW etc should not be run-
ning if you do not need them and monitor them regularly. In most cases mail should
be running but configured for local delivery only.

– For those services which you do need, do not just use the most common programs,
look for more secure versions shipped with Debian (or from other sources). What-
ever you end up running, make sure you understand the risks.

– Set up chroot jails for outside users and daemons.
– Configure firewall and tcpwrappers (i.e. hosts_access(5) ); note trick for /etc

/hosts.deny in text.
– If you run ftp, set up your ftpd server to always run chroot ’ed to the user’s home

directory
– If you run X, disable xhost authentication and go with ssh instead; better yet, dis-

able remote X if you can (add -nolisten tcp to the X command line and turn off
XDMCP in /etc/X11/xdm/xdm-config by setting the requestPort to 0)

– Disable remote access to printers
– Tunnel any IMAP or POP sessions through SSL or ssh ; install stunnel if you want

to provide this service to remote mail users
– Set up a log host and configure other machines to send logs to this host (/etc

/syslog.conf )
– Secure BIND, Sendmail, and other complex daemons (run in a chroot jail; run as a

non-root pseudo-user)
– Install tiger or a similar network intrusion detection tool.
– Install snort or a similar network intrusion detection tool.
– Do without NIS and RPC if you can (disable portmap).

• Policy issues

– Educate users about the whys and hows of your policies. When you have prohibited
something which is regularly available on other systems, provide documentation
which explains how to accomplish similar results using other, more secure means.

– Prohibit use of protocols which use clear-text passwords (telnet , rsh and friends;
ftp, imap, http, . . . ).

– Prohibit programs which use SVGAlib.
– Use disk quotas.

• Keep informed about security issues

– Subscribe to security mailing lists
– Configure apt for security updates – add to /etc/apt/sources.list an entry

(or entries) for http://security.debian.org/
– Also remember to periodically run apt-get update ; apt-get upgrade

(perhaps install as a cron job?) as explained in ‘Execute a security update’ on
page 46.



Chapter B. Configuration checklist 216



217

Appendix C

Setting up a stand-alone IDS

You can easily set up a dedicated Debian system as a stand-alone Intrusion Detection System
using snort and a web-based interface to analyse the intrusion detection alerts:

• Install a base Debian system and select no additional packages.

• Install one of the Snort versions with database support and configure the IDS to log alerts
into the database.

• Download and install BASE (Basic Analysis and Security Engine), or ACID (Analysis
Console for Intrusion Databases). Configure it to use the same database than Snort.

• Download and install the necessary packages1.

BASE is currently packaged for Debian in acidbase and ACID is packaged as acidlab 2.
Both provide a graphical WWW interface to Snort’s output.

Besides the base installation you will also need a web server (such as apache ), a PHPinter-
preter and a relational database (such postgresql or mysql ) where Snort will store its alerts.

This system should be set up with at least two interfaces: one interface connected to a man-
agement LAN (for accessing the results and maintaining the system), and one interface with
no IP address attached to the network segment being analyzed. You should configure the web
server to listen only on the interface connected to the management LAN.

You should configure both interfaces in the standard Debian /etc/network/interfaces
configuration file. One (the management LAN) address can be configured as you would nor-
mally do. The other interface needs to be configured so that it is started up when the system
boots, but with no interface address. You can use the following interface definition:

1Typically the needed packages will be installed through the dependencies
2It can also be downloaded from http://www.cert.org/kb/acid/ , http://acidlab.sourceforge.

net or http://www.andrew.cmu.edu/~rdanyliw/snort/ .

http://www.cert.org/kb/acid/
http://acidlab.sourceforge.net
http://acidlab.sourceforge.net
http://www.andrew.cmu.edu/~rdanyliw/snort/


Chapter C. Setting up a stand-alone IDS 218

auto eth0
iface eth0 inet manual

up ifconfig $IFACE 0.0.0.0 up
up ip link set $IFACE promisc on
down ip link set $IFACE promisc off
down ifconfig $IFACE down

The above configures an interface to read all the traffic on the network in a stealth-type con-
figuration. This prevents the NIDS system to be a direct target in a hostile network since the
sensors have no IP address on the network. Notice, however, that there have been known
bugs over time in sensors part of NIDS (for example see DSA-297 (http://www.debian.
org/security/2003/dsa-297 ) related to Snort) and remote buffer overflows might even
be triggered by network packet processing.

You might also want to read the Snort Statistics HOWTO (http://www.faqs.org/docs/
Linux-HOWTO/Snort-Statistics-HOWTO.html ) and the documentation available at the
Snort official site (http://www.snort.org/docs/ ).

http://www.debian.org/security/2003/dsa-297
http://www.debian.org/security/2003/dsa-297
http://www.faqs.org/docs/Linux-HOWTO/Snort-Statistics-HOWTO.html
http://www.faqs.org/docs/Linux-HOWTO/Snort-Statistics-HOWTO.html
http://www.snort.org/docs/


219

Appendix D

Setting up a bridge firewall

This information was contributed by Francois Bayart in order to help users set up a Linux
bridge/firewall with the 2.4.x kernel and iptables . Kernel patches are no more needed as
the code was made standard part of the Linux kernel distribution.

To configure the kernel with necessary support, run make menuconfig or make xconfig .
In the section Networking options, enable the following options:

[*] Network packet filtering (replaces ipchains)
[ ] Network packet filtering debugging (NEW)
<*> 802.1d Ethernet Bridging
[*] netfilter (firewalling) support (NEW)

Caution: you must disable this if you want to apply some firewalling rules or else iptables
will not work:

[ ] Network packet filtering debugging (NEW)

Next, add the correct options in the section IP: Netfilter Configuration. Then, compile and install
the kernel. If you want to do it the Debian way, install kernel-package and run make-kpkg
to create a custom Debian kernel package you can install on your server using dpkg. Once the
new kernel is compiled and installed, install the bridge-utils package.

Once these steps are complete, you can complete the configuration of your bridge. The next
section presents two different possible configurations for the bridge, each with a hypothetical
network map and the necessary commands.

D.1 A bridge providing NAT and firewall capabilities

The first configuration uses the bridge as a firewall with network address translation (NAT)
that protects a server and internal LAN clients. A diagram of the network configuration is
shown below:



Chapter D. Setting up a bridge firewall 220

Internet ---- router ( 62.3.3.25 ) ---- bridge (62.3.3.26 gw 62.3.3.25 / 192.168.0.1)
|
|
|---- WWW Server (62.3.3.27 gw 62.3.3.25)
|
|

LAN --- Zipowz (192.168.0.2 gw 192.168.0.1)

The following commands show how this bridge can be configured.

# Create the interface br0
/usr/sbin/brctl addbr br0

# Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

# Start up the Ethernet interface
/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

# Configure the bridge ethernet
# The bridge will be correct and invisible ( transparent firewall ).
# It’s hidden in a traceroute and you keep your real gateway on the
# other computers. Now if you want you can config a gateway on your
# bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.31

# I have added this internal IP to create my NAT
ip addr add 192.168.0.1/24 dev br0
/sbin/route add default gw 62.3.3.25

D.2 A bridge providing firewall capabilities

A second possible configuration is a system that is set up as a transparent firewall for a LAN
with a public IP address space.

Internet ---- router (62.3.3.25) ---- bridge (62.3.3.26)
|
|
|---- WWW Server (62.3.3.28 gw 62.3.3.25)
|



Chapter D. Setting up a bridge firewall 221

|
|---- Mail Server (62.3.3.27 gw 62.3.3.25)

The following commands show how this bridge can be configured.

# Create the interface br0
/usr/sbin/brctl addbr br0

# Add the Ethernet interface to use with the bridge
/usr/sbin/brctl addif br0 eth0
/usr/sbin/brctl addif br0 eth1

# Start up the Ethernet interface
/sbin/ifconfig eth0 0.0.0.0
/sbin/ifconfig eth1 0.0.0.0

# Configure the bridge Ethernet
# The bridge will be correct and invisible ( transparent firewall ).
# It’s hidden in a traceroute and you keep your real gateway on the
# other computers. Now if you want you can config a gateway on your
# bridge and choose it as your new gateway for the other computers.

/sbin/ifconfig br0 62.3.3.26 netmask 255.255.255.248 broadcast 62.3.3.31

If you traceroute the Linux Mail Server, you won’t see the bridge. If you want access to the
bridge with ssh , you must have a gateway or you must first connect to another server, such as
the “Mail Server”, and then connect to the bridge through the internal network card.

D.3 Basic IPtables rules

This is an example of the basic rules that could be used for either of these setups.

iptables -F FORWARD
iptables -P FORWARD DROP
iptables -A FORWARD -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -m state --state INVALID -j DROP
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

# Some funny rules but not in a classic Iptables sorry ...
# Limit ICMP
# iptables -A FORWARD -p icmp -m limit --limit 4/s -j ACCEPT
# Match string, a good simple method to block some VIRUS very quickly
# iptables -I FORWARD -j DROP -p tcp -s 0.0.0.0/0 -m string --string "cmd.exe"



Chapter D. Setting up a bridge firewall 222

# Block all MySQL connection just to be sure
iptables -A FORWARD -p tcp -s 0/0 -d 62.3.3.0/24 --dport 3306 -j DROP

# Linux Mail Server Rules

# Allow FTP-DATA (20), FTP (21), SSH (22)
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.27/32 --dport 20:22 -j ACCEPT

# Allow the Mail Server to connect to the outside
# Note: This is *not* needed for the previous connections
# (remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.27/32 -d 0/0 -j ACCEPT

# WWW Server Rules

# Allow HTTP ( 80 ) connections with the WWW server
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 80 -j ACCEPT

# Allow HTTPS ( 443 ) connections with the WWW server
iptables -A FORWARD -p tcp -s 0.0.0.0/0 -d 62.3.3.28/32 --dport 443 -j ACCEPT

# Allow the WWW server to go out
# Note: This is *not* needed for the previous connections
# (remember: stateful filtering) and could be removed.
iptables -A FORWARD -p tcp -s 62.3.3.28/32 -d 0/0 -j ACCEPT



223

Appendix E

Sample script to change the default
Bind installation.

