
Deep	
 NLP	
 Applica-ons	

and	

Dynamic	
 Memory	
 Networks	

Richard	
 Socher	

richard@metamind.io	

Why	
 focus	
 deep	
 research	
 on	
 NLP?	

•  Image	
 classifica,on	
 increasingly	
 commodi,zed	

•  Vision	
 is	
 more	
 than	
 classifica,on	
 but	
 it’s	
 central	

•  Demo:	
 h;ps://www.metamind.io/vision/train	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 2	

Overview	

•  Fun	
 deep	
 NLP	
 applica,ons:	

•  Character	
 RNNs	
 on	
 text	
 and	
 code	

•  Image	
 –	
 Sentence	
 mapping	

•  Engagement	

•  Ques,on	
 Answering	

•  Ask	
 me	
 Anything:	
 Dynamic	
 Memory	
 Networks	
 for	
 NLP	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 3	

Character	
 RNNs	
 on	
 text	
 and	
 code	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 4	

h;p://karpathy.github.io/2015/05/21/rnn-­‐effec,veness/	

Character	
 RNNs	
 on	
 text	
 and	
 code	

•  Haven’t	
 yet	
 produced	
 useful	
 results	
 on	
 real	
 datasets	

•  Shows	
 that	
 RNNs	
 can	
 memorize	
 sequences	
 and	
 keep	
 memory	

(mostly	
 LSTMs)	

•  Most	
 interes,ng	
 results	
 simply	
 train	
 on	
 dataset	
 and	
 sample	

from	
 it	
 a`erwards	
 (first	
 shown	
 by	
 Sutskever	
 et	
 al.	
 2011:	

Genera,ng	
 Text	
 with	
 Recurrent	
 Neural	
 Networks)	

•  Results	
 from	
 an	
 LSTM	
 (karpathy.github.io)	
 à	
 	

	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 5	

Shakespeare	

PANDARUS:	
 	

Alas,	
 I	
 think	
 he	
 shall	
 be	
 come	
 approached	
 and	
 the	
 day	

When	
 li;le	
 srain	
 would	
 be	
 a;ain'd	
 into	
 being	
 never	
 fed,	
 	

And	
 who	
 is	
 but	
 a	
 chain	
 and	
 subjects	
 of	
 his	
 death,	
 	

I	
 should	
 not	
 sleep.	
 	

	

Second	
 Senator:	
 	

They	
 are	
 away	
 this	
 miseries,	
 produced	
 upon	
 my	
 soul,	
 	

Breaking	
 and	
 strongly	
 should	
 be	
 buried,	
 when	
 I	
 perish	
 	

The	
 earth	
 and	
 thoughts	
 of	
 many	
 states.	
 	

	

DUKE	
 VINCENTIO:	
 	

Well,	
 your	
 wit	
 is	
 in	
 the	
 care	
 of	
 side	
 and	
 that.	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 6	

Wikipedia	

Naturalism	
 and	
 decision	
 for	
 the	
 majority	
 of	
 Arab	
 countries'	

capitalide	
 was	
 grounded	
 by	
 the	
 Irish	
 language	
 by	
 [[John	
 Clair]],	
 [[An	

Imperial	
 Japanese	
 Revolt]],	
 associated	
 with	
 Guangzham's	

sovereignty.	
 His	
 generals	
 were	
 the	
 powerful	
 ruler	
 of	
 the	
 Portugal	
 in	

the	
 [[Protestant	
 Immineners]],	
 which	
 could	
 be	
 said	
 to	
 be	
 directly	
 in	

Cantonese	
 Communica,on,	
 which	
 followed	
 a	
 ceremony	
 and	
 set	

inspired	
 prison,	
 training.	
 The	
 emperor	
 travelled	
 back	
 to	
 [[An,och,	

Perth,	
 October	
 25|21]]	
 to	
 note,	
 the	
 Kingdom	
 of	
 Costa	
 Rica,	

unsuccessful	
 fashioned	
 the	
 [[Thrales]],	
 [[Cynth's	
 Dajoard]],	
 known	

in	
 western	
 [[Scotland]],	
 near	
 Italy	
 to	
 the	
 conquest	
 of	
 India	
 with	
 the	

conflict.	
 	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 7	

Latex	
 (had	
 to	
 be	
 fixed	
 manually)	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 8	

Code!	
 (Linux	
 source	
 code)	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 9	

