
DEEP LEARNING FOR DISTRIBUTION ESTIMATION

Hugo Larochelle (@hugo_larochelle)
Twitter / Université de Sherbrooke

Joint work with Iain Murray, Benigno Uria, Yin Zheng, Stanislas Lauly, Mathieu GermainKarol Gregor

DISTRIBUTION ESTIMATION
• Task: produce a estimator of based on samples from it
‣ hard problem as dimensionality of observations increases

‣ very general problem

‣ often used as a proxy for feature learning

‣ can provide regularization cues for another model

p(x)
x

2
character image random image

Why is one
a character

and the other
is not ?

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)
‣ binary observations (with Mathieu Germain, Karol Gregor and Iain Murray)

3

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)
‣ binary observations (with Mathieu Germain, Karol Gregor and Iain Murray)

4

MIXTURE MODEL

5

• Simple, well understood model
• Performance can be disappointing

Distribution : p(x) =
CX

i=1

p(x|c = i)p(c = i) c

x

x1 x2 x3 x4

General graphical model

p(x) =
�

k

p(xk|x<k)

6

FULLY VISIBLE BAYESIAN NETWORKS

W

x̂

x

ck

Fully Visible Sigmoid
Belief Net (FVSBN)

�xk

p(xk = 1|x<k)

• Models as logistic regressionp(xk = 1|x<k)

NEURAL AUTOREGRESSIVE
DISTRIBUTION ESTIMATOR

• NADE: autoencoder-like neural
network wired to learn  
 
 
 

‣ in words, each conditional  
is modeled by the same neural network

• We can leverage the fact that: 

7

W

V

x

�x

h h h h(1) (2) (3) (4)

h(k) = sigm (b + W·,<kx<k)
�xk = sigm

�
ck + Vk,·h(k)

�

(b + W·,<k+1x<k+1)� (b + W·,<kx<k) = W·,k+1xk+1

p(xk|x<k)

p(xk|x<k)

NEURAL AUTOREGRESSIVE
DISTRIBUTION ESTIMATOR

• NADE: training by maximizing the average log-likelihood 

• Advantages
‣ efficient: computations are in O(HD)

‣ could make use of second-order optimizers

‣ easily extendable to other types of observations (reals, multinomials)

• What order for the inputs
‣ random order works fine!

8

1

T

TX

t=1

log p(x

(t)
) =

1

T

TX

t=1

DX

k=1

log p(x

(t)
k |x(t)

<k)

Manuscript under review by AISTATS 2011

Table 1: Distribution estimation results. To normalize the results, the average test log-likelihood (ALL) for each
model on a given dataset was subtracted by the ALL of MoB (which is given in the last row under “Normalization”).
95% confidence intervals are also given. The best result as well as any other result with an overlapping confidence
interval is shown in bold.

Model adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web

MoB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
± 0.10 ± 0.04 ± 0.53 ± 0.10 ± 1.12 ± 0.32 ± 0.11 ± 0.23

RBM 4.18 0.75 1.29 -0.69 12.65 -2.49 -1.29 0.78
± 0.06 ± 0.02 ± 0.48 ± 0.09 ± 1.07 ± 0.30 ± 0.11 ± 0.20

RBM 4.15 -1.72 1.45 -0.69 11.25 0.99 -0.04 0.02
mult. ± 0.06 ± 0.03 ± 0.40 ± 0.05 ± 1.06 ± 0.29 ± 0.11 ± 0.21
RBForest 4.12 0.59 1.39 0.04 12.61 3.78 0.56 -0.15

± 0.06 ± 0.02 ± 0.49 ± 0.07 ± 1.07 ± 0.28 ± 0.11 ± 0.21
FVSBN 7.27 11.02 14.55 4.19 13.14 1.26 -2.24 0.81

± 0.04 ± 0.01 ± 0.50 ± 0.05 ± 0.98 ± 0.23 ± 0.11 ± 0.20
NADE 7.25 11.42 13.38 4.65 16.94 13.34 0.93 1.77

± 0.05 ± 0.01 ± 0.57 ± 0.04 ± 1.11 ± 0.21 ± 0.11 ± 0.20
Normalization -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 -30.16

To measure the sensitivity of NADE to the ordering of
the observations we trained a dozen separate models for
the mushrooms, dna and nips-0-12 datasets using
di�erent random shu⇤ings. We then computed the
standard deviation of the twelve associated test log-
likelihood averages, for each of the datasets. Standard
deviations of 0.045, 0.050 and 0.150 were observed on
mushrooms, dna and nips-0-12 respectively, which
is quite reasonable when compared to the intrinsic
uncertainty associated with using a finite test set (see
the confidence intervals of Table 1). Hence, it does
not seem necessary to optimize the ordering of the
observation variables.

One could try to reduce the variance of the learned so-
lution by training an ensemble of several NADE models
on di�erent observation orderings, while sharing the
weight matrix W across those models but using di�er-
ent output matrices V. While we haven’t extensively
experimented with this variant, we have found such
sharing to produce better filters when used on the
binarized MNIST dataset (see next section).

6.2 NADE vs. an intractable RBM

While NADE was inspired by the RBM, does its per-
formance come close to that of the RBM in its most
typical regime, i.e. with hundreds of hidden units? In
other words, was tractability gained with a loss in
performance?

To answer these questions, we trained NADE on a
binarized version of the MNIST dataset. This ver-
sion was used by Salakhutdinov and Murray (2008) to

train RBMs with di�erent versions of contrastive di-
vergence and evaluate them as distribution estimators.
Since the partition function cannot be computed ex-
actly, it was approximated using annealed importance
sampling. This method estimates the mean of some
unbounded positive weights by an empirical mean of
samples. It isn’t possible to meaningfully upper-bound
the partition function from these results: the true test
log-likelihood averages could be much smaller than the
values and error bars reported by Salakhutdinov and
Murray (2008), although their approximations were
shown to be accurate in a tractable case.

RBMs with 500 hidden units were reported to ob-
tain �125.53, �105.50 and �86.34 in average test log-
likelihood when trained using contrastive divergence
with 1, 3 and 25 steps of Gibbs sampling, respectively.
In comparison, NADE with 500 hidden units, a learn-
ing rate of 0.0005 and a decrease constant of 0 obtained
�88.86. This is almost as good as the best RBM claim
and much better than RBMs trained with just a few
steps of Gibbs sampling. Again, it also improves over
mixtures of Bernoullis which, with 10, 100 and 500 com-
ponents obtain �168.95, �142.63 and �137.64 average
test log-likelihoods respectively (taken from Salakhut-
dinov and Murray (2008)). Finally, FVSBN trained
by stochastic gradient descent achieves �97.45 and
improves on the mixture models but not on NADE.

It then appears that tractability was gained at almost
no cost in terms of performance. We are also confident
that even better performance could have been achieved
with a better optimization method than stochastic gra-
dient descent. Indeed, the log-likelihood on the training

• Little variation when changing input ordering: 
 DNA = +/- 0.05  
 MUSHROOMS = +/- 0.045  
 NIPS-0-12 = +/- 0.15

9

EXPERIMENTS

• On a binarized version of MNIST:

Model Log. Like.
MoB -137.64

 RBM (CD1) -125.53
 RBM (CD3) -105.5

 RBM (CD25) -86.34
FVSBN -97.45
NADE -88.86

Manuscript under review by AISTATS 2011

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
⇧KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

⇧⇥k(i)

0 = �ck �Wk,·µ(i) + log
�

⇥k(i)
1� ⇥k(i)

⇥

⇥k(i)
1� ⇥k(i)

= exp(ck + Wk,·µ(i))

⇥k(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

⇥k(i) = sigm

⇧

⌥ck +

j⇥i

Wkjµj(i) +

j<i

Wkjvj

⌃

�

where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j ⇥ i to 0 and obtain:

0 =
⇧KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

⇧µj(i)

0 = �bj � ⇥(i)⇤W·,j + log
�

µj(i)
1� µj(i)

⇥

µj(i)
1� µj(i)

= exp(bj + ⇥(i)⇤W·,j)

µj(i) =
exp(bj + ⇥(i)⇤W·,j)

1 + exp(bj + ⇥(i)⇤W·,j)

µj(i) = sigm

⇤
bj +

k

Wkj⇥k(i)

⌅

We then recover the mean-field updates of Equa-
tions 7 and 8.

References

Bengio, Y., & Bengio, S. (2000). Modeling high-
dimensional discrete data with multi-layer neural
networks. Advances in Neural Information Process-
ing Systems 12 (NIPS’99) (pp. 400–406). MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems
19 (NIPS’06) (pp. 153–160). MIT Press.

Chen, X. R., Krishnaiah, P. R., & Liang, W. W. (1989).
Estimation of multivariate binary density using or-
thogonal functions. Journal of Multivariate Analysis,
31, 178–186.

Freund, Y., & Haussler, D. (1992). A fast and exact
learning rule for a restricted class of Boltzmann ma-
chines. Advances in Neural Information Processing
Systems 4 (NIPS’91) (pp. 912–919). Denver, CO:
Morgan Kaufmann, San Mateo.

Frey, B. J. (1998). Graphical models for machine learn-
ing and digital communication. MIT Press.

Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the
wake-sleep algorithm learn good density estimators?
Advances in Neural Information Processing Systems
8 (NIPS’95) (pp. 661–670). MIT Press, Cambridge,
MA.