This script automates the procedure for changing the bind version 8 name server’s default
installation so that it does not run as the superuser. Notice that bind version 9 in Debian
already does this by default 1 , and you are much better using that version than bind version
8.

This script is here for historical purposes and to show how you can automate this kind of
changes system-wide. The script will create the user and groups defined for the name server
and will modify both /etc/default/bind and /etc/init.d/bind so that the program
will run with that user. Use with extreme care since it has not been tested thoroughly.

You can also create the users manually and use the patch available for the default init.d script
attached to bug report #157245 (http://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=157245 ).

#!/bin/sh
# Change the default Debian bind v8 configuration to have it run
# with a non-root user and group.
#
# DO NOT USER this with version 9, use debconf for configure this instead
#
# WARN: This script has not been tested thoroughly, please
# verify the changes made to the INITD script

# (c) 2002 Javier Fernández-Sanguino Peña
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 1, or (at your option)

1Since version 9.2.1-5. That is, since Debian release sarge.

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=157245
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=157245


Chapter E. Sample script to change the default Bind installation. 224

# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# Please see the file ‘COPYING’ for the complete copyright notice.
#

restore() {
# Just in case, restore the system if the changes fail

echo "WARN: Restoring to the previous setup since I’m unable to properly change it."
echo "WARN: Please check the $INITDERR script."
mv $INITD $INITDERR
cp $INITDBAK $INITD

}

USER=named
GROUP=named
INITD=/etc/init.d/bind
DEFAULT=/etc/default/bind
INITDBAK=$INITD.preuserchange
INITDERR=$INITD.changeerror
AWKS="awk ’ /\/usr\/sbin\/ndc reload/ { print \"stop; sleep 2; start;\"; noprint = 1; } /\\\\$/ { if ( noprint != 0 ) { noprint = noprint + 1;} } /^.*$/ { if ( noprint != 0 ) { noprint = noprint - 1; } else { print \$0; } } ’"

[ ‘id -u‘ -ne 0 ] && {
echo "This program must be run by the root user"
exit 1

}

RUNUSER=‘ps eo user,fname |grep named |cut -f 1 -d " "‘

if [ "$RUNUSER" = "$USER" ]
then

echo "WARN: The name server running daemon is already running as $USER"
echo "ERR: This script will not do any changes to your setup."
exit 1

fi
if [ ! -f "$INITD" ]
then

echo "ERR: This system does not have $INITD (which this script tries to change)"
RUNNING=‘ps eo fname |grep named‘
[ -z "$RUNNING" ] && \

echo "ERR: In fact the name server daemon is not even running (is it installed?)"



Chapter E. Sample script to change the default Bind installation. 225

echo "ERR: No changes will be made to your system"
exit 1

fi

# Check if there are options already setup
if [ -e "$DEFAULT" ]
then

if grep -q ^OPTIONS $DEFAULT; then
echo "ERR: The $DEFAULT file already has options set."
echo "ERR: No changes will be made to your system"

fi
fi

# Check if named group exists
if [ -z "‘grep $GROUP /etc/group‘" ]
then

echo "Creating group $GROUP:"
addgroup $GROUP

else
echo "WARN: Group $GROUP already exists. Will not create it"

fi
# Same for the user
if [ -z "‘grep $USER /etc/passwd‘" ]
then

echo "Creating user $USER:"
adduser --system --home /home/$USER \

--no-create-home --ingroup $GROUP \
--disabled-password --disabled-login $USER

else
echo "WARN: The user $USER already exists. Will not create it"

fi

# Change the init.d script

# First make a backup (check that there is not already
# one there first)
if [ ! -f $INITDBAK ]
then

cp $INITD $INITDBAK
fi

# Then use it to change it
cat $INITDBAK |
eval $AWKS > $INITD

# Now put the options in the /etc/default/bind file:



Chapter E. Sample script to change the default Bind installation. 226

cat >>$DEFAULT <<EOF
# Make bind run with the user we defined
OPTIONS="-u $USER -g $GROUP"
EOF

echo "WARN: The script $INITD has been changed, trying to test the changes."
echo "Restarting the named daemon (check for errors here)."

$INITD restart
if [ $? -ne 0 ]
then

echo "ERR: Failed to restart the daemon."
restore
exit 1

fi

RUNNING=‘ps eo fname |grep named‘
if [ -z "$RUNNING" ]
then

echo "ERR: Named is not running, probably due to a problem with the changes."
restore
exit 1

fi

# Check if it’s running as expected
RUNUSER=‘ps eo user,fname |grep named |cut -f 1 -d " "‘

if [ "$RUNUSER" = "$USER" ]
then

echo "All has gone well, named seems to be running now as $USER."
else

echo "ERR: The script failed to automatically change the system."
echo "ERR: Named is currently running as $RUNUSER."
restore
exit 1

fi

exit 0

The previous script, run on Woody’s (Debian 3.0) custom bind (version 8), will modify the
initd file after creating the ’named’ user and group and will



227

Appendix F

Security update protected by a firewall

After a standard installation, a system may still have some security vulnerabilities. Unless you
can download updates for the vulnerable packages on another system (or you have mirrored
security.debian.org for local use), the system will have to be connected to the Internet for the
downloads.

However, as soon as you connect to the Internet you are exposing this system. If one of
your local services is vulnerable, you might be compromised even before the update is fin-
ished! This may seem paranoid but, in fact, analysis from the Honeynet Project (http:
//www.honeynet.org ) has shown that systems can be compromised in less than three days,
even if the system is not publicly known (i.e., not published in DNS records).

When doing an update on a system not protected by an external system like a firewall, it is
possible to properly configure your local firewall to restrict connections involving only the
security update itself. The example below shows how to set up such local firewall capabilities,
which allow connections from security.debian.org only, logging all others.

The following example can be use to setup a restricted firewall ruleset. Run this commands
from a local console (not a remote one) to reduce the chances of locking yourself out of the
system.

# iptables -F
# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
# iptables -A OUTPUT -d security.debian.org --dport 80 -j ACCEPT
# iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

http://www.honeynet.org
http://www.honeynet.org


Chapter F. Security update protected by a firewall 228

# iptables -A INPUT -p icmp -j ACCEPT
# iptables -A INPUT -j LOG
# iptables -A OUTPUT -j LOG
# iptables -P INPUT DROP
# iptables -P FORWARD DROP
# iptables -P OUTPUT DROP
# iptables -L
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
LOG all -- anywhere anywhere LOG level warning

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT 80 -- anywhere security.debian.org
LOG all -- anywhere anywhere LOG level warning

Note: Using a DROP policy in the INPUT chain is the most correct thing to do, but be very care-
ful when doing this after flushing the chain from a remote connection. When testing firewall
rulesets from a remote location it is best if you run a script with the firewall ruleset (instead
of introducing the ruleset line by line through the command line) and, as a precaution, keep
a backdoor1 configured so that you can re-enable access to the system if you make a mistake.
That way there would be no need to go to a remote location to fix a firewall ruleset that blocks
you.

FIXME: This needs DNS to be working properly since it is required for security.debian.org to
work. You can add security.debian.org to /etc/hosts but now it is a CNAME to several hosts
(there is more than one security mirror)

FIXME: this will only work with HTTP URLs since ftp might need the ip_conntrack_ftp mod-
ule, or use passive mode.

1Such as knockd. Alternatively, you can open a different console and have the system ask for confirmation that
there is somebody on the other side, and reset the firewall chain if no confirmation is given. The following test
script could be of use:

#!/bin/bash while true; do read -n 1 -p "Are you there? " -t 30 ayt if [ -z "$ayt"
] ; then break fi done # Reset the firewall chain, user is not available echo echo
"Resetting firewall chain!" iptables -F iptables -P INPUT ACCEPT iptables -P FORWARD
ACCEPT iptables -P OUTPUT ACCEPT exit 1

Of course, you should disable any backdoors before getting the system into production.



229

Appendix G

Chroot environment for SSH

Creating a restricted environment for SSHis a tough job due to its dependencies and the fact
that, unlike other servers, SSHprovides a remote shell to users. Thus, you will also have to
consider the applications users will be allowed to use in the environment.

You have two options to setup a restricted remote shell:

• Chrooting the ssh users, by properly configuring the ssh daemon you can ask it to chroot
a user after authentication just before it is provided a shell. Each user can have their own
environment.

• Chrooting the ssh server, since you chroot the ssh application itself all users are chrooted
to the defined environment.

The first option has the advantage of making it possible to have both non-chrooted and ch-
rooted users, if you don’t introduce any setuid application in the user’s chroots it is more
difficult to break out of it. However, you might need to setup individual chroots for each user
and it is more difficult to setup (as it requires cooperation from the SSH server). The second
option is more easy to setup, and protects from an exploitation of the ssh server itself (since
it’s also in the chroot) but it will have the limitation that all users will share the same chroot
environment (you cannot setup a per-user chroot environment).

