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Why	
  focus	
  deep	
  research	
  on	
  NLP?	
  

•  Image	
  classifica,on	
  increasingly	
  commodi,zed	
  
•  Vision	
  is	
  more	
  than	
  classifica,on	
  but	
  it’s	
  central	
  

•  Demo:	
  h;ps://www.metamind.io/vision/train	
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Overview	
  

•  Fun	
  deep	
  NLP	
  applica,ons:	
  
•  Character	
  RNNs	
  on	
  text	
  and	
  code	
  
•  Image	
  –	
  Sentence	
  mapping	
  
•  Engagement	
  
•  Ques,on	
  Answering	
  

•  Ask	
  me	
  Anything:	
  Dynamic	
  Memory	
  Networks	
  for	
  NLP	
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Character	
  RNNs	
  on	
  text	
  and	
  code	
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h;p://karpathy.github.io/2015/05/21/rnn-­‐effec,veness/	
  



Character	
  RNNs	
  on	
  text	
  and	
  code	
  

•  Haven’t	
  yet	
  produced	
  useful	
  results	
  on	
  real	
  datasets	
  

•  Shows	
  that	
  RNNs	
  can	
  memorize	
  sequences	
  and	
  keep	
  memory	
  
(mostly	
  LSTMs)	
  

•  Most	
  interes,ng	
  results	
  simply	
  train	
  on	
  dataset	
  and	
  sample	
  
from	
  it	
  a`erwards	
  (first	
  shown	
  by	
  Sutskever	
  et	
  al.	
  2011:	
  
Genera,ng	
  Text	
  with	
  Recurrent	
  Neural	
  Networks)	
  

•  Results	
  from	
  an	
  LSTM	
  (karpathy.github.io)	
  à	
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Shakespeare	
  

PANDARUS:	
  	
  
Alas,	
  I	
  think	
  he	
  shall	
  be	
  come	
  approached	
  and	
  the	
  day	
  
When	
  li;le	
  srain	
  would	
  be	
  a;ain'd	
  into	
  being	
  never	
  fed,	
  	
  
And	
  who	
  is	
  but	
  a	
  chain	
  and	
  subjects	
  of	
  his	
  death,	
  	
  
I	
  should	
  not	
  sleep.	
  	
  
	
  
Second	
  Senator:	
  	
  
They	
  are	
  away	
  this	
  miseries,	
  produced	
  upon	
  my	
  soul,	
  	
  
Breaking	
  and	
  strongly	
  should	
  be	
  buried,	
  when	
  I	
  perish	
  	
  
The	
  earth	
  and	
  thoughts	
  of	
  many	
  states.	
  	
  
	
  
DUKE	
  VINCENTIO:	
  	
  
Well,	
  your	
  wit	
  is	
  in	
  the	
  care	
  of	
  side	
  and	
  that.	
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Wikipedia	
  

Naturalism	
  and	
  decision	
  for	
  the	
  majority	
  of	
  Arab	
  countries'	
  
capitalide	
  was	
  grounded	
  by	
  the	
  Irish	
  language	
  by	
  [[John	
  Clair]],	
  [[An	
  
Imperial	
  Japanese	
  Revolt]],	
  associated	
  with	
  Guangzham's	
  
sovereignty.	
  His	
  generals	
  were	
  the	
  powerful	
  ruler	
  of	
  the	
  Portugal	
  in	
  
the	
  [[Protestant	
  Immineners]],	
  which	
  could	
  be	
  said	
  to	
  be	
  directly	
  in	
  
Cantonese	
  Communica,on,	
  which	
  followed	
  a	
  ceremony	
  and	
  set	
  
inspired	
  prison,	
  training.	
  The	
  emperor	
  travelled	
  back	
  to	
  [[An,och,	
  
Perth,	
  October	
  25|21]]	
  to	
  note,	
  the	
  Kingdom	
  of	
  Costa	
  Rica,	
  
unsuccessful	
  fashioned	
  the	
  [[Thrales]],	
  [[Cynth's	
  Dajoard]],	
  known	
  
in	
  western	
  [[Scotland]],	
  near	
  Italy	
  to	
  the	
  conquest	
  of	
  India	
  with	
  the	
  
conflict.	
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Latex	
  (had	
  to	
  be	
  fixed	
  manually)	
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Code!	
  (Linux	
  source	
  code)	
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Ques-on	
  Answering:	
  Quiz	
  Bowl	
  Compe--on	
  

•  Iyyer	
  et	
  al.	
  2014:	
  A	
  Neural	
  Network	
  for	
  Factoid	
  Ques,on	
  