Ques-on	
 Answering:	
 Quiz	
 Bowl	
 Compe--on	

•  Iyyer	
 et	
 al.	
 2014:	
 A	
 Neural	
 Network	
 for	
 Factoid	
 Ques,on	

Answering	
 over	
 Paragraphs	

•  QUESTION:	

He	
 le`	
 unfinished	
 a	
 novel	
 whose	
 ,tle	
 character	
 forges	
 his	

father's	
 signature	
 to	
 get	
 out	
 of	
 school	
 and	
 avoids	
 the	
 dra`	
 by	

feigning	
 desire	
 to	
 join.	
 A	
 more	
 famous	
 work	
 by	
 this	
 author	
 tells	

of	
 the	
 rise	
 and	
 fall	
 of	
 the	
 composer	
 Adrian	
 Leverkühn.	
 Another	

of	
 his	
 novels	
 features	
 the	
 jesuit	
 Naptha	
 and	
 his	
 opponent	

Se;embrini,	
 while	
 his	
 most	
 famous	
 work	
 depicts	
 the	
 aging	

writer	
 Gustav	
 von	
 Aschenbach.	
 Name	
 this	
 German	
 author	
 of	
 The	

Magic	
 Mountain	
 and	
 Death	
 in	
 Venice.	
 	

Ques-on	
 Answering:	
 Quiz	
 Bowl	
 Compe--on	

•  QUESTION:	

He	
 le`	
 unfinished	
 a	
 novel	
 whose	
 ,tle	
 character	
 forges	
 his	

father's	
 signature	
 to	
 get	
 out	
 of	
 school	
 and	
 avoids	
 the	
 dra`	
 by	

feigning	
 desire	
 to	
 join.	
 A	
 more	
 famous	
 work	
 by	
 this	
 author	
 tells	

of	
 the	
 rise	
 and	
 fall	
 of	
 the	
 composer	
 Adrian	
 Leverkühn.	
 Another	

of	
 his	
 novels	
 features	
 the	
 jesuit	
 Naptha	
 and	
 his	
 opponent	

Se;embrini,	
 while	
 his	
 most	
 famous	
 work	
 depicts	
 the	
 aging	

writer	
 Gustav	
 von	
 Aschenbach.	
 Name	
 this	
 German	
 author	
 of	
 The	

Magic	
 Mountain	
 and	
 Death	
 in	
 Venice.	
 	

•  ANSWER:	
 Thomas	
 Mann	
 	

Recursive	
 Neural	
 Networks	

•  Follow	
 dependency	
 structure	

Pushing	
 Facts	
 into	
 En-ty	
 Vectors	

Qanta	
 Model	
 Can	
 Defeat	
 Human	
 Players	

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar

Literature	
 Ques-ons	
 are	
 Hard!	

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar

Visual	
 Grounding	

•  Idea:	
 Map	
 sentences	
 and	
 images	
 into	
 a	
 joint	
 space	

•  Socher	
 et	
 al.	
 2013:	
 	

Grounded	
 Composi,onal	
 Seman,cs	
 for	
 Finding	
 and	

Describing	
 Images	
 with	
 Sentences	

	

Discussion:	
 Composi-onal	
 Structure	

•  Recursive	
 Neural	
 Networks	
 so	
 far	
 	

used	
 cons,tuency	
 trees	
 	

which	
 results	
 in	
 more	
 syntac,cally	
 	

influenced	
 representa,ons	

•  Instead:	
 Use	
 dependency	
 trees	
 which	
 capture	
 more	
 	

seman,c	
 structure	

Convolu-onal	
 Neural	
 Network	
 for	
 Images	

•  CNN	
 trained	
 on	
 ImageNet	
 (Le	
 et	
 al.	
 2013)	

•  RNN	
 trained	
 to	
 give	
 large	
 inner	
 products	
 	

between	
 sentence	
 and	
 image	
 vectors:	

Results	

ü

ü

ü

ü

ü

û	

û	

û	

û	

û	

û	

û	

Results	

ü
û	

û	

û	

ü

û	

û	

û	

Image	
 Search	
 Mean	

Rank	

Random	
 52.1	

Bag	
 of	
 Words	
 14.6	

CT-­‐RNN	
 16.1	

Recurrent	
 Neural	
 Network	
 19.2	

Kernelized	
 Canonical	
 Correla,on	
 Analysis	
 15.9	

DT-­‐RNN	
 12.5	

Describing	
 Images	
 Mean	

Rank	

Random	
 92.1	

Bag	
 of	
 Words	
 21.1	

CT-­‐RNN	
 23.9	

Recurrent	
 Neural	
 Network	
 27.1	

Kernelized	
 Canonical	
 Correla,on	
 Analysis	
 18.0	

DT-­‐RNN	
 16.9	

Live	
 Demo	

8/10/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 21	

Engagement	

Demo	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 22	

Image	
 –	
 Sentence	
 Genera-on	
 (!)	