G.1 Chrooting the ssh users

You can setup the ssh server so that it will chroot a set of defined users into a shell with a
limited set of applications available.

G.1.1 Using libpam-chroot

Probably the easiest way is to use the libpam-chroot package provided in Debian. Once
you install it you need to:



Chapter G. Chroot environment for SSH 230

• Modify /etc/pam.d/ssh to use this PAM module, add as its last line1:

session required pam_chroot.so

• set a proper chroot environment for the user. You can try using the scripts available
at /usr/share/doc/libpam-chroot/examples/ , use the makejail 2 program or
setup a minimum Debian environment with debootstrap . Make sure the environment
includes the needed devices 3.

• Configure /etc/security/chroot.conf so that the users you determine are ch-
rooted to the directory you setup previously. You might want to have independent direc-
tories for different users so that they will not be able to see neither the whole system nor
each other’s.

• Configure SSH: Depending on your OpenSSH version the chroot environment might
work straight of the box or not. Since 3.6.1p2 the do_pam_session() function is called af-
ter sshd has dropped privileges, since chroot() needs root priviledges it will not work
with Privilege separation on. In newer OpenSSH versions, however, the PAM code
has been modified and do_pam_session is called before dropping priviledges so it will
work even with Privilege separation is on. If you have to disable it modify /etc/ssh
/sshd_config like this:

UsePrivilegeSeparation no

Notice that this will lower the security of your system since the OpenSSH server will then
run as root user. This means that if a remote attack is found against OpenSSH an attacker
will get root privileges instead of sshd, thus compromising the whole system. 4

If you don’t disable Privilege Separation you will need an /etc/passwd which includes the
user’s UID inside the chroot for Privilege Separation to work properly.

If you have Privilege Separation set to yes and your OpenSSH version does not behave properly
you will need to disable it. If you don’t, users that try to connect to your server and would be
chrooted by this module will see this:

1You can use the debug option to have it send the progress of the module to the authpriv.notice facility
2You can create a very limited bash environment with the following python definition for makejail, just create

the directory /var/chroots/users/foo and a file with the following contents and call it bash.py :

chroot="/var/chroots/user/foo" cleanJailFirst=1 testCommandsInsideJail=["bash ls"]

And then run makejail bash.py to create the user environment at /var/chroots/user/foo . To test the environ-
ment run:

# chroot /var/chroots/user/foo/ ls bin dev etc lib proc sbin usr

3In some occasions you might need the /dev/ptmx and /dev/pty* devices and the /dev/pts/ subdirectory.
Running MAKEDEV in the /dev directory of the chrooted environment should be sufficient to create them if they
do not exist. If you are using kernels (version 2.6) which dynamically create device files you will need to create the
/dev/pts/ files yourself and grant them the proper privileges.

4If you are using a kernel that implements Mandatory Access Control (RSBAC/SElinux) you can avoid chang-
ing this configuration just by granting the sshd user privileges to make the chroot() system call.



Chapter G. Chroot environment for SSH 231

$ ssh -l user server
user@server’s password:
Connection to server closed by remote host.
Connection to server closed.

This is because the ssh daemon, which is running as ’sshd’, is not be able to make the chroot()
system call. To disable Privilege separation you have to modify the /etc/ssh/sshd_config
configuration file as described above.

Notice that if any of the following is missing the users will not be able to logon to the chroot:

• The /proc filesystem needs to be mounted in the users’ chroot.

• The necessary /dev/pts/ devices need to exist. If the files are generated by your run-
ning kernel automatically then you have to manually create them on the chroot’s /dev
/ .

• The user’s home directory has to exist in the chroot, otherwise the ssh daemon will not
continue.

You can debug all these issues if you use the debug keyword in the /etc/pam.d/ssh PAM
definition. If you encounter issues you might find it useful to enable the debugging mode on
the ssh client too.

Note: This information is also available (and maybe more up to date) in /usr/share/doc
/libpam-chroot/README.Debian.gz , please review it for updated information before
taking the above steps.

G.1.2 Patching the ssh server

Debian’s sshd does not allow restriction of a user’s movement through the server, since it lacks
the chroot function that the commercial program sshd2 includes (using ’ChrootGroups’
or ’ChrootUsers’, see sshd2_config(5) ). However, there is a patch available to add this
functionality available from ChrootSSH project (http://chrootssh.sourceforge.net )
(requested and available in Bug #139047 (http://bugs.debian.org/139047 ) in Debian).
The patch may be included in future releases of the OpenSSH package. Emmanuel Lacour
has ssh deb packages for sarge with this feature. They are available at http://debian.
home-dn.net/sarge/ssh/ . Notice that those might not be up to date so completing the
compilation step is recommended.

After applying the patch, modify /etc/passwd by changing the home path of the users (with
the special /./ token):

joeuser:x:1099:1099:Joe Random User:/home/joe/./:/bin/bash

http://chrootssh.sourceforge.net
http://bugs.debian.org/139047
http://debian.home-dn.net/sarge/ssh/
http://debian.home-dn.net/sarge/ssh/


Chapter G. Chroot environment for SSH 232

This will restrict both remote shell access, as well as remote copy through the ssh channel.

Make sure to have all the needed binaries and libraries in the chroot ’ed path for users. These
files should be owned by root to avoid tampering by the user (so as to exit the chroot ’ed
jailed). A sample might include:

./bin:
total 660
drwxr-xr-x 2 root root 4096 Mar 18 13:36 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-r-xr-xr-x 1 root root 531160 Feb 6 22:36 bash
-r-xr-xr-x 1 root root 43916 Nov 29 13:19 ls
-r-xr-xr-x 1 root root 16684 Nov 29 13:19 mkdir
-rwxr-xr-x 1 root root 23960 Mar 18 13:36 more
-r-xr-xr-x 1 root root 9916 Jul 26 2001 pwd
-r-xr-xr-x 1 root root 24780 Nov 29 13:19 rm
lrwxrwxrwx 1 root root 4 Mar 30 16:29 sh -> bash

./etc:
total 24
drwxr-xr-x 2 root root 4096 Mar 15 16:13 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-rw-r--r-- 1 root root 54 Mar 15 13:23 group
-rw-r--r-- 1 root root 428 Mar 15 15:56 hosts
-rw-r--r-- 1 root root 44 Mar 15 15:53 passwd
-rw-r--r-- 1 root root 52 Mar 15 13:23 shells

./lib:
total 1848
drwxr-xr-x 2 root root 4096 Mar 18 13:37 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
-rwxr-xr-x 1 root root 92511 Mar 15 12:49 ld-linux.so.2
-rwxr-xr-x 1 root root 1170812 Mar 15 12:49 libc.so.6
-rw-r--r-- 1 root root 20900 Mar 15 13:01 libcrypt.so.1
-rw-r--r-- 1 root root 9436 Mar 15 12:49 libdl.so.2
-rw-r--r-- 1 root root 248132 Mar 15 12:48 libncurses.so.5
-rw-r--r-- 1 root root 71332 Mar 15 13:00 libnsl.so.1
-rw-r--r-- 1 root root 34144 Mar 15 16:10
libnss_files.so.2
-rw-r--r-- 1 root root 29420 Mar 15 12:57 libpam.so.0
-rw-r--r-- 1 root root 105498 Mar 15 12:51 libpthread.so.0
-rw-r--r-- 1 root root 25596 Mar 15 12:51 librt.so.1
-rw-r--r-- 1 root root 7760 Mar 15 12:59 libutil.so.1
-rw-r--r-- 1 root root 24328 Mar 15 12:57 libwrap.so.0

./usr:



Chapter G. Chroot environment for SSH 233

total 16
drwxr-xr-x 4 root root 4096 Mar 15 13:00 .
drwxr-xr-x 8 guest guest 4096 Mar 15 16:53 ..
drwxr-xr-x 2 root root 4096 Mar 15 15:55 bin
drwxr-xr-x 2 root root 4096 Mar 15 15:37 lib

./usr/bin:
total 340
drwxr-xr-x 2 root root 4096 Mar 15 15:55 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rwxr-xr-x 1 root root 10332 Mar 15 15:55 env
-rwxr-xr-x 1 root root 13052 Mar 15 13:13 id
-r-xr-xr-x 1 root root 25432 Mar 15 12:40 scp
-rwxr-xr-x 1 root root 43768 Mar 15 15:15 sftp
-r-sr-xr-x 1 root root 218456 Mar 15 12:40 ssh
-rwxr-xr-x 1 root root 9692 Mar 15 13:17 tty

./usr/lib:
total 852
drwxr-xr-x 2 root root 4096 Mar 15 15:37 .
drwxr-xr-x 4 root root 4096 Mar 15 13:00 ..
-rw-r--r-- 1 root root 771088 Mar 15 13:01
libcrypto.so.0.9.6
-rw-r--r-- 1 root root 54548 Mar 15 13:00 libz.so.1
-rwxr-xr-x 1 root root 23096 Mar 15 15:37 sftp-server

G.2 Chrooting the ssh server

If you create a chroot which includes the SSH server files in, for example /var/chroot/ssh ,
you would start the ssh server chroot ’ed with this command:

# chroot /var/chroot/ssh /sbin/sshd -f /etc/sshd_config

That would make startup the sshd daemon inside the chroot. In order to do that you have
to first prepare the contents of the /var/chroot/ssh directory so that it includes both the
SSH server and all the utilities that the users connecting to that server might need. If you
are doing this you should make certain that OpenSSH uses Privilege Separation (which is the
default) having the following line in the configuration file /etc/ssh/sshd_config :

UsePrivilegeSeparation yes

That way the remote daemon will do as few things as possible as the root user so even if there
is a bug in it it will not compromise the chroot. Notice that, unlike the case in which you setup



Chapter G. Chroot environment for SSH 234

a per-user chroot, the ssh daemon is running in the same chroot as the users so there is at least
one potential process running as root which could break out of the chroot.