Answering	
  over	
  Paragraphs	
  

•  QUESTION:	
  
He	
  le`	
  unfinished	
  a	
  novel	
  whose	
  ,tle	
  character	
  forges	
  his	
  
father's	
  signature	
  to	
  get	
  out	
  of	
  school	
  and	
  avoids	
  the	
  dra`	
  by	
  
feigning	
  desire	
  to	
  join.	
  A	
  more	
  famous	
  work	
  by	
  this	
  author	
  tells	
  
of	
  the	
  rise	
  and	
  fall	
  of	
  the	
  composer	
  Adrian	
  Leverkühn.	
  Another	
  
of	
  his	
  novels	
  features	
  the	
  jesuit	
  Naptha	
  and	
  his	
  opponent	
  
Se;embrini,	
  while	
  his	
  most	
  famous	
  work	
  depicts	
  the	
  aging	
  
writer	
  Gustav	
  von	
  Aschenbach.	
  Name	
  this	
  German	
  author	
  of	
  The	
  
Magic	
  Mountain	
  and	
  Death	
  in	
  Venice.	
  	
  



Ques-on	
  Answering:	
  Quiz	
  Bowl	
  Compe--on	
  

•  QUESTION:	
  
He	
  le`	
  unfinished	
  a	
  novel	
  whose	
  ,tle	
  character	
  forges	
  his	
  
father's	
  signature	
  to	
  get	
  out	
  of	
  school	
  and	
  avoids	
  the	
  dra`	
  by	
  
feigning	
  desire	
  to	
  join.	
  A	
  more	
  famous	
  work	
  by	
  this	
  author	
  tells	
  
of	
  the	
  rise	
  and	
  fall	
  of	
  the	
  composer	
  Adrian	
  Leverkühn.	
  Another	
  
of	
  his	
  novels	
  features	
  the	
  jesuit	
  Naptha	
  and	
  his	
  opponent	
  
Se;embrini,	
  while	
  his	
  most	
  famous	
  work	
  depicts	
  the	
  aging	
  
writer	
  Gustav	
  von	
  Aschenbach.	
  Name	
  this	
  German	
  author	
  of	
  The	
  
Magic	
  Mountain	
  and	
  Death	
  in	
  Venice.	
  	
  

•  ANSWER:	
  Thomas	
  Mann	
  	
  



Recursive	
  Neural	
  Networks	
  
•  Follow	
  dependency	
  structure	
  



Pushing	
  Facts	
  into	
  En-ty	
  Vectors	
  



Qanta	
  Model	
  Can	
  Defeat	
  Human	
  Players	
  

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar



Literature	
  Ques-ons	
  are	
  Hard!	
  

History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.

Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the di↵erence between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki

indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar



Visual	
  Grounding	
  
•  Idea:	
  Map	
  sentences	
  and	
  images	
  into	
  a	
  joint	
  space	
  

•  Socher	
  et	
  al.	
  2013:	
  	
  
Grounded	
  Composi,onal	
  Seman,cs	
  for	
  Finding	
  and	
  
Describing	
  Images	
  with	
  Sentences	
  
	
  



Discussion:	
  Composi-onal	
  Structure	
  
•  Recursive	
  Neural	
  Networks	
  so	
  far	
  	
  
used	
  cons,tuency	
  trees	
  	
  
which	
  results	
  in	
  more	
  syntac,cally	
  	
  
influenced	
  representa,ons	
  

•  Instead:	
  Use	
  dependency	
  trees	
  which	
  capture	
  more	
  	
  
seman,c	
  structure	
  



Convolu-onal	
  Neural	
  Network	
  for	
  Images	
  

•  CNN	
  trained	
  on	
  ImageNet	
  (Le	
  et	
  al.	
  2013)	
  
•  RNN	
  trained	
  to	
  give	
  large	
  inner	
  products	
  	
  
between	
  sentence	
  and	
  image	
  vectors:	
  



Results	
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Results	
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û	
  

Image	
  Search	
   Mean	
  
Rank	
  

Random	
   52.1	
  

Bag	
  of	
  Words	
   14.6	
  

CT-­‐RNN	
   16.1	
  

Recurrent	
  Neural	
  Network	
   19.2	
  

Kernelized	
  Canonical	
  Correla,on	
  Analysis	
   15.9	
  

DT-­‐RNN	
   12.5	
  

Describing	
  Images	
   Mean	
  
Rank	
  

Random	
   92.1	
  

Bag	
  of	
  Words	
   21.1	
  

CT-­‐RNN	
   23.9	
  

Recurrent	
  Neural	
  Network	
   27.1	
  

Kernelized	
  Canonical	
  Correla,on	
  Analysis	
   18.0	
  

DT-­‐RNN	
   16.9	
  



Live	
  Demo	
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Engagement	
  
Demo	
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Image	
  –	
  Sentence	
  Genera-on	
  (!)	
  