Hinton, G. E. (2002). Training products of experts by
minimizing contrastive divergence. Neural Computa-
tion, 14, 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Larochelle, H., & Bengio, Y. (2008). Classification using
discriminative restricted Boltzmann machines. Pro-
ceedings of the 25th Annual International Conference

Sam
plesIn

tra
ct

ab
le{ �
�
�

*

*

*

*

* : taken from Salakhutdinov and Murray (2008) 10

EXPERIMENTS

• On a binarized version of MNIST:Manuscript under review by AISTATS 2011

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
⇧KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

⇧⇥k(i)

0 = �ck �Wk,·µ(i) + log
�

⇥k(i)
1� ⇥k(i)

⇥

⇥k(i)
1� ⇥k(i)

= exp(ck + Wk,·µ(i))

⇥k(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

⇥k(i) = sigm

⇧

⌥ck +

j⇥i

Wkjµj(i) +

j<i

Wkjvj

⌃

�

where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j ⇥ i to 0 and obtain:

0 =
⇧KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

⇧µj(i)

0 = �bj � ⇥(i)⇤W·,j + log
�

µj(i)
1� µj(i)

⇥

µj(i)
1� µj(i)

= exp(bj + ⇥(i)⇤W·,j)

µj(i) =
exp(bj + ⇥(i)⇤W·,j)

1 + exp(bj + ⇥(i)⇤W·,j)

µj(i) = sigm

⇤
bj +

k

Wkj⇥k(i)

⌅

We then recover the mean-field updates of Equa-
tions 7 and 8.

References

Bengio, Y., & Bengio, S. (2000). Modeling high-
dimensional discrete data with multi-layer neural
networks. Advances in Neural Information Process-
ing Systems 12 (NIPS’99) (pp. 400–406). MIT Press.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems
19 (NIPS’06) (pp. 153–160). MIT Press.

Chen, X. R., Krishnaiah, P. R., & Liang, W. W. (1989).
Estimation of multivariate binary density using or-
thogonal functions. Journal of Multivariate Analysis,
31, 178–186.

Freund, Y., & Haussler, D. (1992). A fast and exact
learning rule for a restricted class of Boltzmann ma-
chines. Advances in Neural Information Processing
Systems 4 (NIPS’91) (pp. 912–919). Denver, CO:
Morgan Kaufmann, San Mateo.

Frey, B. J. (1998). Graphical models for machine learn-
ing and digital communication. MIT Press.

Frey, B. J., Hinton, G. E., & Dayan, P. (1996). Does the
wake-sleep algorithm learn good density estimators?
Advances in Neural Information Processing Systems
8 (NIPS’95) (pp. 661–670). MIT Press, Cambridge,
MA.

Hinton, G. E. (2002). Training products of experts by
minimizing contrastive divergence. Neural Computa-
tion, 14, 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Larochelle, H., & Bengio, Y. (2008). Classification using
discriminative restricted Boltzmann machines. Pro-
ceedings of the 25th Annual International Conference

Probabilities

Model Log. Like.
MoB -137.64

 RBM (CD1) -125.53
 RBM (CD3) -105.5

 RBM (CD25) -86.34
FVSBN -97.45
NADE -88.86

In
tra

ct
ab

le{ �
�
�

*

*

*

*

* : taken from Salakhutdinov and Murray (2008) 11

EXPERIMENTS

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)
‣ binary observations (with Mathieu Germain, Karol Gregor and Iain Murray)

12

REAL-VALUED NADE
(Uria, Murray, Larochelle)

13

x1 x2 x3 x4

h hh(1) h (4)(3)(2)

bx1 bx2 bx3 bx4

• RNADE: models real-valued observations by
‣ outputting the parameters 

of a mixture model for  

Means

Std. deviations

Mixing weights

p(xk|x<k)

�ik = exp(b�i
k +V�i

k,·h
(k)

)

µik = bµi

k +Vµi

k,·h
(k)

⇡ik = softmax(b⇡i
k +V⇡i

k,·h
(k)

)

REAL-VALUED NADE
(Uria, Murray, Larochelle)

14

x1 x2 x3 x4

h hh(1) h (4)(3)(2)

bx1 bx2 bx3 bx4

• RNADE: models real-valued observations by
‣ gradient descent training

‣ rectified linear units

‣ learned a position-specific 
scaling factor, applied 
before the activation 
function

‣ we also experimented with  
mixture of Laplacians

EXPERIMENTS
(Uria, Murray, Larochelle)

15

• UCI datasets: comparison with
‣ mixture of Gaussians

‣ mixture of factor analyzersTable 1: Average test-set log-likelihood per datapoint for 4 different models on five UCI datasets.
RNADE using mixture of Gaussian conditionals obtained the best results on all datasets.

Dataset dim size Gaussian MFA RNADE-MoG RNADE-MoL

Red wine 11 1599 −13.18 −10.19 �9.36 −9.46
White wine 11 4898 −13.20 −10.73 �10.23 −10.38
Parkinsons 15 5875 −10.85 −1.99 �0.90 −2.63
Ionosphere 32 351 −41.24 −17.55 �2.50 −5.87
Boston housing 10 506 −11.37 −4.54 �0.64 −4.04

4 Experiments

We compared RNADE to mixtures of Gaussians (MoG) and factor analyzers (MFA), which are
surprisingly strong baselines in some tasks [20, 21]. Given the poor performance of discrete mix-
tures [4, 5], we limited our experiments to modeling continuous attributes. However it would be easy
to include both discrete and continuous variables in a NADE-like architecture.

4.1 Low-dimensional data

We first considered five UCI datasets [22], previously used to study the performance of other density
estimators [23, 20]. These datasets have relatively low dimensionality, with between 10 and 32
attributes, but have hard thresholds and non-linear dependencies that may make it difficult to fit
mixtures of Gaussians or factor analyzers.

Following Tang et al. [20], we eliminated discrete-valued attributes and an attribute from every pair
with a Pearson correlation coefficient greater than 0.98. Each dimension of the data was normalized
by subtracting its training subset sample mean and dividing by its standard deviation. All results are
reported on the normalized data.

As baselines we fitted full-covariance Gaussians and mixtures of factor analysers. To measure the
performance of the different models, we calculated their log-likelihood on held-out test data. Because
these datasets are small, we used 10-folds, with 90% of the data for training, and 10% for testing.

We chose the hyperparameter values for each model by doing per-fold cross-validation; using a ninth
of the training data as validation data. Once the hyperparameter values had been chosen, we trained
each model using all the training data (including the validation data) and measured its performance
on the 10% of held-out testing data. In order to avoid overfitting, we stopped the training after
reaching a training likelihood higher than the one obtained on the best validation-wise iteration of the
corresponding validation run. Early stopping is crucial to avoid overfitting the RNADE models. It
also improves the results of the MFAs, but to a lesser degree.

The MFA models were trained using the EM algorithm [24, 25], the number of components and
factors were crossvalidated. The number of factors was chosen from even numbers from 2 . . . D,
where selecting D gives a mixture of Gaussians. The number of components was chosen among all
even numbers from 2 . . . 50 (crossvalidation always selected fewer than 50 components).

RNADE-MoG and RNADE-MoL models were fitted using minibatch stochastic gradient descent,
using minibatches of size 100, for 500 epochs, each epoch comprising 10 minibatches. For each
experiment, the number of hidden units, the non-linear activation-function of the hidden units,
and the form of the conditionals were fixed. Three hyperparameters were crossvalidated using
grid-search: the number of components on each one-dimensional conditional was chosen from
the set {2, 5, 10, 20}; the weight-decay (used only to regularize the input to hidden weights) from
the set {2.0, 1.0, 0.1, 0.01, 0.001, 0}; and the learning rate from the set {0.1, 0.05, 0.025, 0.0125}.
Learning-rates were decreased linearly to reach 0 after the last epoch.

The results are shown in Table 1. An RNADE with mixture of Gaussian conditionals obtained higher
log-likelihoods than any of the other models on all datasets. Unfortunately we couldn’t reproduce the
data-folds used by previous work, however, our improvements are larger than those demonstrated by
a deep mixture of factor analyzers over standard MFA [20].

4

EXPERIMENTS
(Uria, Murray, Larochelle)

16

• Natural image patches: comparison with
‣ mixture of Gaussians

Table 2: Average per-example log-likelihood of several mixture of Gaussian and RNADE models,
with mixture of Gaussian (MoG) or mixture of Laplace (MoL) conditionals, on 8-by-8 patches of
natural images. These results are measured in nats and were calculated using one million patches.
Standard errors are lower than 0.1 in every case. K gives the number of one-dimensional components
for each conditional in RNADE, and the number of full-covariance components for MoG.

Model Training LogL Test LogL

MoG K =200 (Z&W) 161.9 152.8
MoG K =100 152.8 144.7
MoG K =200 159.3 150.4
MoG K =300 159.3 150.4
RNADE-MoG K =5 158.0 149.1
RNADE-MoG K =10 160.0 151.0
RNADE-MoG K =20 158.6 149.7
RNADE-MoL K =5 150.2 141.5
RNADE-MoL K =10 149.7 141.1
RNADE-MoL K =20 150.1 141.5
RNADE-MoG K =10 (sigmoid h. units) 155.1 146.4
RNADE-MoL K =10 (1024 units, 400 epochs) 161.1 152.1

The results are shown in Table 2. We compare RNADE with a mixtures of Gaussians model trained
on 63 pixels, and with a MoG trained by Zoran and Weiss (downloaded from Daniel Zoran’s website)
from which we removed the 64th row and column of each covariance matrix. The best RNADE test
log-likelihood is, on average, 0.7 nats per patch lower than Zoran and Weiss’s MoG, which had a
different training procedure than our mixture of Gaussians.

Figure 1 shows a few examples from the test set, and samples from the MoG and RNADE models.
Some of the samples from RNADE are unnaturally noisy, with pixel values outside the legal range
(see fourth sample from the right in Figure 1). If we constrain the pixels values to a unit range, by
rejection sampling or otherwise, these artifacts go away. Limiting the output range of the model
would also improve test likelihood scores slightly, but not by much: log-likelihood does not strongly
penalize models for putting a small fraction of probability mass on ‘junk’ images.