Notice, also, that in order for SSH to work in that location, the partition where the chroot
directory resides cannot be mounted with the nodev option. If you use that option, then you
will get the following error: PRNG is not seeded, because /dev/urandom does not work in the
chroot.

G.2.1 Setup a minimal system (the really easy way)

You can use debootstrap to setup a minimal environment that just includes the ssh server.
In order to do this you just have to create a chroot as described in the chroot section of the
Debian Reference (http://www.debian.org/doc/manuals/reference/ch-tips.en.
html#s-chroot ) document. This method is bound to work (you will get all the necessary
componentes for the chroot) but at the cost of disk space (a minimal installation of Debian will
amount to several hundred megabytes). This minimal system might also include setuid files
that a user in the chroot could use to break out of the chroot if any of those could be use for a
privilege escalation.

G.2.2 Automatically making the environment (the easy way)

You can easily create a restricted environment with the makejail package, since it automat-
ically takes care of tracing the server daemon (with strace ), and makes it run under the
restricted environment.

The advantage of programs that automatically generate chroot environments is that they are
capable of copying any package to the chroot environment (even following the package’s
dependencies and making sure it’s complete). Thus, providing user applications is easier.

To set up the environment using makejail ’s provided examples, just create /var/chroot
/sshd and use the command:

# makejail /usr/share/doc/makejail/examples/sshd.py

This will setup the chroot in the /var/chroot/sshd directory. Notice that this chroot will
not fully work unless you:

• Mount the procfs filesystem in /var/chroot/sshd/proc . Makejail will mount it for
you but if the system reboots you need to remount it running:

# mount -t proc proc /var/chroot/sshd/proc

You can also have it be mounted automatically by editing /etc/fstab and including
this line:

http://www.debian.org/doc/manuals/reference/ch-tips.en.html#s-chroot
http://www.debian.org/doc/manuals/reference/ch-tips.en.html#s-chroot


Chapter G. Chroot environment for SSH 235

proc-ssh /var/chroot/sshd/proc proc none 0 0

• Have syslog listen to the device /dev/log inside the chroot. In order to do this you have
modify /etc/default/syslogd and add -a /var/chroot/sshd/dev/log to the SYSLOGD
variable definition.

Read the sample file to see what other changes need to be made to the environment. Some of
these changes, such as copying user’s home directories, cannot be done automatically. Also,
limit the exposure of sensitive information by only copying the data from a given number of
users from the files /etc/shadow or /etc/group . Notice that if you are using Privilege
Separation the sshd user needs to exist in those files.

The following sample environment has been (slightly) tested in Debian 3.0 and is built with
the configuration file provided in the package and includes the fileutils package:

.
|-- bin
| |-- ash
| |-- bash
| |-- chgrp
| |-- chmod
| |-- chown
| |-- cp
| |-- csh -> /etc/alternatives/csh
| |-- dd
| |-- df
| |-- dir
| |-- fdflush
| |-- ksh
| |-- ln
| |-- ls
| |-- mkdir
| |-- mknod
| |-- mv
| |-- rbash -> bash
| |-- rm
| |-- rmdir
| |-- sh -> bash
| |-- sync
| |-- tcsh
| |-- touch
| |-- vdir
| |-- zsh -> /etc/alternatives/zsh
| ‘-- zsh4
|-- dev
| |-- null



Chapter G. Chroot environment for SSH 236

| |-- ptmx
| |-- pts
| |-- ptya0
(...)
| |-- tty
| |-- tty0
(...)
| ‘-- urandom
|-- etc
| |-- alternatives
| | |-- csh -> /bin/tcsh
| | ‘-- zsh -> /bin/zsh4
| |-- environment
| |-- hosts
| |-- hosts.allow
| |-- hosts.deny
| |-- ld.so.conf
| |-- localtime -> /usr/share/zoneinfo/Europe/Madrid
| |-- motd
| |-- nsswitch.conf
| |-- pam.conf
| |-- pam.d
| | |-- other
| | ‘-- ssh
| |-- passwd
| |-- resolv.conf
| |-- security
| | |-- access.conf
| | |-- chroot.conf
| | |-- group.conf
| | |-- limits.conf
| | |-- pam_env.conf
| | ‘-- time.conf
| |-- shadow
| |-- shells
| ‘-- ssh
| |-- moduli
| |-- ssh_host_dsa_key
| |-- ssh_host_dsa_key.pub
| |-- ssh_host_rsa_key
| |-- ssh_host_rsa_key.pub
| ‘-- sshd_config
|-- home
| ‘-- userX
|-- lib
| |-- ld-2.2.5.so



Chapter G. Chroot environment for SSH 237

| |-- ld-linux.so.2 -> ld-2.2.5.so
| |-- libc-2.2.5.so
| |-- libc.so.6 -> libc-2.2.5.so
| |-- libcap.so.1 -> libcap.so.1.10
| |-- libcap.so.1.10
| |-- libcrypt-2.2.5.so
| |-- libcrypt.so.1 -> libcrypt-2.2.5.so
| |-- libdl-2.2.5.so
| |-- libdl.so.2 -> libdl-2.2.5.so
| |-- libm-2.2.5.so
| |-- libm.so.6 -> libm-2.2.5.so
| |-- libncurses.so.5 -> libncurses.so.5.2
| |-- libncurses.so.5.2
| |-- libnsl-2.2.5.so
| |-- libnsl.so.1 -> libnsl-2.2.5.so
| |-- libnss_compat-2.2.5.so
| |-- libnss_compat.so.2 -> libnss_compat-2.2.5.so
| |-- libnss_db-2.2.so
| |-- libnss_db.so.2 -> libnss_db-2.2.so
| |-- libnss_dns-2.2.5.so
| |-- libnss_dns.so.2 -> libnss_dns-2.2.5.so
| |-- libnss_files-2.2.5.so
| |-- libnss_files.so.2 -> libnss_files-2.2.5.so
| |-- libnss_hesiod-2.2.5.so
| |-- libnss_hesiod.so.2 -> libnss_hesiod-2.2.5.so
| |-- libnss_nis-2.2.5.so
| |-- libnss_nis.so.2 -> libnss_nis-2.2.5.so
| |-- libnss_nisplus-2.2.5.so
| |-- libnss_nisplus.so.2 -> libnss_nisplus-2.2.5.so
| |-- libpam.so.0 -> libpam.so.0.72
| |-- libpam.so.0.72
| |-- libpthread-0.9.so
| |-- libpthread.so.0 -> libpthread-0.9.so
| |-- libresolv-2.2.5.so
| |-- libresolv.so.2 -> libresolv-2.2.5.so
| |-- librt-2.2.5.so
| |-- librt.so.1 -> librt-2.2.5.so
| |-- libutil-2.2.5.so
| |-- libutil.so.1 -> libutil-2.2.5.so
| |-- libwrap.so.0 -> libwrap.so.0.7.6
| |-- libwrap.so.0.7.6
| ‘-- security
| |-- pam_access.so
| |-- pam_chroot.so
| |-- pam_deny.so
| |-- pam_env.so



Chapter G. Chroot environment for SSH 238

| |-- pam_filter.so
| |-- pam_ftp.so
| |-- pam_group.so
| |-- pam_issue.so
| |-- pam_lastlog.so
| |-- pam_limits.so
| |-- pam_listfile.so
| |-- pam_mail.so
| |-- pam_mkhomedir.so
| |-- pam_motd.so
| |-- pam_nologin.so
| |-- pam_permit.so
| |-- pam_rhosts_auth.so
| |-- pam_rootok.so
| |-- pam_securetty.so
| |-- pam_shells.so
| |-- pam_stress.so
| |-- pam_tally.so
| |-- pam_time.so
| |-- pam_unix.so
| |-- pam_unix_acct.so -> pam_unix.so
| |-- pam_unix_auth.so -> pam_unix.so
| |-- pam_unix_passwd.so -> pam_unix.so
| |-- pam_unix_session.so -> pam_unix.so
| |-- pam_userdb.so
| |-- pam_warn.so
| ‘-- pam_wheel.so
|-- sbin
| ‘-- start-stop-daemon
|-- usr
| |-- bin
| | |-- dircolors
| | |-- du
| | |-- install
| | |-- link
| | |-- mkfifo
| | |-- shred
| | |-- touch -> /bin/touch
| | ‘-- unlink
| |-- lib
| | |-- libcrypto.so.0.9.6
| | |-- libdb3.so.3 -> libdb3.so.3.0.2
| | |-- libdb3.so.3.0.2
| | |-- libz.so.1 -> libz.so.1.1.4
| | ‘-- libz.so.1.1.4
| |-- sbin



Chapter G. Chroot environment for SSH 239

| | ‘-- sshd
| ‘-- share
| |-- locale
| | ‘-- es
| | |-- LC_MESSAGES
| | | |-- fileutils.mo
| | | |-- libc.mo
| | | ‘-- sh-utils.mo
| | ‘-- LC_TIME -> LC_MESSAGES
| ‘-- zoneinfo
| ‘-- Europe
| ‘-- Madrid
‘-- var

‘-- run
|-- sshd
‘-- sshd.pid

27 directories, 733 files

For Debian release 3.1 you have to make sure that the environment includes also the common
files for PAM. The following files need to be copied over to the chroot if makejail did not do
it for you:

$ ls /etc/pam.d/common-*
/etc/pam.d/common-account /etc/pam.d/common-password
/etc/pam.d/common-auth /etc/pam.d/common-session

G.2.3 Manually creating the environment (the hard way)

It is possible to create an environment, using a trial-and-error method, by monitoring the sshd
server traces and log files in order to determine the necessary files. The following environment,
contributed by José Luis Ledesma, is a sample listing of files in a chroot environment for ssh
in Debian woody (3.0): 5

.:
total 36
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ./
drwxr-xr-x 11 root root 4096 Jun 3 13:43 ../
drwxr-xr-x 2 root root 4096 Jun 4 12:13 bin/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 dev/
drwxr-xr-x 4 root root 4096 Jun 4 12:35 etc/

5Notice that there are no SETUID files. This makes it more difficult for remote users to escape the chroot
environment. However, it also prevents users from changing their passwords, since the passwd program cannot
modify the files /etc/passwd or /etc/shadow .