•  Several	
  models	
  came	
  out	
  simultaneously	
  in	
  2015	
  that	
  follow	
  up	
  
•  Replace	
  recursive	
  neural	
  network	
  with	
  LSTM	
  and	
  instead	
  of	
  only	
  

finding	
  vectors	
  they	
  generate	
  the	
  descrip,on	
  
•  Mostly	
  memorized	
  training	
  	
  

sequences	
  (becomes	
  similar	
  again)	
  

•  Donahue	
  et	
  al.	
  2015:	
  Long-­‐term	
  	
  à	
  
Recurrent	
  Convolu,onal	
  Networks	
  	
  
for	
  Visual	
  Recogni,on	
  and	
  Descrip,on	
  

•  Karpathy	
  and	
  Fei-­‐Fei	
  2015:	
  Deep	
  	
  
Visual-­‐Seman,c	
  Alignments	
  for	
  	
  
Genera,ng	
  Image	
  Descrip,ons	
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Image	
  –	
  Sentence	
  Genera-on	
  (!)	
  



Dynamic	
  Memory	
  Networks	
  

Richard	
  Socher	
  
richard@metamind.io	
  



A	
  new	
  paradigm	
  

All	
  NLP	
  tasks	
  can	
  
	
  be	
  reduced	
  to	
  	
  

ques,on	
  answering	
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QA	
  

•  Ques,on	
  answering	
  tackles	
  complex	
  ques,ons	
  over	
  lots	
  of	
  text	
  	
  
• Where	
  was	
  Obama's	
  wife	
  born?	
  

•  Machine	
  transla,on	
  	
  
• What	
  is	
  the	
  transla,on	
  into	
  French?	
  

•  Sequence	
  modeling	
  tasks	
  like	
  named	
  en,ty	
  recogni,on	
  (NER)	
  	
  
• What	
  are	
  the	
  named	
  en,ty	
  tags	
  in	
  this	
  sentence?	
  

•  Classifica,on	
  problems	
  like	
  sen,ment	
  analysis	
  	
  
• What	
  is	
  the	
  sen,ment?	
  

•  Even	
  mul,-­‐sentence	
  joint	
  classifica,on	
  problems	
  like	
  
coreference	
  resolu,on	
  	
  
• Who	
  does	
  "their"	
  refer	
  to?	
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Reduc-on	
  to	
  QA	
  	
  

Interes,ng	
  	
  
but	
  	
  

useless	
  
?	
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Yes,	
  un-l	
  a	
  model	
  makes	
  it	
  useful	
  

Dynamic	
  memory	
  	
  
Network	
  	
  

•  DMN,	
  a	
  neural	
  network	
  based	
  model	
  in	
  which	
  any	
  QA	
  task	
  can	
  
be	
  trained	
  using	
  input-­‐ques,on-­‐answer	
  triplets.	
  

•  Related	
  to	
  	
  
•  Memory	
  Networks,	
  Weston	
  et	
  al.	
  2014	
  
•  Neural	
  Turing	
  Machines,	
  Graves	
  et	
  al.	
  2014	
  
•  Teaching	
  Machines	
  to	
  Read	
  and	
  Comprehend,	
  Hermann	
  et	
  al.	
  2015	
  	
  

•  as	
  introduced	
  by	
  Phil	
  yesterday	
  but	
  more	
  general	
  

8/11/15	
  Richard	
  Socher	
  Lecture	
  1,	
  Slide	
  29	
  



QA	
  +	
  DMN	
  

Ask	
  Me	
  Anything:	
  
Dynamic	
  Memory	
  Networks	
  

for	
  NLP	
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Joint	
  Work	
  with	
  MetaMind	
  intern	
  team	
  

•  Ankit	
  Kumar	
  
•  Ozan	
  Irsoy	
  
•  Mohit	
  Iyyer	
  
•  Peter	
  Ondruska	
  
•  James	
  Bradbury	
  
•  Ishaan	
  Gulrajani	
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Example	
  Input,	
  Ques-on,	
  Answer	
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(
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•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to

2



The	
  DMN	
  

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

8/9/15	
  Richard	
  Socher	
  Lecture	
  1,	
  Slide	
  33	
  



The	
  Modules:	
  Input	
  

•  Responsible	
  for	
  compu,ng	
  representa,ons	
  of	
  (audio,	
  visual	
  or)	
  
textual	
  inputs	
  such	
  that	
  they	
  can	
  be	
  retrieved	
  when	
  needed	
  
later.	
  	