•  Several	
 models	
 came	
 out	
 simultaneously	
 in	
 2015	
 that	
 follow	
 up	

•  Replace	
 recursive	
 neural	
 network	
 with	
 LSTM	
 and	
 instead	
 of	
 only	

finding	
 vectors	
 they	
 generate	
 the	
 descrip,on	

•  Mostly	
 memorized	
 training	
 	

sequences	
 (becomes	
 similar	
 again)	

•  Donahue	
 et	
 al.	
 2015:	
 Long-­‐term	
 	
 à	

Recurrent	
 Convolu,onal	
 Networks	
 	

for	
 Visual	
 Recogni,on	
 and	
 Descrip,on	

•  Karpathy	
 and	
 Fei-­‐Fei	
 2015:	
 Deep	
 	

Visual-­‐Seman,c	
 Alignments	
 for	
 	

Genera,ng	
 Image	
 Descrip,ons	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 23	

Image	
 –	
 Sentence	
 Genera-on	
 (!)	

Dynamic	
 Memory	
 Networks	

Richard	
 Socher	

richard@metamind.io	

A	
 new	
 paradigm	

All	
 NLP	
 tasks	
 can	

	
 be	
 reduced	
 to	
 	

ques,on	
 answering	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 26	

QA	

•  Ques,on	
 answering	
 tackles	
 complex	
 ques,ons	
 over	
 lots	
 of	
 text	
 	

• Where	
 was	
 Obama's	
 wife	
 born?	

•  Machine	
 transla,on	
 	

• What	
 is	
 the	
 transla,on	
 into	
 French?	

•  Sequence	
 modeling	
 tasks	
 like	
 named	
 en,ty	
 recogni,on	
 (NER)	
 	

• What	
 are	
 the	
 named	
 en,ty	
 tags	
 in	
 this	
 sentence?	

•  Classifica,on	
 problems	
 like	
 sen,ment	
 analysis	
 	

• What	
 is	
 the	
 sen,ment?	

•  Even	
 mul,-­‐sentence	
 joint	
 classifica,on	
 problems	
 like	

coreference	
 resolu,on	
 	

• Who	
 does	
 "their"	
 refer	
 to?	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 27	

Reduc-on	
 to	
 QA	
 	

Interes,ng	
 	

but	
 	

useless	

?	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 28	

Yes,	
 un-l	
 a	
 model	
 makes	
 it	
 useful	

Dynamic	
 memory	
 	

Network	
 	

•  DMN,	
 a	
 neural	
 network	
 based	
 model	
 in	
 which	
 any	
 QA	
 task	
 can	

be	
 trained	
 using	
 input-­‐ques,on-­‐answer	
 triplets.	

•  Related	
 to	
 	

•  Memory	
 Networks,	
 Weston	
 et	
 al.	
 2014	

•  Neural	
 Turing	
 Machines,	
 Graves	
 et	
 al.	
 2014	

•  Teaching	
 Machines	
 to	
 Read	
 and	
 Comprehend,	
 Hermann	
 et	
 al.	
 2015	
 	

•  as	
 introduced	
 by	
 Phil	
 yesterday	
 but	
 more	
 general	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 29	

QA	
 +	
 DMN	

Ask	
 Me	
 Anything:	

Dynamic	
 Memory	
 Networks	

for	
 NLP	

	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 30	

Joint	
 Work	
 with	
 MetaMind	
 intern	
 team	

•  Ankit	
 Kumar	

•  Ozan	
 Irsoy	

•  Mohit	
 Iyyer	

•  Peter	
 Ondruska	

•  James	
 Bradbury	

•  Ishaan	
 Gulrajani	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 31	

Example	
 Input,	
 Ques-on,	
 Answer	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 32	

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

The	
 DMN	

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 33	

The	
 Modules:	
 Input	

•  Responsible	
 for	
 compu,ng	
 representa,ons	
 of	
 (audio,	
 visual	
 or)	

textual	
 inputs	
 such	
 that	
 they	
 can	
 be	
 retrieved	
 when	
 needed	

later.	
 	