Chapter G. Chroot environment for SSH 240

drwxr-xr-x 3 root root 4096 Jun 4 12:13 lib/
drwxr-xr-x 2 root root 4096 Jun 4 12:35 sbin/
drwxr-xr-x 2 root root 4096 Jun 4 12:32 tmp/
drwxr-xr-x 2 root root 4096 Jun 4 12:16 usr/
./bin:
total 8368
drwxr-xr-x 2 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rwxr-xr-x 1 root root 109855 Jun 3 13:45 a2p*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 bash*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 c2ph*
-rwxr-xr-x 1 root root 20629 Jun 3 13:45 dprofpp*
-rwxr-xr-x 1 root root 6956 Jun 3 13:46 env*
-rwxr-xr-x 1 root root 158116 Jun 3 13:45 fax2ps*
-rwxr-xr-x 1 root root 104008 Jun 3 13:45 faxalter*
-rwxr-xr-x 1 root root 89340 Jun 3 13:45 faxcover*
-rwxr-xr-x 1 root root 441584 Jun 3 13:45 faxmail*
-rwxr-xr-x 1 root root 96036 Jun 3 13:45 faxrm*
-rwxr-xr-x 1 root root 107000 Jun 3 13:45 faxstat*
-rwxr-xr-x 1 root root 77832 Jun 4 11:46 grep*
-rwxr-xr-x 1 root root 19597 Jun 3 13:45 h2ph*
-rwxr-xr-x 1 root root 46979 Jun 3 13:45 h2xs*
-rwxr-xr-x 1 root root 10420 Jun 3 13:46 id*
-rwxr-xr-x 1 root root 4528 Jun 3 13:46 ldd*
-rwxr-xr-x 1 root root 111386 Jun 4 11:46 less*
-r-xr-xr-x 1 root root 26168 Jun 3 13:45 login*
-rwxr-xr-x 1 root root 49164 Jun 3 13:45 ls*
-rwxr-xr-x 1 root root 11600 Jun 3 13:45 mkdir*
-rwxr-xr-x 1 root root 24780 Jun 3 13:45 more*
-rwxr-xr-x 1 root root 154980 Jun 3 13:45 pal2rgb*
-rwxr-xr-x 1 root root 27920 Jun 3 13:46 passwd*
-rwxr-xr-x 1 root root 4241 Jun 3 13:45 pl2pm*
-rwxr-xr-x 1 root root 2350 Jun 3 13:45 pod2html*
-rwxr-xr-x 1 root root 7875 Jun 3 13:45 pod2latex*
-rwxr-xr-x 1 root root 17587 Jun 3 13:45 pod2man*
-rwxr-xr-x 1 root root 6877 Jun 3 13:45 pod2text*
-rwxr-xr-x 1 root root 3300 Jun 3 13:45 pod2usage*
-rwxr-xr-x 1 root root 3341 Jun 3 13:45 podchecker*
-rwxr-xr-x 1 root root 2483 Jun 3 13:45 podselect*
-r-xr-xr-x 1 root root 82412 Jun 4 11:46 ps*
-rwxr-xr-x 1 root root 36365 Jun 3 13:45 pstruct*
-rwxr-xr-x 1 root root 7120 Jun 3 13:45 pwd*
-rwxr-xr-x 1 root root 179884 Jun 3 13:45 rgb2ycbcr*
-rwxr-xr-x 1 root root 20532 Jun 3 13:45 rm*
-rwxr-xr-x 1 root root 6720 Jun 4 10:15 rmdir*
-rwxr-xr-x 1 root root 14705 Jun 3 13:45 s2p*



Chapter G. Chroot environment for SSH 241

-rwxr-xr-x 1 root root 28764 Jun 3 13:46 scp*
-rwxr-xr-x 1 root root 385000 Jun 3 13:45 sendfax*
-rwxr-xr-x 1 root root 67548 Jun 3 13:45 sendpage*
-rwxr-xr-x 1 root root 88632 Jun 3 13:46 sftp*
-rwxr-xr-x 1 root root 387764 Jun 3 13:45 sh*
-rws--x--x 1 root root 744500 Jun 3 13:46 slogin*
-rwxr-xr-x 1 root root 14523 Jun 3 13:46 splain*
-rws--x--x 1 root root 744500 Jun 3 13:46 ssh*
-rwxr-xr-x 1 root root 570960 Jun 3 13:46 ssh-add*
-rwxr-xr-x 1 root root 502952 Jun 3 13:46 ssh-agent*
-rwxr-xr-x 1 root root 575740 Jun 3 13:46 ssh-keygen*
-rwxr-xr-x 1 root root 383480 Jun 3 13:46 ssh-keyscan*
-rwxr-xr-x 1 root root 39 Jun 3 13:46 ssh_europa*
-rwxr-xr-x 1 root root 107252 Jun 4 10:14 strace*
-rwxr-xr-x 1 root root 8323 Jun 4 10:14 strace-graph*
-rwxr-xr-x 1 root root 158088 Jun 3 13:46 thumbnail*
-rwxr-xr-x 1 root root 6312 Jun 3 13:46 tty*
-rwxr-xr-x 1 root root 55904 Jun 4 11:46 useradd*
-rwxr-xr-x 1 root root 585656 Jun 4 11:47 vi*
-rwxr-xr-x 1 root root 6444 Jun 4 11:45 whoami*
./dev:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
crw-r--r-- 1 root root 1, 9 Jun 3 13:43 urandom
./etc:
total 208
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw------- 1 root root 0 Jun 4 11:46 .pwd.lock
-rw-r--r-- 1 root root 653 Jun 3 13:46 group
-rw-r--r-- 1 root root 242 Jun 4 11:33 host.conf
-rw-r--r-- 1 root root 857 Jun 4 12:04 hosts
-rw-r--r-- 1 root root 1050 Jun 4 11:29 ld.so.cache
-rw-r--r-- 1 root root 304 Jun 4 11:28 ld.so.conf
-rw-r--r-- 1 root root 235 Jun 4 11:27 ld.so.conf~
-rw-r--r-- 1 root root 88039 Jun 3 13:46 moduli
-rw-r--r-- 1 root root 1342 Jun 4 11:34 nsswitch.conf
drwxr-xr-x 2 root root 4096 Jun 4 12:02 pam.d/
-rw-r--r-- 1 root root 28 Jun 4 12:00 pam_smb.conf
-rw-r--r-- 1 root root 2520 Jun 4 11:57 passwd
-rw-r--r-- 1 root root 7228 Jun 3 13:48 profile
-rw-r--r-- 1 root root 1339 Jun 4 11:33 protocols
-rw-r--r-- 1 root root 274 Jun 4 11:44 resolv.conf
drwxr-xr-x 2 root root 4096 Jun 3 13:43 security/
-rw-r----- 1 root root 1178 Jun 4 11:51 shadow