  

•  Assume	
  a	
  temporal	
  sequence	
  indexable	
  by	
  a	
  ,me	
  stamp.	
  	
  
•  For	
  wri;en	
  language	
  we	
  have	
  a	
  sequence	
  of	
  words	
  (v1,…,vTw)	
  	
  
•  Both	
  unsupervised	
  and	
  supervised	
  learning	
  	
  
•  Context-­‐independent	
  and	
  context-­‐dependent	
  hidden	
  states	
  
•  Word	
  vectors	
  from	
  Glove	
  model	
  Pennington	
  et	
  al.	
  (2014)	
  

à	
  Stored	
  in	
  seman,c	
  memory	
  module	
  

•  RNN	
  computa,on	
  for	
  context	
  states	
  à	
  

8/9/15	
  Richard	
  Socher	
  Lecture	
  1,	
  Slide	
  34	
  



Reminder:	
  Gated	
  Recurrent	
  Units	
  in	
  RNN	
  

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1

+ b

(z)
⌘

(1)

rt = �

⇣
W

(r)
xt + U

(r)
ht�1

+ b

(r)
⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .

3
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specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �
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(z)
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(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .
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specific facts from the input sequence which are henceforth given as input to this module. It
then takes several passes over input sequence and incorporates new facts in its hidden state.
This can then trigger the retrieval of new facts which were previously thought to not be
relevant. In our case it is a hierarchical, recurrent, neural sequence model which collects,
stores and reasons over facts.

Answer Module: Depending on the question, the answer module can be triggered in two ways: (i)
It can produce an output at every time step of the episodic memory sequence, corresponding
to word or sentence level labels like named entity tags. (ii) For tasks that are not sequence
labeling the output is produced based on the final hidden representation of the episodic
memory.

The remainder of this section describes the general mathematical framework and our specific instan-
tiation of the DMN for natural language processing tasks.

2.1 Input Module

General. The input module is responsible for computing representations of audio, visual or textual
inputs such that they can be retrieved when needed later. For most cognitive inputs we can assume a
temporal sequence indexable by a time stamp. For instance, in the case of video input, this would be
an image at each time step. For written language we have a sequence of Tw words v

1

, . . . , vTw . In
order to compute the most useful input representations it is often beneficial to do both unsupervised
and supervised learning as well as computing context-independent and context-dependent hidden
states.

NLP. In order to compute context-independent, unsupervised representations at each time step, the
entirety of a language corpus is used to compute semantic word vectors using the Glove model [2].
The glove objective is the first element of the full DMN objective function. Henceforth, we describe
each word sequence in terms of a list of corresponding word vectors vt at each time step t. These
word vectors are stored in the semantic memory described in the next subsection.

Furthermore, word vectors are given as inputs to a recurrent neural network (RNN) sequence model
[5] to compute context-dependent representations at each time step: wt = SEQ MODEL(vt, wt�1

)

resulting in the full sequence W . Other modules can access both the original word vectors as well as
the hidden states wt. In particular, we use a gated recurrent network (GRU) [6, 7]. We also explored
the more complex LSTM [8] but it performed similarly and is more complex. Both work much
better than the standard single layer tanh RNN and we postulate that the main strength comes from
having gates that allow the model to suffer less from the vanishing gradient problem.

GRU Definition: We define the GRU subcomponent in general since it is used for various sequences
inside DMN modules. Assume each time step has an input xt and a hidden node ht. We will
abbreviate the below computation with ht = GRU(xt, ht�1

):

zt = �

⇣
W

(z)
xt + U

(z)
ht�1
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(z)
⌘

(1)

rt = �

⇣
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⌘

(2)

˜

ht = tanh

⇣
Wxt + rt � Uht�1

+ b

(h)
⌘

(3)

ht = zt � ht�1

+ (1� zt) � ˜ht, (4)

where � is an element-wise product. In some cases, there is a direct output in terms of a word
(equivalent to a standard supervised class label) which is computed via yt = softmax(W

(S)

ht).
Depending on which module is being described, the GRU notation changes but the internal states
and equations are the same. For the input module, we have wt = GRU(vt, wt).