All of the results in this section were obtained by fitting the pixels in a raster-scan order. Perhaps
surprisingly, but consistent with previous results on NADE [5] and by Frey [28], randomizing
the order of the pixels made little difference to these results. The difference in performance was
comparable to the differences between multiple runs with the same pixel ordering.

4.3 Speech acoustics

We also measured the ability of RNADE to model small patches of speech spectrograms, extracted
from the TIMIT dataset [29]. The patches contained 11 frames of 20 filter-banks plus energy; totaling
231 dimensions per datapoint. These filter-bank encoding is common in speech-recognition, and
better for visualization than the more frequently used MFCC features. A good generative model of
speech could be used, for example, in denoising, or speech detection tasks.

We fitted the models using the standard TIMIT training subset, and compared RNADE with a MoG
by measuring their log-likelihood on the complete TIMIT core-test dataset.

The RNADE model has 1024 rectified-linear hidden units and a mixture of 20 one-dimensional
Gaussian components per output. Given the larger scale of this dataset hyperparameter choices were
again made manually using validation data, and the same minibatch training procedures for RNADE
and MoG were used as for natural image patches.

The results are shown in Table 3. RNADE obtained, on average, 10 nats more per test example
than a mixture of Gaussians. In Figure 2 a few examples from the test set, and samples from the
MoG and RNADE models are shown. In contrast with the log-likelihood measure, there are no
marked differences between the samples from each model. Both set of samples look like blurred

6

EXPERIMENTS
(Uria, Murray, Larochelle)

17

• TIMIT spectrograms: comparison with
‣ mixture of Gaussians

Table 3: Log-likelihood of several MoG and RNADE models on the core-test set of TIMIT measured
in nats. RNADE obtained a higher (better) log-likelihood.

Model Training LogL Test LogL

MoG N =50 111.6 110.4 (SE: 0.3)
MoG N =100 113.4 112.0 (SE: 0.3)
MoG N =200 113.9 112.5 (SE: 0.3)
MoG N =300 114.1 112.5 (SE: 0.3)
RNADE-MoG K =10 125.9 123.9 (SE: 0.3)
RNADE-MoG K =20 126.7 124.5 (SE: 0.3)
RNADE-MoL K =10 120.3 118.0 (SE: 0.3)
RNADE-MoL K =20 122.2 119.8 (SE: 0.3)

Figure 2: Top: 15 datapoints from the TIMIT core-test set. Center: 15 samples from a MoG model
with 200 components. Bottom: 15 samples from an RNADE with 512 hidden units and output
components per dimension. On each plot, time is shown on the horizontal axis, the bottom row
displays the energy feature, while the others display the filter bank features (in ascending frequency
order from the bottom). All data and samples were drawn randomly.

spectrograms, but RNADE seems to capture sharper formant structures (peaks of energy at the lower
frequency bands characteristic of vowel sounds).

5 Discussion

Mixture Density Networks (MDNs) [6] are a flexible conditional model of probability densities,
that can capture skewed, heavy-tailed, and multi-modal distributions. In principle, MDNs can be
applied to multi-dimensional data. However, the number of parameters that the network has to output
grows quadratically with the number of targets, unless the targets are assumed independent. RNADE
exploits an autoregressive framework to apply practical, one-dimensional MDNs to unsupervised
density estimation.

To specify an RNADE we needed to set the parametric form for the output distribution of each
MDN. A sufficiently large mixture of Gaussians can closely represent any density, but it is hard to
learn the conditional densities found in some problems with this representation. The marginal for
the brightness of a pixel in natural image patches is heavy tailed, closer to a Laplace distribution
than Gaussian. Therefore, RNADE-MoG must fit predictions of the first pixel, p(x1), with several
Gaussians of different widths, that coincidentally have zero mean. This solution can be difficult to
fit, and RNADE with a mixture of Laplace outputs predicted the first pixel of image patches better
than with a mixture of Gaussians (Figure 3b and c). However, later pixels were predicted better
with Gaussian outputs (Figure 3f); the mixture of Laplace model is not suitable for predicting with
large contexts. For image patches, a scale mixture can work well [11], and could be explored within
our framework. However for general applications, scale mixtures within RNADE would be too
restrictive (e.g., p(x1) would be zero-mean and unimodal). More flexible one-dimensional forms
may aid RNADE to generalize better for different context sizes and across a range of applications.

7

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)
‣ binary observations (with Mathieu Germain, Karol Gregor and Iain Murray)

18

• DocNADE: models multinomial observations by
‣ outputting a multinomial 

distribution

‣ for efficiency, we use a 
tree structured 
multinomial

DOCUMENT NADE
(Larochelle, Lauly)

19

x1 x2 x3 x4

h hh(1) h (4)(3)(2)

bx1 bx2 bx3 bx4

x4

p(⇡(xk)m = 1|x<k) =

sigm(c
l(xk)m +V

l(xk)m,·h
(k))

p(xk = w|x<k) =

|⇡(xk)|Y

m=1

p(⇡(x
k

)
m

|x
<k

)

TREE STRUCTURED MULTINOMIAL

• Example: [‘‘ and ’’, ‘‘ dog ’’, ‘‘ the ’’, ‘‘ the ’’, ‘‘ cat ’’]

20

 ‘‘ and ’’

‘‘ dog ’’

‘‘ the ’’

 ‘‘ the ’’

...
...

‘‘ dog ’’ ‘‘ the ’’ ‘‘ and ’’ ‘‘ cat ’’ ‘‘ he ’’ ‘‘ have ’’ ‘‘ be ’’ ‘‘ OOV ’’

1

2

4 5 6 7

3

V

p(‘‘ cat ’’ | context) =

TREE STRUCTURED MULTINOMIAL

21

...
...

‘‘ dog ’’ ‘‘ the ’’ ‘‘ and ’’ ‘‘ cat ’’ ‘‘ he ’’ ‘‘ have ’’ ‘‘ be ’’ ‘‘ OOV ’’

1

2

4 5 6 7

3

V

p(‘‘ cat ’’ | context) = p(branch left at 1| context)
x p(branch right at 2| context)
x p(branch right at 5| context)

 ‘‘ and ’’

‘‘ dog ’’

‘‘ the ’’

 ‘‘ the ’’

• Example: [‘‘ and ’’, ‘‘ dog ’’, ‘‘ the ’’, ‘‘ the ’’, ‘‘ cat ’’]

TREE STRUCTURED MULTINOMIAL

22

...
...

‘‘ dog ’’ ‘‘ the ’’ ‘‘ and ’’ ‘‘ cat ’’ ‘‘ he ’’ ‘‘ have ’’ ‘‘ be ’’ ‘‘ OOV ’’

1

2

4 5 6 7

3

V

p(‘‘ cat ’’ | context) = (1-p(branch right at 1| context))
x p(branch right at 2| context)
x p(branch right at 5| context)

 ‘‘ and ’’

‘‘ dog ’’

‘‘ the ’’

 ‘‘ the ’’

• Example: [‘‘ and ’’, ‘‘ dog ’’, ‘‘ the ’’, ‘‘ the ’’, ‘‘ cat ’’]

TREE STRUCTURED MULTINOMIAL

23

...
...

‘‘ dog ’’ ‘‘ the ’’ ‘‘ and ’’ ‘‘ cat ’’ ‘‘ he ’’ ‘‘ have ’’ ‘‘ be ’’ ‘‘ OOV ’’

1

2

4 5 6 7

3

V

p(‘‘ cat ’’ | context) = ‘‘ and ’’

‘‘ dog ’’

‘‘ the ’’

 ‘‘ the ’’

• Example: [‘‘ and ’’, ‘‘ dog ’’, ‘‘ the ’’, ‘‘ the ’’, ‘‘ cat ’’]

(1 - sigm(c1 + V1,· h(x)))
x sigm(c2 + V2,· h(x))
x sigm(c5 + V5,· h(x))

• DocNADE: models multinomial observations by
‣ for bags of words, we have

- unordered words

- variable number of words

‣ we share all parameters  
across conditionals 
(not position dependent)

DOCUMENT NADE
(Larochelle, Lauly)

24

x1 x2 x3 x4

h hh(1) h (4)(3)(2)

bx1 bx2 bx3 bx4

x4

h(k) = sigm

b+

X

i<k

W·,xi

!

word ID

DOCUMENT NADE
(Larochelle, Lauly)

25

• Text modeling
‣ we shuffle the word order at every update

- learning not to insert «intruder words» at any position in the document

- useful if word order is not available

‣ we evaluate the model on two measures
- perplexity (normalized by document length)

- information retrieval

EXPERIMENTS
(Larochelle, Lauly)

26

• Text modeling: comparison with
‣ LDA

‣ Replicated Softmax

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Data Set LDA (50) LDA (200) Replicated DocNADE (50) DocNADE
Softmax (50) St. Dev

20 Newsgroups 1091 1058 953 896 6.9
RCV1-v2 1437 1142 988 742 4.5

Table 1: Average test perplexity per word for LDA with 50 and 200 latent topics, Replicated Softmax
with 50 topics and DocNADE with 50 topics. The last column gives the standard deviation of the
perplexity obtained by computing the test perplexity 100 times, with different random permutations
of the document words. The results for LDA and Replicated Softmax were taken from Salakhutdinov
and Hinton [2].

We used the version of DocNADE that trains from document word counts. To approximate the
corresponding distribution p(v) of Equation 12, we sample a single permuted word sequence ev
from the word counts. This might seem like a crude approximation, but, as we’ll see, the value of
p(

ev) tends not to vary a lot across different random permutations of the words.

Instead of minimizing the averaged document log-likelihood � 1
N

P
t log p(vt

), we also considered
minimizing a version normalized by each document’s size � 1

N

P
t

1
|vt| log p(vt

), though the differ-
ence in performance between both ended up not being large. For 20 newsgroups, the model with
the best perplexity on the validation set used a learning rate of 0.001, sigmoid hidden activation
and optimized the document averaged document log-likelihood (non-normalized). For RCV1-v2, a
learning rate of 0.1, with sigmoid hidden activation and optimization of the objective normalize by
document size performed best.