Chapter G. Chroot environment for SSH 242

-rw------- 1 root root 80 Jun 4 11:45 shadow-
-rw-r----- 1 root root 1178 Jun 4 11:48 shadow.old
-rw-r--r-- 1 root root 161 Jun 3 13:46 shells
-rw-r--r-- 1 root root 1144 Jun 3 13:46 ssh_config
-rw------- 1 root root 668 Jun 3 13:46 ssh_host_dsa_key
-rw-r--r-- 1 root root 602 Jun 3 13:46 ssh_host_dsa_key.pub
-rw------- 1 root root 527 Jun 3 13:46 ssh_host_key
-rw-r--r-- 1 root root 331 Jun 3 13:46 ssh_host_key.pub
-rw------- 1 root root 883 Jun 3 13:46 ssh_host_rsa_key
-rw-r--r-- 1 root root 222 Jun 3 13:46 ssh_host_rsa_key.pub
-rw-r--r-- 1 root root 2471 Jun 4 12:15 sshd_config
./etc/pam.d:
total 24
drwxr-xr-x 2 root root 4096 Jun 4 12:02 ./
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
lrwxrwxrwx 1 root root 4 Jun 4 12:02 other -> sshd
-rw-r--r-- 1 root root 318 Jun 3 13:46 passwd
-rw-r--r-- 1 root root 546 Jun 4 11:36 ssh
-rw-r--r-- 1 root root 479 Jun 4 12:02 sshd
-rw-r--r-- 1 root root 370 Jun 3 13:46 su
./etc/security:
total 32
drwxr-xr-x 2 root root 4096 Jun 3 13:43 ./
drwxr-xr-x 4 root root 4096 Jun 4 12:35 ../
-rw-r--r-- 1 root root 1971 Jun 3 13:46 access.conf
-rw-r--r-- 1 root root 184 Jun 3 13:46 chroot.conf
-rw-r--r-- 1 root root 2145 Jun 3 13:46 group.conf
-rw-r--r-- 1 root root 1356 Jun 3 13:46 limits.conf
-rw-r--r-- 1 root root 2858 Jun 3 13:46 pam_env.conf
-rw-r--r-- 1 root root 2154 Jun 3 13:46 time.conf
./lib:
total 8316
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rw-r--r-- 1 root root 1024 Jun 4 11:51 cracklib_dict.hwm
-rw-r--r-- 1 root root 214324 Jun 4 11:51 cracklib_dict.pwd
-rw-r--r-- 1 root root 11360 Jun 4 11:51 cracklib_dict.pwi
-rwxr-xr-x 1 root root 342427 Jun 3 13:46 ld-linux.so.2*
-rwxr-xr-x 1 root root 4061504 Jun 3 13:46 libc.so.6*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so -> libcrack.so.2.7*
lrwxrwxrwx 1 root root 15 Jun 4 12:11 libcrack.so.2 -> libcrack.so.2.7*
-rwxr-xr-x 1 root root 33291 Jun 4 11:39 libcrack.so.2.7*
-rwxr-xr-x 1 root root 60988 Jun 3 13:46 libcrypt.so.1*
-rwxr-xr-x 1 root root 71846 Jun 3 13:46 libdl.so.2*
-rwxr-xr-x 1 root root 27762 Jun 3 13:46 libhistory.so.4.0*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.4 -> libncurses.so.4.2*



Chapter G. Chroot environment for SSH 243

-rwxr-xr-x 1 root root 503903 Jun 3 13:46 libncurses.so.4.2*
lrwxrwxrwx 1 root root 17 Jun 4 12:12 libncurses.so.5 -> libncurses.so.5.0*
-rwxr-xr-x 1 root root 549429 Jun 3 13:46 libncurses.so.5.0*
-rwxr-xr-x 1 root root 369801 Jun 3 13:46 libnsl.so.1*
-rwxr-xr-x 1 root root 142563 Jun 4 11:49 libnss_compat.so.1*
-rwxr-xr-x 1 root root 215569 Jun 4 11:49 libnss_compat.so.2*
-rwxr-xr-x 1 root root 61648 Jun 4 11:34 libnss_dns.so.1*
-rwxr-xr-x 1 root root 63453 Jun 4 11:34 libnss_dns.so.2*
-rwxr-xr-x 1 root root 63782 Jun 4 11:34 libnss_dns6.so.2*
-rwxr-xr-x 1 root root 205715 Jun 3 13:46 libnss_files.so.1*
-rwxr-xr-x 1 root root 235932 Jun 3 13:49 libnss_files.so.2*
-rwxr-xr-x 1 root root 204383 Jun 4 11:33 libnss_nis.so.1*
-rwxr-xr-x 1 root root 254023 Jun 4 11:33 libnss_nis.so.2*
-rwxr-xr-x 1 root root 256465 Jun 4 11:33 libnss_nisplus.so.2*
lrwxrwxrwx 1 root root 14 Jun 4 12:12 libpam.so.0 -> libpam.so.0.72*
-rwxr-xr-x 1 root root 31449 Jun 3 13:46 libpam.so.0.72*
lrwxrwxrwx 1 root root 19 Jun 4 12:12 libpam_misc.so.0 ->
libpam_misc.so.0.72*
-rwxr-xr-x 1 root root 8125 Jun 3 13:46 libpam_misc.so.0.72*
lrwxrwxrwx 1 root root 15 Jun 4 12:12 libpamc.so.0 -> libpamc.so.0.72*
-rwxr-xr-x 1 root root 10499 Jun 3 13:46 libpamc.so.0.72*
-rwxr-xr-x 1 root root 176427 Jun 3 13:46 libreadline.so.4.0*
-rwxr-xr-x 1 root root 44729 Jun 3 13:46 libutil.so.1*
-rwxr-xr-x 1 root root 70254 Jun 3 13:46 libz.a*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so -> libz.so.1.1.3*
lrwxrwxrwx 1 root root 13 Jun 4 12:13 libz.so.1 -> libz.so.1.1.3*
-rwxr-xr-x 1 root root 63312 Jun 3 13:46 libz.so.1.1.3*
drwxr-xr-x 2 root root 4096 Jun 4 12:00 security/
./lib/security:
total 668
drwxr-xr-x 2 root root 4096 Jun 4 12:00 ./
drwxr-xr-x 3 root root 4096 Jun 4 12:13 ../
-rwxr-xr-x 1 root root 10067 Jun 3 13:46 pam_access.so*
-rwxr-xr-x 1 root root 8300 Jun 3 13:46 pam_chroot.so*
-rwxr-xr-x 1 root root 14397 Jun 3 13:46 pam_cracklib.so*
-rwxr-xr-x 1 root root 5082 Jun 3 13:46 pam_deny.so*
-rwxr-xr-x 1 root root 13153 Jun 3 13:46 pam_env.so*
-rwxr-xr-x 1 root root 13371 Jun 3 13:46 pam_filter.so*
-rwxr-xr-x 1 root root 7957 Jun 3 13:46 pam_ftp.so*
-rwxr-xr-x 1 root root 12771 Jun 3 13:46 pam_group.so*
-rwxr-xr-x 1 root root 10174 Jun 3 13:46 pam_issue.so*
-rwxr-xr-x 1 root root 9774 Jun 3 13:46 pam_lastlog.so*
-rwxr-xr-x 1 root root 13591 Jun 3 13:46 pam_limits.so*
-rwxr-xr-x 1 root root 11268 Jun 3 13:46 pam_listfile.so*
-rwxr-xr-x 1 root root 11182 Jun 3 13:46 pam_mail.so*
-rwxr-xr-x 1 root root 5923 Jun 3 13:46 pam_nologin.so*



Chapter G. Chroot environment for SSH 244

-rwxr-xr-x 1 root root 5460 Jun 3 13:46 pam_permit.so*
-rwxr-xr-x 1 root root 18226 Jun 3 13:46 pam_pwcheck.so*
-rwxr-xr-x 1 root root 12590 Jun 3 13:46 pam_rhosts_auth.so*
-rwxr-xr-x 1 root root 5551 Jun 3 13:46 pam_rootok.so*
-rwxr-xr-x 1 root root 7239 Jun 3 13:46 pam_securetty.so*
-rwxr-xr-x 1 root root 6551 Jun 3 13:46 pam_shells.so*
-rwxr-xr-x 1 root root 55925 Jun 4 12:00 pam_smb_auth.so*
-rwxr-xr-x 1 root root 12678 Jun 3 13:46 pam_stress.so*
-rwxr-xr-x 1 root root 11170 Jun 3 13:46 pam_tally.so*
-rwxr-xr-x 1 root root 11124 Jun 3 13:46 pam_time.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix.so*
-rwxr-xr-x 1 root root 45703 Jun 3 13:46 pam_unix2.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_acct.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_auth.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_passwd.so*
-rwxr-xr-x 1 root root 45386 Jun 3 13:46 pam_unix_session.so*
-rwxr-xr-x 1 root root 9726 Jun 3 13:46 pam_userdb.so*
-rwxr-xr-x 1 root root 6424 Jun 3 13:46 pam_warn.so*
-rwxr-xr-x 1 root root 7460 Jun 3 13:46 pam_wheel.so*
./sbin:
total 3132
drwxr-xr-x 2 root root 4096 Jun 4 12:35 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
-rwxr-xr-x 1 root root 178256 Jun 3 13:46 choptest*
-rwxr-xr-x 1 root root 184032 Jun 3 13:46 cqtest*
-rwxr-xr-x 1 root root 81096 Jun 3 13:46 dialtest*
-rwxr-xr-x 1 root root 1142128 Jun 4 11:28 ldconfig*
-rwxr-xr-x 1 root root 2868 Jun 3 13:46 lockname*
-rwxr-xr-x 1 root root 3340 Jun 3 13:46 ondelay*
-rwxr-xr-x 1 root root 376796 Jun 3 13:46 pagesend*
-rwxr-xr-x 1 root root 13950 Jun 3 13:46 probemodem*
-rwxr-xr-x 1 root root 9234 Jun 3 13:46 recvstats*
-rwxr-xr-x 1 root root 64480 Jun 3 13:46 sftp-server*
-rwxr-xr-x 1 root root 744412 Jun 3 13:46 sshd*
-rwxr-xr-x 1 root root 30750 Jun 4 11:46 su*
-rwxr-xr-x 1 root root 194632 Jun 3 13:46 tagtest*
-rwxr-xr-x 1 root root 69892 Jun 3 13:46 tsitest*
-rwxr-xr-x 1 root root 43792 Jun 3 13:46 typetest*
./tmp:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:32 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../
./usr:
total 8
drwxr-xr-x 2 root root 4096 Jun 4 12:16 ./
drwxr-xr-x 9 root root 4096 Jun 5 10:05 ../



Chapter G. Chroot environment for SSH 245

lrwxrwxrwx 1 root root 7 Jun 4 12:14 bin -> ../bin//
lrwxrwxrwx 1 root root 7 Jun 4 11:33 lib -> ../lib//
lrwxrwxrwx 1 root root 8 Jun 4 12:13 sbin -> ../sbin//



Chapter G. Chroot environment for SSH 246



247

Appendix H

Chroot environment for Apache

H.1 Introduction

The chroot utility is often used to jail a daemon in a restricted tree. You can use it to insulate
services from one another, so that security issues in a software package do not jeopardize the
whole server. When using the makejail script, setting up and updating the chrooted tree is
much easier.