Different subsequences such as sentences can also be retrieved depending on the task. For some
datasets, the sentence separation is useful and we assume we can access each sentence’s last hidden
vector in order to obtain a sequence S of sentence vectors S = s

1

, . . . , sTs .
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2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
0

, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:

z(s,m, q) = [s � q, s �m, |s� q|, |s�m|, s,m, q, s

T
W

(b)
q, s

T
W

(b)
m] (5)

G(s,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(s,m, q) + b

(1)

⌘
+ b

(2)

⌘
(6)
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2.2 Semantic Memory

The semantic memory stores general facts about concepts based on information it receives from the
input module. For NLP, the semantic memory consists of (i) stored word concepts and (ii) facts about
them. The former is in the form of word vectors which are learned while input is being processed as
described in the section above. The latter is stored in terms of an embedded knowledge base (KB)
[9, 10, 4]. The KB can include tables with single facts like lists of city names or people names as
well as relationship triplets like (dog,has-part,tail). If a KB is being used the semantic memory will
train a max-margin objective similar to Socher et al. [4] to distinguish true facts from false ones.
This is the second part of the full DMN objective function.

2.3 Question

This module maps an input into a representation that can then be used for querying specific facts
from the input module. Assume each question consists of a sequence of Tq word vectors vt. We
compute a hidden state for each via qt = GRU(vt, qt�1

), where the GRU weights are shared with
the input module. The final question vector is defined as q = qTq .

2.4 Episodic Memory

This section introduces our novel episodic memory module. It combines the previous three modules’
outputs in order to reason over them and give the resulting knowledge to the answer module. Given
a question vector q it dynamically retrieves the necessary information over the sequence of words W
or sentences S. In many cases, the first such retrieval process brings to light the necessity to retrieve
additional facts. Hence this process potentially iterates over the inputs multiple times, each iteration
is defined as an episode. In other words, some questions require the model to do transitive inference
(TI). TI has been studied extensively in psychology and neuroscience. Interestingly, it appears that
the hippocampus, the seat of episodic memory in humans, is active during this kind of inference
[11], and disruption of the hippocampus impairs TI [12].

Generally, this memory module is a deep function that returns a memory representation from inputs:
m = EM(W,S, q) that is relevant for the question q. There are two options that are triggered based on
a simple linear classifier on the question vector: We can have a memory sequence over (i) sentences
or (ii) words. For words, the representation that is output is simply a sequence M = m

1

, . . . ,mTw ,
where each mt is computed either via a simple neural network (mt = f(W

(m)

wt)) or an additional
GRU. In this case, the answer module will output a label for each element of this sequence. This
is the case of part of speech tagging and named entity recognition and any other sequence labeling
tasks.

The more interesting scenario is when the model has to reason over complex semantic questions
involving multiple facts written in a series of natural language sentences. This case is described
in detail now. The final output will be a memory vector m, which is the last of a sequence of
increasingly complete memory vectors. At the beginning of the retrieval process, we set the initial
episode’s memory to simply be the question m

0

= q. Next we compute a series of gates, one for
each sentence in the input. The gate basically captures how relevant that sentence is for the current
question and takes into account what else the model has already stored in its memory.

For instance, in the first set of inputs of Fig. 1, we may ask Where is Mary? and would hope that
the gate for the first sentence is close to 1, whereas all other gates of sentences that do not mention
Mary would be close to 0.

The gating function G takes as input a sentence vector at time step t, the current memory vector
and the question vector: g

1

t = G(st,m
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, q) and returns a single scalar g. We define the function
G(s,m, q) as follows:
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Now, we define the first episode vector as a gate-weighted sum of all the sentence vectors:

e

1

=

TX

t=1

softmax(g

1

t )st, (7)

where softmax(g

1

t ) =

exp(g1
t )PT

j=1 exp(g1
j )

. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.
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I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden
I: Everybody is happy.
Q: What’s the sentiment?
A: positive

I: Jane has a baby in Dresden.
Q: What are the named entities?
A: Jane - person, Dresden - location
I: Jane has a baby in Dresden.
Q: What are the POS tags?
A: NNP VBZ DT NN IN NNP .
I: I think this model is incredible
Q: In French?
A: Je pense que ce modèle est incroyable.

Figure 1: Example inputs and questions together with answers all of which are generated by the
same dynamic memory network.

2 The Dynamic Memory Network

The Dynamic memory network (DMNs) is a general model for asking questions over inputs. The
default for the DMN is to represent inputs and their parts in vector form. In this paper, we will focus
on asking questions over natural language inputs.