•  Assume	
 a	
 temporal	
 sequence	
 indexable	
 by	
 a	
 ,me	
 stamp.	
 	

•  For	
 wri;en	
 language	
 we	
 have	
 a	
 sequence	
 of	
 words	
 (v1,…,vTw)	
 	

•  Both	
 unsupervised	
 and	
 supervised	
 learning	
 	

•  Context-­‐independent	
 and	
 context-­‐dependent	
 hidden	
 states	

•  Word	
 vectors	
 from	
 Glove	
 model	
 Pennington	
 et	
 al.	
 (2014)	

à	
 Stored	
 in	
 seman,c	
 memory	
 module	

•  RNN	
 computa,on	
 for	
 context	
 states	
 à	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 34	

Reminder:	
 Gated	
 Recurrent	
 Units	
 in	
 RNN	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 35	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

For	
 DMN	
 input	
 sequence:	
 	

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3

The	
 Modules:	
 Ques-on	

•  Simple	
 GRU	
 over	
 ques,on	
 word	
 vectors	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 36	

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)

4

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

The	
 Modules:	
 Episodic	
 Memory!	

•  Combines	
 the	
 previous	
 three	
 modules'	
 outputs	
 in	
 order	
 to	

reason	
 over	
 them	
 and	
 give	
 the	
 resul,ng	
 knowledge	
 to	
 the	

answer	
 module.	
 	

•  Dynamically	
 retrieves	
 the	
 necessary	
 informa,on	
 over	
 the	

sequence	
 of	
 words	
 or	
 sentences.	
 	

•  If	
 necessary	
 to	
 retrieve	
 addi,onal	
 facts	
 à	
 iterate	
 over	
 inputs	
 	

•  Needed	
 for	
 transi,ve	
 inference	
 (TI)	

•  The	
 hippocampus,	
 the	
 seat	
 of	
 episodic	
 memory	
 in	
 humans,	
 is	

ac,ve	
 during	
 this	
 kind	
 of	
 inference	
 and	
 disrup,on	
 of	
 the	

hippocampus	
 impairs	
 TI	

	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 37	

Gates	
 over	
 input	
 sentences	

•  For	
 each	
 sentence	
 in	
 input:	

•  Summarize	
 important	
 facts	
 in	
 episode	
 vector:	

•  Done	
 if	
 only	
 one	
 pass	
 over	
 data	
 was	
 needed	
 to	
 answer	
 ques,on	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 38	

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)

4
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

Episodes	

•  What	
 about:	
 (from	
 Facebook	
 babI	
 dataset)	

	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 39	

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence(Ques&on(

Episodic(Memory(Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2

Episodes	

•  Iterate	
 over	
 mul,ple	
 episodes	

•  Compute	
 new	
 gates	
 (second	
 episode)	
 with	
 previous	
 memory	

vector:	

•  GRU	
 over	
 memories:	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 40	

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

The	
 Modules:	
 Answer	

•  Simple	
 GRU	
 to	
 produces	
 an	
 output	
 at	
 each	
 of	
 its	
 ,me	
 steps.	

•  Allow	
 to	
 predict	
 EOS	
 token	
 and	
 stop	

8/9/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 41	

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t)st, (7)

where softmax(g

1

t) =

exp(g1
t)PT

j=1 exp(g1
j)

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.

3 Experiments

3.1 Semantic Question Answering

Facebook dataset

BioProcess dataset

5

Pudng	
 it	
 all	
 together	

•  Training	
 via	
 cross-­‐entropy	
 errors	
 and	
 backpropaga,on	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 42	

Answer module

Question Module

Semantic Memory
Module

Episodic Memory
Module

Input Module

Mary got th
e m

ilk
 th

ere.

Jo
hn m

oved to
 th

e bedroom.

Sandra w
ent b

ack
 to

 th
e kitc

hen.

Mary tra
velle

d to
 th

e hallw
ay.

Jo
hn got th

e fo
otb

all t
here.

Jo
hn w

ent to
 th

e hallw
ay.

Jo
hn put d

own th
e fo

otb
all.