The results are reported in Table 1. A comparison is made with LDA using 50 or 200 topics and the
Replicated Softmax with 50 topics. The results for LDA and Replicated Softmax were taken from
Salakhutdinov and Hinton [2]. We see that DocNADE achieves lower perplexity than both models.
On RCV1-v2, DocNADE reaches a perplexity that is almost half that of LDA with 50 topics. We
also provide the standard deviation of the perplexity obtained by repeating 100 times the calculation
of the perplexity on the test set using different permuted word sequences ev. We see that it is fairly
small, which confirms that the value of p(

ev) does not vary a lot across different permutations. This
is consistent with the observation made by Larochelle and Murray [3] that results are stable with
respect to the choice of ordering for the conditionals p(vi|v<i).

6.2 Document Retrieval Evaluation

We also evaluated the quality of the document representation h(v) learned by DocNADE in an
information retrieval task using the 20 Newsgroups data set and its label information. In this context,
all test documents were each used as queries and compared to a fraction of the closest documents in
the original training set. Similarity between documents is computed using the cosine angle between
document representations. We then compute the average number of retrieved training documents
sharing the same label as the query (precision), and so for different fractions of retrieved documents.

For learning, we set aside 1000 documents for validation. For model selection, we used the val-
idation set as the query set and used the average precision at 0.02% retrieved documents as the
performance measure. We used only the training objective normalized by the document size and set
the maximum number of training passes to 973 (approximately 10 million parameter updates). The
best learning rate was 0.01, with tanh hidden activation. Notice that the labels are not used during
training.

Since Salakhutdinov and Hinton [2] showed that it strictly outperforms LDA on this problem, we
only compare to the Replicated Softmax. We performed stochastic gradient descent based on the
contrastive divergence approximation during 973 training passes, and so for different learning rates.
As recommended in Salakhutdinov and Hinton [2], we gradually increased the number of Gibbs
sampling steps K from 1 to 25, but also tried increasing it only to 5 or maintaining it to K = 1.
Optionally, we also used mean-field inference for the first few training passes. The best combination
of these choices was selected based on validation performance.

7

Perplexity Results

EXPERIMENTS
(Larochelle, Lauly)

27

• Text modeling: comparison with
‣ Replicated Softmax

Information Retrieval
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Hidden unit topics
jesus shuttle season encryption

atheism orbit players escrow
christianity lunar nhl pgp

christ spacecraft league crypto
athos nasa braves nsa

atheists space playoffs rutgers
bible launch rangers clipper

christians saturn hockey secure
sin billion pitching encrypted

atheist satellite team keys

Figure 2: (Left) Information retrieval task results, on 20 Newsgroups data set. The error bars corre-
spond to the standard errors. (Right) Illustration of some topics learned by DocNADE. A topic i is
visualized by picking the 10 words w with strongest connection Wiw.

Table 2: The five nearest neighbors in the word representation space learned by DocNADE.

weapons medical companies define israel book windows
weapon treatment demand defined israeli reading dos
shooting medecine commercial definition israelis read microsoft
firearms patients agency refer arab books version
assault process company make palestinian relevent ms
armed studies credit examples arabs collection pc

The final results are presented in Figure 2. We see that DocNADE compares favorably with the
Replicated Softmax. DocNADE is never outperformed by the Replicated Softmax and outperforms
it for the intermediate retrieval fractions.

6.3 Qualitative Inspection of Learned Representations

Since topic models are often used for the exploratory analysis of unlabeled text, we looked at
whether meaningful semantics were captured by DocNADE. First, to inspect the nature of topics
modeled by the hidden units, we looked at the words with strongest positive connections to that
hidden unit, i.e. the words w that have the largest values of Wi,w for the ith hidden unit. Figure 2
shows four topics extracted this way and that could be understood as topics about religion, space,
sports and security, which are label (sub)categories in 20 Newsgroups. We can also extract word
representations, by using the columns W:,w as the vector representation of each word w. Table 2
shows the five nearest neighbors of some selected words in this space, confirming that the word
representations are meaningful. In the supplementary material, we also provide 2D visualizations of
these representations based on t-SNE [15], for 20 Newsgroups and RCV1-v2.

7 Conclusion

We have proposed DocNADE, an unsupervised neural network topic model of documents and have
shown that it is a competitive model both as a generative model and as a document representa-
tion learning algorithm. Its training has the advantageous property of scaling sublinearly with the
vocabulary size.

Since the early work on topic modeling, research on the subject has progressed by developing
Bayesian algorithms for topic modeling, by exploiting labeled data and by incorporating more struc-
ture within the latent topic representation. We feel like this is a plausible and most natural course to
follow for future research.

8

EXPERIMENTS
(Larochelle, Lauly)

28

• Text modeling: learned representation

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Hidden unit topics
jesus shuttle season encryption

atheism orbit players escrow
christianity lunar nhl pgp

christ spacecraft league crypto
athos nasa braves nsa

atheists space playoffs rutgers
bible launch rangers clipper

christians saturn hockey secure
sin billion pitching encrypted

atheist satellite team keys

Figure 2: (Left) Information retrieval task results, on 20 Newsgroups data set. The error bars corre-
spond to the standard errors. (Right) Illustration of some topics learned by DocNADE. A topic i is
visualized by picking the 10 words w with strongest connection Wiw.

Table 2: The five nearest neighbors in the word representation space learned by DocNADE.

weapons medical companies define israel book windows
weapon treatment demand defined israeli reading dos
shooting medecine commercial definition israelis read microsoft
firearms patients agency refer arab books version
assault process company make palestinian relevent ms
armed studies credit examples arabs collection pc

The final results are presented in Figure 2. We see that DocNADE compares favorably with the
Replicated Softmax. DocNADE is never outperformed by the Replicated Softmax and outperforms
it for the intermediate retrieval fractions.

6.3 Qualitative Inspection of Learned Representations

Since topic models are often used for the exploratory analysis of unlabeled text, we looked at
whether meaningful semantics were captured by DocNADE. First, to inspect the nature of topics
modeled by the hidden units, we looked at the words with strongest positive connections to that
hidden unit, i.e. the words w that have the largest values of Wi,w for the ith hidden unit. Figure 2
shows four topics extracted this way and that could be understood as topics about religion, space,
sports and security, which are label (sub)categories in 20 Newsgroups. We can also extract word
representations, by using the columns W:,w as the vector representation of each word w. Table 2
shows the five nearest neighbors of some selected words in this space, confirming that the word
representations are meaningful. In the supplementary material, we also provide 2D visualizations of
these representations based on t-SNE [15], for 20 Newsgroups and RCV1-v2.

7 Conclusion

We have proposed DocNADE, an unsupervised neural network topic model of documents and have
shown that it is a competitive model both as a generative model and as a document representa-
tion learning algorithm. Its training has the advantageous property of scaling sublinearly with the
vocabulary size.

Since the early work on topic modeling, research on the subject has progressed by developing
Bayesian algorithms for topic modeling, by exploiting labeled data and by incorporating more struc-
ture within the latent topic representation. We feel like this is a plausible and most natural course to
follow for future research.

8

EXPERIMENTS
(Larochelle, Lauly)

29

• Text modeling: learned representation

• Timing for 1 training iteration (20 newsgroups / RCV1-v2)
- DocNADE: 13 sec. / 726 sec.

- Replicated Softmax CD1: 28 sec. / 4945 sec.

- Replicated Softmax CD5: 60 sec. / 11000 sec.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Hidden unit topics
jesus shuttle season encryption

atheism orbit players escrow
christianity lunar nhl pgp

christ spacecraft league crypto
athos nasa braves nsa

atheists space playoffs rutgers
bible launch rangers clipper

christians saturn hockey secure
sin billion pitching encrypted

atheist satellite team keys

Figure 2: (Left) Information retrieval task results, on 20 Newsgroups data set. The error bars corre-
spond to the standard errors. (Right) Illustration of some topics learned by DocNADE. A topic i is
visualized by picking the 10 words w with strongest connection Wiw.

Table 2: The five nearest neighbors in the word representation space learned by DocNADE.

weapons medical companies define israel book windows
weapon treatment demand defined israeli reading dos
shooting medecine commercial definition israelis read microsoft
firearms patients agency refer arab books version
assault process company make palestinian relevent ms
armed studies credit examples arabs collection pc

The final results are presented in Figure 2. We see that DocNADE compares favorably with the
Replicated Softmax. DocNADE is never outperformed by the Replicated Softmax and outperforms
it for the intermediate retrieval fractions.

6.3 Qualitative Inspection of Learned Representations

Since topic models are often used for the exploratory analysis of unlabeled text, we looked at
whether meaningful semantics were captured by DocNADE. First, to inspect the nature of topics
modeled by the hidden units, we looked at the words with strongest positive connections to that
hidden unit, i.e. the words w that have the largest values of Wi,w for the ith hidden unit. Figure 2
shows four topics extracted this way and that could be understood as topics about religion, space,
sports and security, which are label (sub)categories in 20 Newsgroups. We can also extract word
representations, by using the columns W:,w as the vector representation of each word w. Table 2
shows the five nearest neighbors of some selected words in this space, confirming that the word
representations are meaningful. In the supplementary material, we also provide 2D visualizations of
these representations based on t-SNE [15], for 20 Newsgroups and RCV1-v2.

7 Conclusion

We have proposed DocNADE, an unsupervised neural network topic model of documents and have
shown that it is a competitive model both as a generative model and as a document representa-
tion learning algorithm. Its training has the advantageous property of scaling sublinearly with the
vocabulary size.

Since the early work on topic modeling, research on the subject has progressed by developing
Bayesian algorithms for topic modeling, by exploiting labeled data and by incorporating more struc-
ture within the latent topic representation. We feel like this is a plausible and most natural course to
follow for future research.