Seman&c(
Memory(

(
•  Word(

vectors(

•  Knowledge(
Basis(

(

Input(Text(Sequence( Ques&on(

Episodic(Memory( Answer(

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only semantic vector representations. Questions trigger gates which allow some input words or
sentences to be given to the episodic memory module. The final state of the episodic memory is the
input to the answer module.

We will first give an overview of the model as illustrated in Fig. 2 and then describe our specific
instantiation of each module. The DMN consist of the following modules which are listed in the
order of which they are used:

Input Module: This module processes raw inputs and maps them into a representation that is useful
for asking questions about this input. Generally, the input can be visual, speech or text. In
our case the inputs are sequences of words and the representations that are being computed
are semantic vectors at every time step. For instance, this may be a long story, a movie
review, news article or all of Wikipedia.

Semantic Memory: Semantic memory stores general world knowledge about concepts and facts.
For example, it might contain information about what a hang glider is. This module is
inspired by cognitive neuroscience. While the exact location of semantic memory in the
human brain is still being explored, its general existence is well established [1]. Distributed
word vectors like Glove [2] or Word2Vec [3] form the basis of semantic memory. More
complex information can be stored in the form of knowledge bases which capture relation-
ships between various words in the form of triplets [4].

Question Module: The question module simply computes a representation of a question such as
Where did the author first fly?. This representation, in our case a vector, then triggers a
gated attention and retrieval process over facts from the input sequence.

Episodic Memory: In humans this memory stores specific experiences, times and places in their
temporal and autonoetic context. For instance, it might contain the first memory somebody
flew a hang glider. It is also a central part of the DMN. Each question draws attention to
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. This episode vector stores the information that the model
deems relevant at the current episode. Doing this once would be enough if there was only one
relevant fact necessary to answer the question. However, consider the first question in Fig. 1 again.
In order to answer where the milk is, the model first has to retrieve the sentence that mentions that
Sarah took the milk. Now the model knows that Sarah’s whereabouts are relevant. However, that
fact was mentioned before the model knew it was relevant. Hence, we need to incorporate the first
fact in our memory, and then iterate another episode over the inputs to retrieve the second one (that
Sarah is in the garden). We use another GRU over episode vectors as defined in Eq. 7 to compute
memories: m1

= GRU(e

1

,m

0

).

This process may iterate until a classifier on each memory vector predicts that all necessary infor-
mation is collected and ends. Otherwise, the gates would compute again, this time incorporating
the last memory: g

2

t = G(st,m
1

, q), followed by the computation of the episode vector which is
given to the final memory GRU. The ability to take multiple passes over the same input but with
knowledge from previous passes allows us to do such multi-step reasoning. In the case of the some
datasets that mark which facts are important for a given question (e.g. the Facebook babI dataset)
the input gates of Eq. 6 can be trained supervised with a standard cross entropy classification error
function. The final output of the episodic memory is the final episode memory vector m = m

E .

2.5 Answer Sequence

The first hidden state of the answer sequence model is the last hidden state of the memory GRU
a

0

= m. The other hidden elements are computed with a separate GRU which takes into account
the last hidden state and the previously predicted output yt�1

as well as the question:

at = GRU([yt�1

, q], at�1

), yt = softmax(W

(a)
at), (8)

where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W

s
mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
words.

2.6 Training

Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
can be trained via backpropagation from the the errors of the answer sequence model.
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where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W
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mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
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Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
tions and various types of differentiable and deep neural networks with gates, the entire DMN model
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where W

(a) is a standard softmax layer. The output is simply trained with the cross entropy error
classification of the correct sequences. This is the last but most important part of the overall objective
functions.

In the word sequence tagging case, we simply predict an output at every hidden state of the memory
directly: yt = softmax(W
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mt). Note that, with enough training data, this case can be reduced to

the standard answer sequence prediction which just outputs the same number of labels as there are
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Training is unsupervised over word input sequnces to learn word vectors [2] and store them in se-
mantic memory. Question-answer training is cast as a supervised classification problem to minimize
cross entropy errors at either each word (in the case of sequence models) or at the end of the episodic
memory (in the case of all other tasks). Because all modules communicate over vector representa-
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Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values git are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section
4.1 for details on the dataset that this example comes from.

to take multiple passes over the facts, focusing attention on different facts at each pass. Each pass
produces an episode, and these episodes are then summarized into the memory. Endowing our
module with this episodic component allows its attention mechanism to attend more selectively to
specific facts on each pass, as it can attend to other important facts at a later pass. It also allows for
a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

For instance, in the example in Fig. 3, we are asked Where is the football? In the first iteration,
the model ought attend to sentence 7 (John put down the football.), as the question asks about the
football. Only once the model sees that John is relevant can it reason the second iteration should
retrieve where John was. In this example, taken from a true test question on Facebook’s bAbI task,
this behavior is indeed seen. Note that the second iteration has wrongly placed some weight in
sentence 2, which makes some intuitive sense, as sentence 2 is another place John had been.