FIXME: Apache can also be chrooted using http://www.modsecurity.org which is avail-
able in libapache-mod-security (for Apache 1.x) and libapache2-mod-security (for
Apache 2.x).

H.1.1 Licensing

This document is copyright 2002 Alexandre Ratti. It has been dual-licensed and released under
the GPL version 2 (GNU General Public License) the GNU-FDL 1.2 (GNU Free Documentation
Licence) and is included in this manual with his explicit permission. (from the original docu-
ment (http://www.gabuzomeu.net/alex/doc/apache/index-en.html ))

H.2 Installing the server

This procedure was tested on Debian GNU/Linux 3.0 (Woody) with makejail 0.0.4-1 (in
Debian/testing).

• Log in as root and create a new jail directory:

$ mkdir -p /var/chroot/apache

• Create a new user and a new group. The chrooted Apache server will run as this
user/group, which isn’t used for anything else on the system. In this example, both
user and group are called chrapach .

http://www.modsecurity.org
http://www.gabuzomeu.net/alex/doc/apache/index-en.html


Chapter H. Chroot environment for Apache 248

$ adduser --home /var/chroot/apache --shell /bin/false \
--no-create-home --system --group chrapach

FIXME: is a new user needed? (Apache already runs as the apache user)

• Install Apache as usual on Debian: apt-get install apache

• Set up Apache (e.g. define your subdomains, etc.). In the /etc/apache/httpd.conf
configuration file, set the Group and User options to chrapach . Restart Apache and
make sure the server is working correctly. Now, stop the Apache daemon.

• Install makejail (available in Debian/testing for now). You should also install wget
and lynx as they will be used by makejail to test the chrooted server: apt-get
install makejail wget lynx

• Copy the sample configuration file for Apache to the /etc/makejail directory:

# cp /usr/share/doc/makejail/examples/apache.py /etc/makejail/

• Edit /etc/makejail/apache.py . You need to change the chroot, users and groups op-
tions. To run this version of makejail , you can also add a packages option. See the
makejail documentation (http://www.floc.net/makejail/current/doc/ ). A
sample is shown here:

chroot="/var/chroot/apache"
testCommandsInsideJail=["/usr/sbin/apachectl start"]
processNames=["apache"]
testCommandsOutsideJail=["wget -r --spider http://localhost/",

"lynx --source https://localhost/"]
preserve=["/var/www",

"/var/log/apache",
"/dev/log"]

users=["chrapach"]
groups=["chrapach"]
packages=["apache", "apache-common"]
userFiles=["/etc/password",

"/etc/shadow"]
groupFiles=["/etc/group",

"/etc/gshadow"]
forceCopy=["/etc/hosts",

"/etc/mime.types"]

FIXME: some options do not seem to work properly. For instance, /etc/shadow and
/etc/gshadow are not copied, whereas /etc/password and /etc/group are fully
copied instead of being filtered.

http://www.floc.net/makejail/current/doc/


Chapter H. Chroot environment for Apache 249

• Create the chroot tree: makejail /etc/makejail/apache.py

• If /etc/password and /etc/group were fully copied, type:

$ grep chrapach /etc/passwd > /var/chroot/apache/etc/passwd
$ grep chrapach /etc/group > /var/chroot/apache/etc/group

to replace them with filtered copies.

• Copy the Web site pages and the logs into the jail. These files are not copied automatically
(see the preserve option in makejail ’s configuration file).

# cp -Rp /var/www /var/chroot/apache/var
# cp -Rp /var/log/apache/*.log /var/chroot/apache/var/log/apache

• Edit the startup script for the system logging daemon so that it also listen to
the /var/chroot/apache/dev/log socket. In /etc/default/syslogd , replace:
SYSLOGD=""with SYSLOGD=" -a /var/chroot/apache/dev/log" and restart the
daemon (/etc/init.d/sysklogd restart ).

• Edit the Apache startup script (/etc/init.d/apache ). You might need to make some
changes to the default startup script for it to run properly with a chrooted tree. Such as:

– set a new CHRDIR variable at the top of the file;

– edit the start, stop, reload, etc. sections;

– add a line to mount and unmount the /proc filesystem within the jail.

#! /bin/bash
#
# apache Start the apache HTTP server.
#

CHRDIR=/var/chroot/apache

NAME=apache
PATH=/bin:/usr/bin:/sbin:/usr/sbin
DAEMON=/usr/sbin/apache
SUEXEC=/usr/lib/apache/suexec
PIDFILE=/var/run/$NAME.pid
CONF=/etc/apache/httpd.conf
APACHECTL=/usr/sbin/apachectl

trap "" 1
export LANG=C
export PATH



Chapter H. Chroot environment for Apache 250

test -f $DAEMON || exit 0
test -f $APACHECTL || exit 0

# ensure we don’t leak environment vars into apachectl
APACHECTL="env -i LANG=${LANG} PATH=${PATH} chroot $CHRDIR $APACHECTL"

if egrep -q -i "^[[:space:]]*ServerType[[:space:]]+inet" $CONF
then

exit 0
fi

case "$1" in
start)

echo -n "Starting web server: $NAME"
mount -t proc proc /var/chroot/apache/proc
start-stop-daemon --start --pidfile $PIDFILE --exec $DAEMON \

--chroot $CHRDIR
;;

stop)
echo -n "Stopping web server: $NAME"
start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" --oknodo
umount /var/chroot/apache/proc
;;

reload)
echo -n "Reloading $NAME configuration"
start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" \

--signal USR1 --startas $DAEMON --chroot $CHRDIR
;;

reload-modules)
echo -n "Reloading $NAME modules"
start-stop-daemon --stop --pidfile "$CHRDIR/$PIDFILE" --oknodo \

--retry 30
start-stop-daemon --start --pidfile $PIDFILE \

--exec $DAEMON --chroot $CHRDIR
;;

restart)
$0 reload-modules
exit $?
;;

force-reload)
$0 reload-modules



Chapter H. Chroot environment for Apache 251

exit $?
;;

*)
echo "Usage: /etc/init.d/$NAME {start|stop|reload|reload-modules|force-reload|restart}"
exit 1
;;

esac

if [ $? == 0 ]; then
echo .
exit 0

else
echo failed
exit 1

fi

FIXME: should the first Apache process be run as another user than root (i.e. add –
chuid chrapach:chrapach)? Cons: chrapach will need write access to the logs, which is
awkward.

• Replace in /etc/logrotate.d/apache /var/log/apache/*.log with
/var/chroot/apache/var/log/apache/*.log

• Start Apache (/etc/init.d/apache start ) and check what is it reported in the jail
log (/var/chroot/apache/var/log/apache/error.log ). If your setup is more
complex, (e.g. if you also use PHP and MySQL), files will probably be missing. if some
files are not copied automatically by makejail , you can list them in the forceCopy (to
copy files directly) or packages (to copy full packages and their dependencies) option the
/etc/makejail/apache.py configuration file.

• Type ps aux | grep apache to make sure Apache is running. You should see some-
thing like:

root 180 0.0 1.1 2936 1436 ? S 04:03 0:00 /usr/sbin/apache
chrapach 189 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
chrapach 190 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
chrapach 191 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
chrapach 192 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache
chrapach 193 0.0 1.1 2960 1456 ? S 04:03 0:00 /usr/sbin/apache

• Make sure the Apache processes are running chrooted by looking in the /proc filesys-
tem: ls -la /proc/ process_number /root/. where process_number is one of the
PID numbers listed above (2nd column; 189 for instance). The entries for a restricted tree
should be listed:



Chapter H. Chroot environment for Apache 252

drwxr-sr-x 10 root staff 240 Dec 2 16:06 .
drwxrwsr-x 4 root staff 72 Dec 2 08:07 ..
drwxr-xr-x 2 root root 144 Dec 2 16:05 bin
drwxr-xr-x 2 root root 120 Dec 3 04:03 dev
drwxr-xr-x 5 root root 408 Dec 3 04:03 etc
drwxr-xr-x 2 root root 800 Dec 2 16:06 lib
dr-xr-xr-x 43 root root 0 Dec 3 05:03 proc
drwxr-xr-x 2 root root 48 Dec 2 16:06 sbin
drwxr-xr-x 6 root root 144 Dec 2 16:04 usr
drwxr-xr-x 7 root root 168 Dec 2 16:06 var

To automate this test, you can type:ls -la /proc/‘cat
/var/chroot/apache/var/run/apache.pid‘/root/.

FIXME: Add other tests that can be run to make sure the jail is closed?