8

• Supervised DocNADE: incorporate label by
‣ adding a final, supervised layer

SUPERVISED DOCNADE
(Zheng, Zhang, Larochelle)

30

x1 x2 x3 x4

h hh(1) h (4)(3)(2)

bx1 bx2 bx3 bx4

x4

h(y)

y

• Scene classif/annotation
‣ images are converted into a bag of «visual» words

- extracted by k-means on dense SIFT features

- grid pooling: assign different word IDs for visual words in
different regions

‣ add the annotation words
- word tree contains both visual and annotation words

‣ use hybrid training loss:

‣ used as features to an SVM
- annotations are not used at test time

SUPERVISED DOCNADE
(Zheng, Zhang, Larochelle)

31

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

� log p(x, y) = � log p(y|x) + �

DX

k=1

� log p(xk|x<k)

Image:

Annotation:

Label:

EXPERIMENTS
(Zheng, Zhang, Larochelle)

32

• Scene classification: comparison with
‣ Supervised LDA

‣ DocNADE Classification Results

60 80 100 120 140 160 180 200 220
Number of Topics

65

70

75

80

85

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on Scene15

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

72

74

76

78

80

82

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on Scene15

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

Figure 2: Classification performance comparison on Scene15 dataset. The left figure shows the performance compar-
ison between SupDocNADE, DocNADE and sLDA. The figure on the right compares the performance of different
variants of SupDocNADE.

60 80 100 120 140 160 180 200 220
Number of Topics

81

82

83

84

85

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on LabelMe

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

72

73

74

75

76

77

78

79

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on UIUC-Sports

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

80

81

82

83

84

85

86

87

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on LabelMe

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

60 80 100 120 140 160 180 200 220
Number of Topics

72

73

74

75

76

77

78

79

80

81

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on UIUC-Sports

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

Figure 3: Classification performance comparison on LabelMe and UIUC-Sports datasets. In the top row, we compare
the classification performance of SupDocNADE, DocNADE and sLDA. In the bottom row, we compare the perfor-
mance between different variants of SupDocNADE. Results on LabelMe are on the left and results on UIUC-Sports
are on the right.

9

EXPERIMENTS
(Zheng, Zhang, Larochelle)

33

• Scene classification: comparison with
‣ variants of Supervised DocNADE

Classification Results

60 80 100 120 140 160 180 200 220
Number of Topics

65

70

75

80

85

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on Scene15

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

72

74

76

78

80

82

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on Scene15

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

Figure 2: Classification performance comparison on Scene15 dataset. The left figure shows the performance compar-
ison between SupDocNADE, DocNADE and sLDA. The figure on the right compares the performance of different
variants of SupDocNADE.

60 80 100 120 140 160 180 200 220
Number of Topics

81

82

83

84

85

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on LabelMe

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

72

73

74

75

76

77

78

79

80

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on UIUC-Sports

SupDocNADE(2 ⇥ 2), � varies
sLDA(2 ⇥ 2)

DocNADE(2 ⇥ 2)

60 80 100 120 140 160 180 200 220
Number of Topics

80

81

82

83

84

85

86

87

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on LabelMe

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

60 80 100 120 140 160 180 200 220
Number of Topics

72

73

74

75

76

77

78

79

80

81

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

%

Classification Performance on UIUC-Sports

SupDocNADE(2 ⇥ 2), � varies
SupDocNADE(1 ⇥ 1), � varies
SupDocNADE(2 ⇥ 2), � = 1

SupDocNADE(2 ⇥ 2), � = 0

Figure 3: Classification performance comparison on LabelMe and UIUC-Sports datasets. In the top row, we compare
the classification performance of SupDocNADE, DocNADE and sLDA. In the bottom row, we compare the perfor-
mance between different variants of SupDocNADE. Results on LabelMe are on the left and results on UIUC-Sports
are on the right.

9

• Scene annotation: learned representation

EXPERIMENTS
(Zheng, Zhang, Larochelle)

34

building,
buildings,
window,
person walking,
sky

Class: Street
Visual words Annotation words

athlete,
sky,
boat,
oar,
floater

Class: Sailing
Visual words Annotation words

tree trunk,
tree,
trees,
stone,
sky

Class: Forest
Visual words Annotation words

car
car occluded,
road,
fence,
trees

Class: Highway
Visual words Annotation words

Figure 4: Visualization of learned representations. Class labels are colored in red. For each class, we list 4 visual
words (each represented by 16 image patches) and 5 annotation words that are strongly associated with each class.
See Section 5.4 for more details.

(as typical with neural networks), it has the advantage of not requiring any iterative, approximate inference procedure
to compute an image’s representation. Our experiments confirm that SupDocNADE is a competitive approach for the
classification and annotation of images.

References
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” JMLR, 2003.

[2] C. Wang, D. Blei, and F.-F. Li, “Simultaneous image classification and annotation,” in CVPR, 2009.

[3] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories,” in CVPR, 2006.

[4] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classi-
fication,” in CVPR, 2009.

11

• Scene annotation: learned representation

EXPERIMENTS
(Zheng, Zhang, Larochelle)

35

building,
buildings,
window,
person walking,
sky

Class: Street
Visual words Annotation words

athlete,
sky,
boat,
oar,
floater

Class: Sailing
Visual words Annotation words

tree trunk,
tree,
trees,
stone,
sky

Class: Forest
Visual words Annotation words

car
car occluded,
road,
fence,
trees

Class: Highway
Visual words Annotation words

Figure 4: Visualization of learned representations. Class labels are colored in red. For each class, we list 4 visual
words (each represented by 16 image patches) and 5 annotation words that are strongly associated with each class.
See Section 5.4 for more details.

(as typical with neural networks), it has the advantage of not requiring any iterative, approximate inference procedure
to compute an image’s representation. Our experiments confirm that SupDocNADE is a competitive approach for the
classification and annotation of images.

References
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” JMLR, 2003.

[2] C. Wang, D. Blei, and F.-F. Li, “Simultaneous image classification and annotation,” in CVPR, 2009.

[3] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories,” in CVPR, 2006.

[4] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classi-
fication,” in CVPR, 2009.

11

• Scene annotation: learned representation

EXPERIMENTS
(Zheng, Zhang, Larochelle)

36

building,
buildings,
window,
person walking,
sky

Class: Street
Visual words Annotation words

athlete,
sky,
boat,
oar,
floater

Class: Sailing
Visual words Annotation words

tree trunk,
tree,
trees,
stone,
sky

Class: Forest
Visual words Annotation words

car
car occluded,
road,
fence,
trees

Class: Highway
Visual words Annotation words

Figure 4: Visualization of learned representations. Class labels are colored in red. For each class, we list 4 visual
words (each represented by 16 image patches) and 5 annotation words that are strongly associated with each class.
See Section 5.4 for more details.

(as typical with neural networks), it has the advantage of not requiring any iterative, approximate inference procedure
to compute an image’s representation. Our experiments confirm that SupDocNADE is a competitive approach for the
classification and annotation of images.

References
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” JMLR, 2003.

[2] C. Wang, D. Blei, and F.-F. Li, “Simultaneous image classification and annotation,” in CVPR, 2009.

[3] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories,” in CVPR, 2006.

[4] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classi-
fication,” in CVPR, 2009.

11

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)
‣ binary observations (with Mathieu Germain, Karol Gregor and Iain Murray)

37

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

38

x1 x2 x3 x4

bx1 bx2 bx3 bx4

DEEP NADE
(Uria, Murray, Larochelle)

39

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

40

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

41

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

42

bx3bx4

x1 x2 x3x4

bx1 bx2

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

43

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

44

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

45

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

• Deep NADE: use a deep neural network
‣ use more > 1 hidden layer

- makes update in O(DH2)

‣ train on all possible orderings 
of the inputs
- stochastic update by 

sampling the conditioning 
subset to get O(DH + H2)

- predict all future inputs to 
train all conditionals

‣ condition on whether the  
input is observed using 
«conditioning weights»

DEEP NADE
(Uria, Murray, Larochelle)

46

x1 x2 x3 x4

bx1 bx2 bx3 bx4

1 1

DEEP NADE
(Uria, Murray, Larochelle)

47

• Deep NADE: use a deep neural network
‣ computing the full p(x|o) is in O(DH2)

- this reasonable and tractable

‣ at test time, we can sample ensembles of deep NADE models on the fly
- exploit the fact that p(x|o) varies across orderings o

- can reduce the variance of our estimate without retraining

- can adapt to varying computational budget

‣ can solve arbitrary inference problem p(xk |xo<d) by invoking the corresponding
neural network

EXPERIMENTS
(Uria, Murray, Larochelle)

48

• MNIST:  
comparison with
‣ MoB

‣ RBM (approx.)

‣ DBN (approx.)

‣ NADE

A Deep and Tractable Density Estimator

Table 2. Average test-set log-likelihood per datapoint of different
models on 28⇥28 binarized images of digits taken from MNIST.

Model Test LogL

MoBernoullis K=10 �168.95

MoBernoullis K=500 �137.64

RBM (500 h, 25 CD steps) approx. �86.34

DBN 2hl approx. �84.55
NADE 1hl (fixed order) �88.86

NADE 1hl (fixed order, RLU, minibatch) �88.33

NADE 1hl (fixed order, sigm, minibatch) �88.35

NADE 1hl (no input masks) �99.37

NADE 2hl (no input masks) �95.33

NADE 1hl �92.17

NADE 2hl �89.17

NADE 3hl �89.38

NADE 4hl �89.60

EoNADE 1hl (2 orderings) �90.69

EoNADE 1hl (128 orderings) �87.71

EoNADE 2hl (2 orderings) �87.96

EoNADE 2hl (128 orderings) �85.10

Figure 1. Test-set average log-likelihood per datapoint for
RNADEs trained with our new procedure on binarized images
of digits.

in Figure 2. Most of the samples can be identified as digits.
Figure 4 shows some receptive fields from the model’s first
hidden layer (i.e. columns of W). Most of the receptive
fields resemble pen strokes. We also show their associated
receptive fields on the input masks . These can be thought
of as biases that activate or deactivate a hidden unit. Most of
them will activate the unit when the input mask contains a
region of unknown values (zeros in the input mask) flanked
by a region of known values (ones in the input mask).