Mary w
ent to

 th
e garden.

s1 s2 s3 s4 s5 s6 s7 s8

Where is
the fo

oball?

q

0.0 0.3 0.0 0.0 0.0 0.9 0.0 0.0

0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0
e1 e2 e3 e4 e5 e6 e7 e8

1 1 1 1 1 1 1 1

e1 e2 e3 e4 e5 e6 e7 e8
2 2 2 2 2 2 2 2

hallw
ay

<EOS>

m1

m2

(Glove vectors)

w1
wT

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification

4

Tasks	
 with	
 results	
 above	
 or	
 near	
 state	
 of	
 the	
 art	

Type	
 Dataset	

QA	
 babI - Facebook	

Sequence	
 POS	

Classification	
 Sentiment	

Sequence	
 NER	

MT	
 English-French

Coref	
 Guha	
 et	
 al.	
 2015

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 43	

Details:	
 QA	
 on	
 babI,	
 POS	
 and	
 Sen-ment	

4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 44	

4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).

7

4.3 Text Classification: Sentiment Analysis

Stanford Sentiment Treebank (SST) [2] is a popular dataset for sentiment classification. It provides
phrase-level fine-grained labels, and comes with a train/dev/test split. We present results on two
formats: fine-grained root prediction, where all full sentences (root nodes) of the test set are to
be classified as either very negative, negative, neutral, positive, or very positive, and binary root
prediction, where all non-neutral full sentences of the test set are to be classified as either positive
or negative. To train the model on the fine-grained task, we use all phrase-level labels. To train on
the binary task, we use all non-neutral phrase-level labels.

Task MV-RNN RNTN DCNN PVec CNN-MC DRNN CT-LSTM DMN

Binary 82.9 85.4 86.8 87.8 88.1 86.6 88.0 88.3
Fine-grained 44.4 45.7 48.5 48.7 47.4 49.8 51.0 50.3

Table 3: Test accuracies on SST [2]. Key: MV-RNN: Socher et al., 2013. RNTN: Socher et al.,
2013. DCNN: Blunsom et al., 2014. PVec: Le and Mikolov, 2014. CNN-MC: Kim, 2014. DRNN:
Irsoy and Cardie, 2014. CT-LSTM: Tai et al., 2015. All results as reported in [35]

For sentiment analysis, our gate function G needs only the first 3 components c,m, q of the function
z as defined in Eq. 3. The DMN achieves state-of-the-art accuracy on the binary classification task,
as well as near state-of-the-art on the fine-grained classification task.

Our DMN was trained with GRU sequence models and no tree structure. It is easy to replace the
GRU sequence model with any of the models listed above, as well as incorporate tree structure to
the retrieval process. These experiments were not run, and we consider them future work.

Preliminary Results: Machine Translation

Figure 4: Machine translation
training progress in terms of
log-perplexity.

We are also training the DMN for machine translation, comparing it
to the sequence-to-sequence LSTM model presented by Sutskever
et al. [16]. The sequence-to-sequence model is a special case of the
DMN in which only one memory at the end of the input sentence
is formed. Initial experiments on the smaller WMT13 English-to-
French News Commentary dataset used in Kalchbrenner [36] show
promising results. As seen in 4.3, the DMN is learning at a similar
pace to an implementation of the Seq-to-Seq LSTM model. For the
Seq-to-Seq LSTM, we use the hyperparameters listed in [16].

5 Conclusion

We believe the DMN is a potentially general model for a variety of NLP applications. The entire
model can be trained end-to-end with one, albeit complex, objective function. The model uses
some ideas from neuroscience such as semantic and episodic memories known to be required for
complex types of reasoning. Future work will explore additional tasks, larger multi-task models and
multimodal inputs and questions.

Acknowledgements

We thank Sam Gershman for useful discussions.

References
[1] A. Passos, V. Kumar, and A. McCallum. Lexicon infused phrase embeddings for named entity resolution.

In Conference on Computational Natural Language Learning. Association for Computational Linguistics,
June 2014.

[2] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In EMNLP, 2013.

8

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 45	

Summary	

•  All	
 (?)	
 NLP	
 tasks	
 can	
 be	
 reduced	
 to	
 ques,on	
 answering	

•  The	
 DMN	
 can	
 very	
 accurately	
 train	
 with	
 	

input-­‐ques,on-­‐answer	
 triplets	

•  Next	
 steps:	
 One	
 very	
 large	
 mul,task	
 DMN	

8/11/15	
 Richard	
 Socher	
 Lecture	
 1,	
 Slide	
 46	

