deegree’

Designing a generic and efficient

Feature and Object Model

| +
latllon
+

e Markus Schneider
¥ schneider@lat-lon.de
http://www.lat-lon.de/

Clarification: Feature and Object Model

« Set of Java-classes and techniques that enable deegree to
represent and persist geometric data objects

« Common types of geometric data objects

- GML Features

* Not all features adhere to an object/property structure
- Catalogue datasets

 Dublincore
e« |ISO 19115/19119
« EB-RIM

- Maybe others... suggestions?

 Usually defined by XML Schema documents

Example: GML feature object

<app:City gml:id="CITY_1">
<app:name>Bonn</app:name>
<app:center>
<gml:Point srsName="EPSG:4326">...</gml:Point>>
</app:center>
<app:inCountry>
<app:Country gml:id="COUNTRY_1">
<app:name>Germany</app:name>
<app:geom>
<gml:MultiSurface srsName="EPSG:4326">...</gml:MultiSurface>
</app:geom>
</app:Country>
</app:inCountry>

</app:City>

Primary functional requirements

1. XML-Marshalling/Unmarshalling
2.In memory-representation/processing

Query (in-memory) object collections using Filter
expressions (e.q. visualization of features in WMS)

3. Persistence

Store objects in (relational) database
Query stored objects using Filter expressions

<?xml..
<FeatureCollection...
<featureMember>

<Country...
<
e Java-Objects
</featureMember>

</FeatureCollection/>

DB

deegree 2 only supports GML features

* Feature type definition using GML application schemas

 Represent feature instances and feature types as Java
objects (package org.deegree.model. feature)

« Convert between XML and Java Bean representation
 Traverse/change the feature/property structure

* Filter collections of feature objects using CQL (Filter
expressions)

Persistence layer (datastore)
« Store, delete and update features in an SQL-database
* Query stored features using CQL-expressions

 Define XML-relational mapping using schema annotations

org.deegree.model. feature (deegree 2)

class feature model /

wintedfacen
feafure: Feafure

+ gelreatue Nype(] Fegtee Tioe

winterfacew
schema. Feafure Tyoe

+ getiane] GQualifediiamne

7

Defzultrezatume Nipe
schema::MappedFestureType

Handling non-feature objects in deegree 2

* Object schema is mapped to , internal”“ GML schema

« Original XML structures fitted to features/properties using
XSLT

- Slow + resource-intensive
- Error-prone

« Example: Implemenation of ISO Catalogue Service

. \—/
ISO 19115/ cg:\r/lwiernall |
1ISO 19119 appl. Java-Objects DB
schema)

lat/l N

Main shortcomings of current feature API

« Native support for GML features only, but we have similar
processing needs for non-feature XML structures:

- Catalogue datasets

- GML application schemas that use complex properties
(without adhering to the object/property - structure).

« Originally designed for simple features (w/o nested
properties) and extended later

- Does not support all GML core schema constructs (e.g.
gml:AngleType with ,uom®-attribute).

- Inconsistent: feature collections are not features

- Needs rewrite

 Problematic handling of type information (Types.java)
- XML <-> Java <-> SQL

Goals for the deegree 3 object model

« Primary goal: Native support for arbitrary XML structures

- Process and persist arbitrary XML objects without the need
for XSLT-processing

« Secondary goal: customizable mapping of objects

- Map simple features to an optimized Java representation

» Improve memory requirements

- Optionally support type-safe mapping: Use objects of class
~Philosopher” to represent , Philosopher“-feature instances

- Generate custom classes from XML application schema
automatically

Can we adopt existing technologies?

« Java-XML-Binding technologies have come a long way

- JAXB 2.0 is part of JDK 1.6
- Complex schemas compile (almost) out-of-the box

* Philosopher.xsd
« IMRO2008.xsd

 Does JAXB meet our requirements?

- Problem: Schema information is converted to classes ->
schema changes mean recompilation

- JAXB addresses XML-Binding only, not persistence

 Hibernate
 Hyper]AXB
« What about support for spatial operators?

Design issues for deegree 3

 Base the generic object model upon existing feature
model?

* Incorporate available XML-Binding frameworks?
- JAXB, XMLBeans, Castor, ...

* Incorporate available persistence frameworks?
- Hibernate, HyperJAXB, ..

« How do we represent type information?

- XML type : Java class
- XML type : Java object

Discussion summary 1/2

« It became clear that a strong connection between the
deegree object model and XML schema exists

« EXxisting technologies like JAXB provide out-of-the box
solutions for binding XML data to Java objects, but

- Adding new functionality is difficult

- Type information is converted to Java classes, which means
that the use of new object types requires a compilation
phase

 Developing a new XML schema framework provides a
maximum of flexibility, but

- XML schema is very complex

- Will take a long time until a stable and feature-complete
codebase exists

Discussion summary 2/2

« Similar aspects apply to object-relational mapping

« Existing technologies like Hibernate provide out-of-the
box solutions, but

- Not designed for spatial data persistence
- Not designed for XML structures, but for Java classes
- Flexibility is limited

« Maintaining and extending the deegree 2 datastore layer
provides a maximum of flexibility, but

- Needs rework to cope with arbitrary XML structures