Having at our disposal a NADE for each possible ordering
of the inputs makes it easy to perform any inference task.

Figure 2. Top: 50 examples from binarized-MNIST ordered by
decreasing likelihood under a 2-hidden-layer NADE. Bottom: 50
samples from a 2-hidden-layer NADE, also ordered by decreasing
likelihood under the model.

In Figure 3 we show examples of marginalization and im-
putation tasks. Arbitrarily chosen regions of digits in the
MNIST test-set are to be marginalized or sampled from. An
RBM or a DBN would require an exponential number of
operations to calculate either the marginal density or the
density of the complete images. A NADE trained on a fixed
ordering of the variables would be able to easily calculate
the densities of the complete images, but would require
approximate inference to calculate the marginal densities.
Both an RBM and a fixed-order NADE require MCMC
methods in order to sample the hollowed regions. However,
with our order-agnostic training procedure we can easily
calculate the marginal densities and sample the hollowed
regions in constant time just by constructing a NADE with
a convenient ordering of the pixels.

6.2. Real-valued datasets

We also compared the performance of RNADEs trained
with our order-agnostic procedure to RNADEs trained for
a fixed ordering. We start by comparing the performance
on three low-dimensional UCI datasets (Bache & Lichman,
2013) of heterogeneous data, namely: red wine, white wine

and parkinsons. We dropped the other two datasets tested
by Uria et al. (2013), because some of their dimensions
only take a finite number of values even if those are real-
valued. We report the test-log-likelihood on 10 folds of
the dataset, each with 90% of the data used for training

EXPERIMENTS
(Uria, Murray, Larochelle)

49

• MNIST: samples
A Deep and Tractable Density Estimator

Table 2. Average test-set log-likelihood per datapoint of different
models on 28⇥28 binarized images of digits taken from MNIST.

Model Test LogL

MoBernoullis K=10 �168.95

MoBernoullis K=500 �137.64

RBM (500 h, 25 CD steps) approx. �86.34

DBN 2hl approx. �84.55
NADE 1hl (fixed order) �88.86

NADE 1hl (fixed order, RLU, minibatch) �88.33

NADE 1hl (fixed order, sigm, minibatch) �88.35

NADE 1hl (no input masks) �99.37

NADE 2hl (no input masks) �95.33

NADE 1hl �92.17

NADE 2hl �89.17

NADE 3hl �89.38

NADE 4hl �89.60

EoNADE 1hl (2 orderings) �90.69

EoNADE 1hl (128 orderings) �87.71

EoNADE 2hl (2 orderings) �87.96

EoNADE 2hl (128 orderings) �85.10

Figure 1. Test-set average log-likelihood per datapoint for
RNADEs trained with our new procedure on binarized images
of digits.

in Figure 2. Most of the samples can be identified as digits.
Figure 4 shows some receptive fields from the model’s first
hidden layer (i.e. columns of W). Most of the receptive
fields resemble pen strokes. We also show their associated
receptive fields on the input masks . These can be thought
of as biases that activate or deactivate a hidden unit. Most of
them will activate the unit when the input mask contains a
region of unknown values (zeros in the input mask) flanked
by a region of known values (ones in the input mask).

Having at our disposal a NADE for each possible ordering
of the inputs makes it easy to perform any inference task.

Figure 2. Top: 50 examples from binarized-MNIST ordered by
decreasing likelihood under a 2-hidden-layer NADE. Bottom: 50
samples from a 2-hidden-layer NADE, also ordered by decreasing
likelihood under the model.

In Figure 3 we show examples of marginalization and im-
putation tasks. Arbitrarily chosen regions of digits in the
MNIST test-set are to be marginalized or sampled from. An
RBM or a DBN would require an exponential number of
operations to calculate either the marginal density or the
density of the complete images. A NADE trained on a fixed
ordering of the variables would be able to easily calculate
the densities of the complete images, but would require
approximate inference to calculate the marginal densities.
Both an RBM and a fixed-order NADE require MCMC
methods in order to sample the hollowed regions. However,
with our order-agnostic training procedure we can easily
calculate the marginal densities and sample the hollowed
regions in constant time just by constructing a NADE with
a convenient ordering of the pixels.

6.2. Real-valued datasets

We also compared the performance of RNADEs trained
with our order-agnostic procedure to RNADEs trained for
a fixed ordering. We start by comparing the performance
on three low-dimensional UCI datasets (Bache & Lichman,
2013) of heterogeneous data, namely: red wine, white wine

and parkinsons. We dropped the other two datasets tested
by Uria et al. (2013), because some of their dimensions
only take a finite number of values even if those are real-
valued. We report the test-log-likelihood on 10 folds of
the dataset, each with 90% of the data used for training

{
{

Examples from  
dataset

Samples from  
deep NADE

EXPERIMENTS
(Uria, Murray, Larochelle)

50

• MNIST: inference

A Deep and Tractable Density Estimator

-61.21 -36.33

-84.40 -46.22

-96.68 -66.26

-86.37 -73.31

-93.35 -79.40

-45.84 -41.88

Figure 3. Example of marginalization and sampling. First column
shows five examples from the test set of the MNIST dataset. The
second column shows the density of these examples when a random
10 by 10 pixel region is marginalized. The right-most five columns
show samples for the hollowed region. Both tasks can be done
easily with a NADE where the pixels to marginalize are at the end
of the ordering.

Figure 4. Top:50 receptive fields (columns of W) with the biggest
L2 norm. Bottom: Associated receptive fields to the input masks.

and 10% for testing. All experiments use normalized data.
Each dimension is normalized separately by subtracting its
training-set average and dividing by its standard deviation.

Experimental details follow. Learning rate and weight decay
rates were chosen by per-fold cross-validation; using grid

search. One ninth of the training set examples were used
for validation purposes. Once the hyperparameter values
had been chosen, a final experiment was run using all the
training data. In order to prevent overfitting, training was
stopped when observing a training likelihood higher than
the one obtained at the optimal stopping point in the corre-
sponding validation run. All RNADEs trained had a mixture
of 20 Gaussian components for output, and were trained by
stochastic gradient descent on JOA. We fixed the number of
hidden units to 50, following Uria et al. (2013). The learning
rate was chosen among {0.02, 0.005, 0.002, 0.0005} and
the weight decay rate among {0.02, 0.002, 0}.

The results are shown in Table 3. RNADEs trained using our
procedure outperform RNADEs trained for a fixed ordering
on the red wine and white wine datasets. On the Parkinsons
dataset, RNADEs trained for a fixed ordering perform better.
The former two datasets require the use of considerable
weight decay rates when trained for a fixed ordering. It is
possible that parameter tying across RNADEs with different
orderings acts as a better form of regularization than weight
decay. Ensembles of RNADEs obtained better statistical
performance than all baselines.

We also measured the performance of our new training pro-
cedure on 8 by 8 patches of natural images in the BSDS300
dataset. We compare the performance of RNADEs with
different number of hidden layers trained with our proce-
dure against a one-hidden layer RNADE trained for a fixed
ordering (Uria et al., 2013), and with mixtures of Gaussians,
which remain the state of the art in this problem (Zoran &
Weiss, 2012).

We adopted the setup described by Uria et al. (2013).
The average intensity of each patch was subtracted from
each pixel’s value. After this, all datapoints lay on a 63-
dimensional subspace, for this reason only 63 pixels were
modelled, discarding the bottom-right pixel.

Experimental details follow. The dataset’s 200 training
image set was partitioned into a training set and a validation
set of 180 and 20 images respectively. Hyperparameters
were chosen by preliminary manual search on the model
likelihood for the validation dataset. We used a mixture
of 10 Gaussian components for the output distribution of
each pixel. All hidden layers were fixed to a size of 1000
units. The minibatch size was set to 1000. Training was run
for 2000 iterations, each consisting of 1000 weight updates.
The initial learning rate was set to 0.001. Pretraining of
hidden layers was done for 50 iterations.

The results are shown in Table 4. RNADEs with less than
3 hidden layers trained using our order-agnostic procedure
obtained lower statistical performance than a fixed-ordering
NADE and a mixture of Gaussians. However RNADEs with
more than 3 layers are able to beat both baselines and obtain

{completion samples

EXPERIMENTS
(Uria, Murray, Larochelle)

51

• Natural image patches: comparison with
‣ mixture of Gaussians

‣ RNADE

A Deep and Tractable Density Estimator

Table 3. Average test log-likelihood for different models on three real-valued UCI datasets. Baselines are taken from (Uria et al., 2013).

Model Red wine White wine Parkinsons

Gaussian �13.18 �13.20 �10.85

MFA �10.19 �10.73 �1.99

RNADE (fixed) �9.36 �10.23 �0.90
RNADE 1hl �8.79 �9.98 �2.34

RNADE 2hl �8.49 �9.57 �1.56

RNADE 3hl �8.14 �9.52 �1.42

EoRNADE 1hl 2 ord �8.62 �9.83 �1.89

EoRNADE 2hl 2 ord �8.24 �9.33 �1.17

EoRNADE 3hl 2 ord �7.83 �9.31 �1.07

EoRNADE 1hl 16 ord �8.30 �9.64 �1.43

EoRNADE 2hl 16 ord �7.88 �9.10 �0.63

EoRNADE 3hl 16 ord �7.42 �9.08 �0.52

Table 4. Average test-set log-likelihood for several models trained
on 8 by 8 pixel patches of natural images taken from the BSDS300
dataset. Note that because these are log probability densities they
are positive, higher is better.