In its general form, the episodic memory module is characterized by an attention mechanism, a
function which returns an episode given the output of the attention mechanism and the facts from
the input module, and a function that summarizes the episodes into a memory.

In our work, we use a gating function as our attention mechanism. It takes as input, for each pass i, a
candidate fact ct, a previous state mi�1, and the question q to compute a gate: git = G(ct,m

i�1

, q).
The state is updated by way of a GRU: mi

= GRU(e

i
,m

i�1

), where e

i is the computed episode at
pass i. The state may be initialized randomly, but in practice we have found that initializing it to the
question vector itself helps; e.g, m0

= q. The function G returns a single scalar and is defined as
follows:

z(c,m, q) = [c,m, q, c � q, c �m, |c� q|, |c�m|, cTW (b)
q, c

T
W

(b)
m] (3)

G(c,m, q) = �

⇣
W

(2)

tanh

⇣
W

(1)

z(c,m, q) + b

(1)

⌘
+ b

(2)

⌘
(4)

To compute the episode for pass i, we employ a modified GRU over the sequence of TC facts ct,
endowed with our gates. The episode is the final state of the GRU:

h

i
t = g

i
tGRU(ct, h

i
t�1

) + (1� g

i
t)h

i
t�1

(5)

e

i
= h

i
TC

(6)

Finally, to summarize the TP episodes e

i into a memory, we use the same GRU that updates the
attention mechanism’s state: mi

= GRU(e

i
,m

i�1

), and we set the memory m as m = m

TP . This
is equivalent to setting the memory to simply the attention mechanism’s final state, but we have de-
scribed it here as its own computation to highlight the potential modularity of these subcomponents.

For datasets that mark which facts are important for a given question, such as Facebook’s bAbI
dataset, the gates of Eq. 4 can be trained supervised with a standard cross entropy classification
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4.1 Question Answering

The Facebook bAbI dataset is a synthetic dataset meant to test a model’s ability to retrieve facts
and reason over them. Each task tests a different skill that a good question answering model ought
to have, such as coreference resolution, deduction, and induction. Training on the bAbI dataset

Task MemNN DMN Task MemNN DMN

1: Single Supporting Fact 100 100 11: Basic Coreference 100 99.9
2: Two Supporting Facts 100 98.2 12: Conjunction 100 100
3: Three Supporting facts 100 95.2 13: Compound Coreference 100 99.8
4: Two Argument Relations 100 100 14: Time Reasoning 99 100
5: Three Argument Relations 98 99.3 15: Basic Deduction 100 100
6: Yes/No Questions 100 100 16: Basic Induction 100 99.4
7: Counting 85 96.9 17: Positional Reasoning 65 59.6
8: Lists/Sets 91 96.5 18: Size Reasoning 95 95.3
9: Simple Negation 100 100 19: Path Finding 36 34.5
10: Indefinite Knowledge 98 97.5 20: Agent’s Motivations 100 100

Mean Accuracy (%) 93.3 93.6

Table 1: Test accuracies on the bAbI dataset. MemNN numbers taken from Weston et al. [18]. The
DMN passes (accuracy > 95%) 18 tasks, whereas the MemNN passes 16.

uses the following objective function: J = ↵ECE(Gates) + �ECE(Answers), where ECE is the
standard cross-entropy cost and ↵ and � are hyperparameters. In practice, we begin training with ↵

set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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set to 1 and � set to 0, and then later switch � to 1 while keeping ↵ at 1. We subsample the facts
from the input module by end-of-sentence tokens. The gate supervision aims to select one sentence
per pass; thus, we also experimented with modifying Eq. 6 to a simple softmax instead of a GRU.
Here, we compute the final episode vector via: e

i
=

PT
t=1

softmax(g

i
t)ct, where softmax(g

i
t) =

exp(gi
t)PT

j=1 exp(gi
j)

, and g

i
t here is the value of the gate before the sigmoid. This setting achieves better

results, likely because the softmax is better suited to picking one sentence at a time.