The reason I like this is because setting up the jail is not very difficult and the server can be
updated in just two lines:

apt-get update && apt-get install apache
makejail /etc/makejail/apache.py

H.3 See also

If you are looking for more information you can consider these sources of information in which
the information presented is based:

• makejail homepage (http://www.floc.net/makejail/ ), this program was written
by Alain Tesio

http://www.floc.net/makejail/

	Introduction
	Authors
	Where to get the manual (and available formats)
	Organizational notes/feedback
	Prior knowledge
	Things that need to be written (FIXME/TODO)
	Changelog/History
	Version 3.13 (November 2007)
	Version 3.12 (August 2007)
	Version 3.11 (January 2007)
	Version 3.10 (November 2006)
	Version 3.9 (October 2006)
	Version 3.8 (July 2006)
	Version 3.7 (April 2006)
	Version 3.6 (March 2006)
	Version 3.5 (November 2005)
	Version 3.4 (August-September 2005)
	Version 3.3 (June 2005)
	Version 3.2 (March 2005)
	Version 3.1 (January 2005)
	Version 3.0 (December 2004)
	Version 2.99 (March 2004)
	Version 2.98 (December 2003)
	Version 2.97 (September 2003)
	Version 2.96 (August 2003)
	Version 2.95 (June 2003)
	Version 2.94 (April 2003)
	Version 2.93 (March 2003)
	Version 2.92 (February 2003)
	Version 2.91 (January/February 2003)
	Version 2.9 (December 2002)
	Version 2.8 (November 2002)
	Version 2.7 (October 2002)
	Version 2.6 (September 2002)
	Version 2.5 (September 2002)
	Version 2.5 (August 2002)
	Version 2.4
	Version 2.3
	Version 2.3
	Version 2.2
	Version 2.1
	Version 2.0
	Version 1.99
	Version 1.98
	Version 1.97
	Version 1.96
	Version 1.95
	Version 1.94
	Version 1.93
	Version 1.92
	Version 1.91
	Version 1.9
	Version 1.8
	Version 1.7
	Version 1.6
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0

	Credits and thanks!

	Before you begin
	What do you want this system for?
	Be aware of general security problems
	How does Debian handle security?

	Before and during the installation
	Choose a BIOS password
	Partitioning the system
	Choose an intelligent partition scheme

	Do not plug to the Internet until ready
	Set a root password
	Activate shadow passwords and MD5 passwords
	Run the minimum number of services required
	Disabling daemon services
	Disabling inetd or its services

	Install the minimum amount of software required
	Removing Perl

	Read the Debian security mailing lists

	After installation
	Subscribe to the Debian Security Announce mailing list
	Execute a security update
	Security update of libraries
	Security update of the kernel

	Change the BIOS (again)
	Set a LILO or GRUB password
	Disable root prompt on the initramfs
	Remove root prompt on the kernel
	Restricting console login access
	Restricting system reboots through the console
	Mounting partitions the right way
	Setting =1sp /tmp noexec
	Setting /usr read-only

	Providing secure user access
	User authentication: PAM
	Limiting resource usage: the =1splimits.conf file
	User login actions: edit =1sp /etc /login.defs
	Restricting ftp: editing =1sp /etc /ftpusers
	Using su
	Using sudo
	Disallow remote administrative access
	Restricting users's access
	User auditing
	Reviewing user profiles
	Setting users umasks
	Limiting what users can see/access
	Generating user passwords
	Checking user passwords
	Logging off idle users

	Using tcpwrappers
	The importance of logs and alerts
	Using and customizing logcheck
	Configuring where alerts are sent
	Using a loghost
	Log file permissions

	Adding kernel patches
	Protecting against buffer overflows
	Kernel patch protection for buffer overflows
	Testing programs for overflows

	Secure file transfers
	File system limits and control
	Using quotas
	The ext2 filesystem specific attributes (chattr/lsattr)
	Checking file system integrity
	Setting up setuid check

	Securing network access
	Configuring kernel network features
	Configuring syncookies
	Securing the network on boot-time
	Configuring firewall features
	Disabling weak-end hosts issues
	Protecting against ARP attacks

	Taking a snapshot of the system
	Other recommendations
	Do not use software depending on svgalib


	Securing services running on your system
	Securing ssh
	Chrooting ssh
	Ssh clients
	Disallowing file transfers
	Restricing access to file transfer only

	Securing Squid
	Securing FTP
	Securing access to the X Window System
	Check your display manager

	Securing printing access (the lpd and lprng issue)
	Securing the mail service
	Configuring a Nullmailer
	Providing secure access to mailboxes
	Receiving mail securely

	Securing BIND
	Bind configuration to avoid misuse
	Changing BIND's user
	Chrooting the name server

	Securing Apache
	Disabling users from publishing web contents
	Logfiles permissions
	Published web files

	Securing finger
	General chroot and suid paranoia
	Making chrooted environments automatically

	General cleartext password paranoia
	Disabling NIS
	Securing RPC services
	Disabling RPC services completely
	Limiting access to RPC services

	Adding firewall capabilities
	Firewalling the local system
	Using a firewall to protect other systems
	Setting up a firewall


	Automatic hardening of Debian systems
	Harden
	Bastille Linux

	Debian Security Infrastructure
	The Debian Security Team
	Debian Security Advisories
	Vulnerability cross references
	CVE compatibility

	Debian Security Build Infrastructure
	Developer's guide to security updates

	Package signing in Debian
	The current scheme for package signature checks
	Secure apt
	Per distribution release check
	Release check of non Debian sources
	Alternative per-package signing scheme


	Security tools in Debian
	Remote vulnerability assessment tools
	Network scanner tools
	Internal audits
	Auditing source code
	Virtual Private Networks
	Point to Point tunneling

	Public Key Infrastructure (PKI)
	SSL Infrastructure
	Antivirus tools
	GPG agent

	Developer's Best Practices for OS Security
	Best practices for security review and design
	Creating users and groups for software daemons

	Before the compromise
	Keep your system secure
	Tracking security vulnerabilities
	Continuously update the system
	Avoid using the unstable branch
	Security support for the testing branch
	Automatic updates in a Debian GNU/Linux system

	Do periodic integrity checks
	Set up Intrusion Detection
	Network based intrusion detection
	Host based intrusion detection

	Avoiding root-kits
	Loadable Kernel Modules (LKM)
	Detecting root-kits

	Genius/Paranoia Ideas — what you could do
	Building a honeypot


	After the compromise (incident response)
	General behavior
	Backing up the system
	Contact your local CERT
	Forensic analysis
	Analysis of malware


	Frequently asked Questions (FAQ)
	Security in the Debian operating system
	Is Debian more secure than X?
	There are many Debian bugs in Bugtraq. Does this mean that it is very vulnerable?
	Does Debian have any certification related to security?
	Are there any hardening programs for Debian?
	I want to run XYZ service, which one should I choose?
	How can I make service XYZ more secure in Debian?
	How can I remove all the banners for services?
	Are all Debian packages safe?
	Why are some log files/configuration files world-readable, isn't this insecure?
	Why does /root/ (or UserX) have 755 permissions?
	After installing a grsec/firewall, I started receiving many console messages! How do I remove them?
	Operating system users and groups
	Why is there a new group when I add a new user? (or Why does Debian give each user one group?)
	Questions regarding services and open ports
	Common security issues
	How do I accomplish setting up a service for my users without giving out shell accounts?

	My system is vulnerable! (Are you sure?)
	Vulnerability assessment scanner X says my Debian system is vulnerable!
	I've seen an attack in my system's logs. Is my system compromised?
	I have found strange 'MARK' lines in my logs: Am I compromised?
	I found users using 'su' in my logs: Am I compromised?
	I have found 'possible SYN flooding' in my logs: Am I under attack?
	I have found strange root sessions in my logs: Am I compromised?
	I have suffered a break-in, what do I do?
	How can I trace an attack?
	Program X in Debian is vulnerable, what do I do?
	The version number for a package indicates that I am still running a vulnerable version!
	Specific software

	Questions regarding the Debian security team
	What is a Debian Security Advisory (DSA)?
	The signature on Debian advisories does not verify correctly!
	How is security handled in Debian?
	Why are you fiddling with an old version of that package?
	What is the policy for a fixed package to appear in security.debian.org?
	What does ``local (remote)'' mean?
	The version number for a package indicates that I am still running a vulnerable version!
	How is security handled for testing and unstable?
	I use an older version of Debian, is it supported by the Debian Security Team?
	How does testing get security updates?
	How is security handled for contrib and non-free?
	Why are there no official mirrors for security.debian.org?
	I've seen DSA 100 and DSA 102, now where is DSA 101?
	I tried to download a package listed in one of the security advisories, but I got a `file not found' error.
	How can I reach the security team?
	What difference is there between security@debian.org and debian-security@lists.debian.org?
	I guess I found a security problem, what should I do?
	How can I contribute to the Debian security team?
	Who is the Security Team composed of?
	Does the Debian Security team check every new package in Debian?
	How much time will it take Debian to fix vulnerability XXXX?
	How long will security updates be provided?
	How can I check the integrity of packages?
	What to do if a random package breaks after a security update?


	The hardening process step by step
	Configuration checklist
	Setting up a stand-alone IDS
	Setting up a bridge firewall
	A bridge providing NAT and firewall capabilities
	A bridge providing firewall capabilities
	Basic IPtables rules

	Sample script to change the default Bind installation.
	Security update protected by a firewall
	Chroot environment for SSH
	Chrooting the ssh users
	Using libpam-chroot
	Patching the ssh server

	Chrooting the ssh server
	Setup a minimal system (the really easy way)
	Automatically making the environment (the easy way)
	Manually creating the environment (the hard way)


	Chroot environment for Apache
	Introduction
	Licensing

	Installing the server
	See also