Model Test LogL

MoG K=200 (Zoran & Weiss, 2012) 152.8
RNADE 1hl (fixed order) 152.1
RNADE 1hl 143.2
RNADE 2hl 149.2
RNADE 3hl 152.0
RNADE 4hl 153.6
RNADE 5hl 154.7
RNADE 6hl 155.2
EoRNADE 6hl 2 ord. 156.0
EoRNADE 6hl 32 ord. 157.0

what are, to the extent of our knowledge, the best results
ever reported on this task. Ensembles of RNADEs also show
an improvement in statistical performance compared to the
use of single RNADEs.

No signs of overfitting were observed. Even when using
6 hidden layers, the cost on the validation dataset never
started increasing steadily during training. Therefore it may
be possible to obtain even better results using more hidden
layers or more hidden units per layer.

Samples from the 6 hidden layers NADE trained in an order-
agnostic manner are shown in Figure 5. The samples are
similar to the examples from the test set, and display long
range dependencies.

7. Conclusions
We have introduced a new training procedure that simul-
taneously fits a NADE for each possible ordering of the

Figure 5. Top: 50 examples of 8⇥ 8 patches in the BSDS300
dataset ordered by decreasing likelihood under a 6-hidden-layer
NADE. Bottom: 50 samples from a 6-hidden-layer NADE. The
bottom-right pixel intensity of each patch was calculated as minus
the sum of all other pixel intensities (see text).

dimensions. In addition, this new training procedure is able
to train deep versions of NADE with a linear increase in
computation, and construct ensembles of NADEs on the fly
without incurring any extra training computational cost.

Unsurprisingly, the statistical performance of models trained
using our order agnostic method is dataset dependent.
NADEs trained with our procedure outperform mixture mod-
els in all datasets we have investigated. However, for most
datasets several hidden layers are required to surpass or
equal the performance of NADEs trained for a fixed order-
ing of the variables. Nonetheless, our method allows fast
and exact marginalization and sampling, unlike the rest of
the methods compared.

• Back to modeling pairs of images and
words
‣ visual and annotation words are mixed

- no need for the tree-structured multinomial

‣ start by training a deep DocNADE model on
unlabeled data
- Flickr data set (≈1M image / annotation pairs)

- train for several days

- GPGPU implementation

‣ finalize training with pure supervised learning (fine-
tuning)

MODELING IMAGES AND TEXT  
(Zheng, Zhang, Larochelle)

52

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

Coast
rock, , sky
seawater, rocks,
sand beach

Tallbuilding
sky,skyscraper
occluded,buildings,
skyscraper,building
occluded,

Highway
sky,car,road,
sign,field,

Mountain
mountain,sky,
tree,trees,field,

Coast
rock,sand beach,
sea water, sky,

Tallbuilding
sky,buildings
occluded, trees,
skyscraper

Highway
sky,road, sign,
centralreservation,
trees,car

Mountain
sky,mountain,trees,
rocky mountain,
river water

Mountain
tree,trees,sky,
tree trunk,
buildings occluded

Street
road,car,sign,
trees,building

Mountain
sky,trees,tree,
field,mountain

Insidecity
window,building
occluded,building,
sidewalk,door

Forest
house occluded,
sky,ground grass

Highway
sky,trees,sign,car,
bus,road,central
reservation

Opencountry
sky,mountain,trees
,river water, boat

Tallbuilding
buildings occluded,
building,buildings,
window

Figure 5: Predicted class and annotation by SupDocNADE on LabelMe dataset. We list some correctly (top row)
and incorrectly (bottom row) classified images. The predicted (in blue) and ground-truth (in black) class labels and
annotation words are presented under each image.

12

Image:

Annotation:

Label:

• Back to modeling pairs of images and words
‣ Quantitative evaluation: Classification

MODELING IMAGES AND TEXT  
(Zheng, Zhang, Larochelle)

53

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MM YYYY 11

SIFT features are densely sampled on these images to extract
the visual words. Following Srivastava and Salakhutdinov
[13], we used 4 different scales of patch size, which are
4, 6, 8, 10 pixels, respectively, and the patch step is fixed to
3 pixels. The SIFT features from the unlabeled images were
quantized into 2000 clusters, which is used as the visual
word vocabulary. Thus, the image modality is represented by
the bag of visual words representation using this vocabulary.
As preliminary experiments suggested that spatial information
(see Section 4.2) wasn’t useful on the Flickr data set, we
opted for not using it here. Similarly, the text modality
for SupDeepDocNADE is represented using the annotation
vocabulary, which is built upon the most frequent 2000 tags, as
is mentioned in Section 6.2.1. The visual words and annotation
words are combined together and treated as the input of
SupDeepDocNADE.

As for the global features (Section 5.5), a combination of
Gist [27] and MPEG-7 descriptors [28](EHD, HTD, CSD,
CLD, SCD) is adopted in our experiments, as in Srivastava
and Salakhutdinov [13]. The length of the global features is
1857.

We used a 3 hidden layers architecture in our experiments,
with the size of each hidden layer being 2048. Note that the
DBM [12, 13] also use 3 hidden layers with 2048 hidden units
for each layer, thus our comparison with the DBM is fair. The
activation function for the hidden units is the rectified linear
function. We used a softmax output layer instead of a binary
tree to compute the conditionals p

(

vod |vo<d
, θ, o<d, od

)

for
SupDeepDocNADE, as discussed in Section 5.2.

For the prediction of class labels, since images in MIR
Flickr could have multiple labels, we used a sigmoid output
layer instead of the softmax to compute the probability that
an image belongs to a specific class ci

p (ci = 1|v, θ) = sigmoid
(

dci +Uci,:h
(N)
)

(35)

where h(N) is the hidden representation of the top layer.
As a result, the supervised cost part in Equation 29 is re-
placed by the cross entropy

∑C
i=1−ci log p (ci = 1|v, θ) −

(1− ci) log p (ci = 0|v, θ), where C is the number of classes.

In all experiments, the unlabeled images are used for
unsupervised pretraining. This is achieved by first training a
DeepDocNADE model, without any output layer predicting
class labels. The result of this training is then used to initialize
the parameters of a SupDeepDocNADE model, which is
finetuned on the labeled training set based on the loss of
Equation 32.

Once training is finalized, the hidden representation from
the top hidden layer after observing all words (both visual
words and annotation words) of an image is feed to a linear
SVM [32] to compute confidences of an image belonging
to each class. The average precision (AP) for each class is
obtained based on these confidences, where AP is the area
under the precision-recall curve. After that, the mean average
precision (MAP) over all classes is computed and used as the
metric to measure the performance of the model. We used the
same 5 training/validation/test set splits on the labeled subset
of MIR Flickr as Srivastava and Salakhutdinov [13] and report

TABLE 2: Performance comparison on MIR Flickr data set.

Model MAP

TF-IDF 0.384± 0.004

Multiple Kernel Learning SVMs [6] 0.623

TagProp [31] 0.640

Multimodal DBM [13] 0.651± 0.005

MDRNN [15] 0.686± 0.003

SupDeepDocNADE (1 hidden layer, 625 epochs pretraining) 0.654± 0.004

SupDeepDocNADE (2 hidden layers, 625 epochs pretraining) 0.671± 0.006

SupDeepDocNADE (3 hidden layers, 625 epochs pretraining) 0.670± 0.005

SupDeepDocNADE (2 hidden layers, 2325 epochs pretraining) 0.682± 0.005

SupDeepDocNADE (3 hidden layers, 2325 epochs pretraining) 0.686± 0.005

SupDeepDocNADE (2 hidden layers, 4125 epochs pretraining) 0.684± 0.005

SupDeepDocNADE (3 hidden layers, 4125 epochs pretraining) 0.691± 0.005

the average performance on the 5 splits.

To initialize the connection matrices, we followed the
recommendation of Glorot and Bengio [33] used a uniform
distribution:

Θ ∼ U

[

−
√
6√

lΘ + wΘ
,

√
6√

lΘ + wΘ

]

(36)

where Θ ∈ {W,U,V} is a connection matrix, lΘ,wΘ are
the number of rows and columns respectively of matrix Θ,
respectively, and U is the uniform distribution. In practice,
we’ve also found it useful to normalize the input histograms
x̃
(

vo<d

)

for each image, by rescaling them to have unit
variance.

The hyper-parameters (learning rate, unsupervised weight λ,
and the parameter for linear SVM, etc.) are chosen by cross-
validation. To prevent overfitting, dropout [34] is adopted
during training, with a dropout rate of 0.5 for all hidden
layers. We also maintained an exponentially decaying average
of the parameter values throughout the gradient decent training
procedure and used the averaged parameters at test time. This
corresponds to Polyak averaging [35], but where the linear
average is replaced by a weighting that puts more emphasis
on recent parameter values. For the annotation weight, it was
fixed to 12 000, which is approximately the ratio of the
averaged visual words and annotation words of the data set.
We will investigate the impact of the annotation weight on the
performance in Section 6.2.4.

6.2.3 Comparison with other baselines

Table 2 presents a comparison of the performance of
SupDeepDocNADE with the DBM approach of Srivastava and
Salakhutdinov [13] and MDRNN of Sohn et al. [15] as well as
other strong baselines, in terms of MAP performance. We also
provide the simple and popular TF-IDF baseline in Table 2 to
make the comparison more complete. The TF-IDF baseline is
conducted only on the bag-of-words representations of images
without global features. We feed the TF-IDF representations
to a linear SVM to obtain confidences of an image belonging
to each class and then we compute the Mean AP, as for
SupDeepDocNADE.