We list results in table 1. The DMN does worse than the MemNN on tasks 2 and 3, both tasks with
long input sequences. We suspect this is due to the recurrent input sequence model having trouble
modeling very long inputs. The MemNN does not suffer from this problem as it views each sentence
seperately. The power of the episodic memory module is evident in tasks 7 and 8, where the DMN
significantly outperforms the MemNN. Both tasks require the model to iteratively retrieve facts and
store them in a representation that slowly incorporates more of the relevant information of the input
sequence. Both models do poorly on tasks 17 and 19, though the MemNN does better. We suspect
this is due to the MemNN using n-gram features as well as explicit sequence position features.

4.2 Sequence Tagging: Part of Speech Tagging

Part-of-speech tagging is traditionally modeled as a sequence tagging problem: every word in a
sentence is to be classified into its part-of-speech class (see Fig. 1). We evaluate on the standard
Wall Street Journal dataset included in Penn-III [26]. We use the standard splits of sections 0-18
for training, 19-21 for development and 22-24 for test sets [27]. Since this is a word level tagging
task, DMN memories are produced at the word -rather than sentence- level. We compare the DMN

Model SVMTool Sogaard Suzuki et al. Spoustova et al. SCNN DMN

Acc (%) 97.15 97.27 97.40 97.44 97.50 97.56

Table 2: Test accuracies on WSJ-PTB

with the results in [27]. The DMN achieves state-of-the-art accuracy with a single model, reaching
a development set accuracy of 97.5. Ensembling the top 4 development models, the DMN gets to
97.58 dev and 97.56 test accuracies, achieving a new state-of-the-art (Table 2).
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4.3 Text Classification: Sentiment Analysis

Stanford Sentiment Treebank (SST) [2] is a popular dataset for sentiment classification. It provides
phrase-level fine-grained labels, and comes with a train/dev/test split. We present results on two
formats: fine-grained root prediction, where all full sentences (root nodes) of the test set are to
be classified as either very negative, negative, neutral, positive, or very positive, and binary root
prediction, where all non-neutral full sentences of the test set are to be classified as either positive
or negative. To train the model on the fine-grained task, we use all phrase-level labels. To train on
the binary task, we use all non-neutral phrase-level labels.

Task MV-RNN RNTN DCNN PVec CNN-MC DRNN CT-LSTM DMN

Binary 82.9 85.4 86.8 87.8 88.1 86.6 88.0 88.3
Fine-grained 44.4 45.7 48.5 48.7 47.4 49.8 51.0 50.3

Table 3: Test accuracies on SST [2]. Key: MV-RNN: Socher et al., 2013. RNTN: Socher et al.,
2013. DCNN: Blunsom et al., 2014. PVec: Le and Mikolov, 2014. CNN-MC: Kim, 2014. DRNN:
Irsoy and Cardie, 2014. CT-LSTM: Tai et al., 2015. All results as reported in [35]

For sentiment analysis, our gate function G needs only the first 3 components c,m, q of the function
z as defined in Eq. 3. The DMN achieves state-of-the-art accuracy on the binary classification task,
as well as near state-of-the-art on the fine-grained classification task.

Our DMN was trained with GRU sequence models and no tree structure. It is easy to replace the
GRU sequence model with any of the models listed above, as well as incorporate tree structure to
the retrieval process. These experiments were not run, and we consider them future work.

Preliminary Results: Machine Translation

Figure 4: Machine translation
training progress in terms of
log-perplexity.

We are also training the DMN for machine translation, comparing it
to the sequence-to-sequence LSTM model presented by Sutskever
et al. [16]. The sequence-to-sequence model is a special case of the
DMN in which only one memory at the end of the input sentence
is formed. Initial experiments on the smaller WMT13 English-to-
French News Commentary dataset used in Kalchbrenner [36] show
promising results. As seen in 4.3, the DMN is learning at a similar
pace to an implementation of the Seq-to-Seq LSTM model. For the
Seq-to-Seq LSTM, we use the hyperparameters listed in [16].

5 Conclusion

We believe the DMN is a potentially general model for a variety of NLP applications. The entire
model can be trained end-to-end with one, albeit complex, objective function. The model uses
some ideas from neuroscience such as semantic and episodic memories known to be required for
complex types of reasoning. Future work will explore additional tasks, larger multi-task models and
multimodal inputs and questions.
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Summary	
  

•  All	
  (?)	
  NLP	
  tasks	
  can	
  be	
  reduced	
  to	
  ques,on	
  answering	
  

•  The	
  DMN	
  can	
  very	
  accurately	
  train	
  with	
  	
  
input-­‐ques,on-­‐answer	
  triplets	
  

•  Next	
  steps:	
  One	
  very	
  large	
  mul,task	
  DMN	
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