Page 19 of 27 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

• Back to modeling pairs of images and words
‣ Quantitative evaluation: 

Classification

MODELING IMAGES AND TEXT  
(Zheng, Zhang, Larochelle)

54

2 weeks

4 weeks

6 weeks

• Back to modeling pairs of images and words
‣ Quantitative evaluation: Annotating images

MODELING IMAGES AND TEXT  
(Zheng, Zhang, Larochelle)

55

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MM YYYY 12

Image Input Ground Truth Annotations Generated Texts

cheese food,vegan,recipe,
cheese,breakfast,cake,
dessert,dinner

explore,italy,europe,italia,
roma,rome,public,i500,eu

sign,red,white,circle,letter,
heart,sticker,typography

nature,sunset, stunning
anawesomeshot,trees,
sun,evening,southafrica,

tree,sunset,sakura,trees,
autumn,sky,explore,
nature

puppy dog,puppy,pet,portrait,cat,
baby,365days,dogs

light,explored,xmas,
atmosphere,candle

candle,night,light,sunset,
fire,moon,lights,home

music,seattle,concert concert,live,livemusic,red,
2007,music,festival,gig

portrait,selfportrait,me,girl,
365days,canon,hair,retrato

landscape,mountains,
argentina,geotagged,mountain
,chile,italy,scotland,China

Image Input Ground Truth Annotations Generated Texts

d night,longexposure,
explore,sunset,lights,
nightshot,cars

explored,toys,cake,lego lego,toys,toy,365days,
home,explore,nikon,bokeh

flower,high,㣡 flower,flowers,pink,blue,
macro,sky,abigfave,
naturesfinest

canon,water,acqua waterfall,hdr,water,nature,falls,
dog,landscape,longexposure

mac,computer,macbook,
laptop

me,365days,apple,mac,
tshirt,laptop,macbook,ipod

nature,night,beach,
landscape,2007,ocean,
longexposure,5d,pier

sunset,night,longexposure,
landscape,beach,
sanfrancisco,water,clouds

ship,boat,sea,chicago,sanfra
ncisco,beach,water,harbour

wall,graffiti,streetart,bricks,
tiles,pattern,london,mosaic

2007,boat,michigan,raw,
ship,d70,harbor,nikond70

france

Fig. 7: The illustration of generated texts from images by SupDeepDocNADE. The input for this task is the image modality
only and the output is the generated text. We put the ground truth annotations in the second column and illustrate the top 8

words generated using SupDeepDocNADE in the third column. If there is no ground truth annotations, the corresponding part
is left blank. We can see that SupDeepDocNADE can generate meaningful annotations from images.

0 2000 4000 6000 8000 10000 12000 14000 16000
Annotation Weight

0.45

0.50

0.55

0.60

0.65

0.70

M
A

P

SupDeepDocNADE (2 hidden layers)
DBM

Fig. 8: Comparison between different annotation weights.

the number of visual and annotation words. In this part,
we investigate the influence of the annotation weight on the
performance. Specifically, we set the annotation weight to
{1, 4000, 8000, 12 000, 16 000}, and show the performance
for each of the annotation weight values. Note that when the
annotation weight equals 1, there is no compensation for the
unbalance of visual words and annotation words. The other
experimental configurations are the same as in Section 6.2.2.

Figure 8 shows the performance comparison between dif-
ferent annotation weights. As expected, SupDeepDocNADE
performs extremely bad when the annotation equals to 1,
When the annotation weight is increased, the performance
gets better. Among all the chosen annotation weights, 12 000

performs best, which achieves a MAP of 0.671. The other
annotation weights also achieves good performance compared
with the DBM model [13]: MAP of 0.658, 0.669 and 0.670
for annotation weight values of 4000, 8000 and 16 000,
respectively.

6.2.5 Visualization of the Retrieval Results

Since SupDeepDocNADE is used for multimodal data mod-
eling, we illustrate here some results for multimodal data
retrieval tasks. More specifically, we show some qualitative
results in two multimodal data retrieval scenarios: multimodal
data query and generation of text from images.
Multimodal Data Query: Given a query corresponding to
an image/annotation pair, the task is to retrieve other similar
pairs from a collection, using the hidden representation learned
by SupDeepDocNADE. In this task, the cosine similarity is
adopted as the similarity metric. In this experiment, each query
corresponds to an individual test example and the collection
corresponds to the rest of the test set. Figure 9 illustrates the
retrieval results for multimodal data query task, where we
show the 6 most similar images to the query input in the
testset.
Generating Text from Image: As SupDeepDocNADE learns
the relationship between the image and text modalities, we
test its ability to generate text from given images. This task
is implemented by feeding SupDeepDocNADE only the bag
of visual words and selecting the annotation words according
to their probability of being the next word, similarly to
Section 4.3. Figure 7 illustrates the ground truth annotation
and the most probable 8 annotations generated by SupDeep-
DocNADE. We can see that SupDeepDocNADE generated
very meaningful texts according to the image modality, which
shows that it effectively learned about the statistical structure
between the two modalities.

7 CONCLUSION AND DISCUSSION
In this paper, we proposed SupDocNADE, a supervised ex-
tension of DocNADE, which can learn jointly from visual
words, annotations and class labels. Moreover, we proposed

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MM YYYY 12

Image Input Ground Truth Annotations Generated Texts

cheese food,vegan,recipe,
cheese,breakfast,cake,
dessert,dinner

explore,italy,europe,italia,
roma,rome,public,i500,eu

sign,red,white,circle,letter,
heart,sticker,typography

nature,sunset, stunning
anawesomeshot,trees,
sun,evening,southafrica,

tree,sunset,sakura,trees,
autumn,sky,explore,
nature

puppy dog,puppy,pet,portrait,cat,
baby,365days,dogs

light,explored,xmas,
atmosphere,candle

candle,night,light,sunset,
fire,moon,lights,home

music,seattle,concert concert,live,livemusic,red,
2007,music,festival,gig

portrait,selfportrait,me,girl,
365days,canon,hair,retrato

landscape,mountains,
argentina,geotagged,mountain
,chile,italy,scotland,China

Image Input Ground Truth Annotations Generated Texts

d night,longexposure,
explore,sunset,lights,
nightshot,cars

explored,toys,cake,lego lego,toys,toy,365days,
home,explore,nikon,bokeh

flower,high,㣡 flower,flowers,pink,blue,
macro,sky,abigfave,
naturesfinest

canon,water,acqua waterfall,hdr,water,nature,falls,
dog,landscape,longexposure

mac,computer,macbook,
laptop

me,365days,apple,mac,
tshirt,laptop,macbook,ipod

nature,night,beach,
landscape,2007,ocean,
longexposure,5d,pier

sunset,night,longexposure,
landscape,beach,
sanfrancisco,water,clouds

ship,boat,sea,chicago,sanfra
ncisco,beach,water,harbour

wall,graffiti,streetart,bricks,
tiles,pattern,london,mosaic

2007,boat,michigan,raw,
ship,d70,harbor,nikond70

france

Fig. 7: The illustration of generated texts from images by SupDeepDocNADE. The input for this task is the image modality
only and the output is the generated text. We put the ground truth annotations in the second column and illustrate the top 8

words generated using SupDeepDocNADE in the third column. If there is no ground truth annotations, the corresponding part
is left blank. We can see that SupDeepDocNADE can generate meaningful annotations from images.

0 2000 4000 6000 8000 10000 12000 14000 16000
Annotation Weight

0.45

0.50

0.55

0.60

0.65

0.70

M
A

P

SupDeepDocNADE (2 hidden layers)
DBM

Fig. 8: Comparison between different annotation weights.

the number of visual and annotation words. In this part,
we investigate the influence of the annotation weight on the
performance. Specifically, we set the annotation weight to
{1, 4000, 8000, 12 000, 16 000}, and show the performance
for each of the annotation weight values. Note that when the
annotation weight equals 1, there is no compensation for the
unbalance of visual words and annotation words. The other
experimental configurations are the same as in Section 6.2.2.

Figure 8 shows the performance comparison between dif-
ferent annotation weights. As expected, SupDeepDocNADE
performs extremely bad when the annotation equals to 1,
When the annotation weight is increased, the performance
gets better. Among all the chosen annotation weights, 12 000

performs best, which achieves a MAP of 0.671. The other
annotation weights also achieves good performance compared
with the DBM model [13]: MAP of 0.658, 0.669 and 0.670
for annotation weight values of 4000, 8000 and 16 000,
respectively.

6.2.5 Visualization of the Retrieval Results

Since SupDeepDocNADE is used for multimodal data mod-
eling, we illustrate here some results for multimodal data
retrieval tasks. More specifically, we show some qualitative
results in two multimodal data retrieval scenarios: multimodal
data query and generation of text from images.
Multimodal Data Query: Given a query corresponding to
an image/annotation pair, the task is to retrieve other similar
pairs from a collection, using the hidden representation learned
by SupDeepDocNADE. In this task, the cosine similarity is
adopted as the similarity metric. In this experiment, each query
corresponds to an individual test example and the collection
corresponds to the rest of the test set. Figure 9 illustrates the
retrieval results for multimodal data query task, where we
show the 6 most similar images to the query input in the
testset.
Generating Text from Image: As SupDeepDocNADE learns
the relationship between the image and text modalities, we
test its ability to generate text from given images. This task
is implemented by feeding SupDeepDocNADE only the bag
of visual words and selecting the annotation words according
to their probability of being the next word, similarly to
Section 4.3. Figure 7 illustrates the ground truth annotation
and the most probable 8 annotations generated by SupDeep-
DocNADE. We can see that SupDeepDocNADE generated
very meaningful texts according to the image modality, which
shows that it effectively learned about the statistical structure
between the two modalities.

7 CONCLUSION AND DISCUSSION
In this paper, we proposed SupDocNADE, a supervised ex-
tension of DocNADE, which can learn jointly from visual
words, annotations and class labels. Moreover, we proposed

OUTLINE
• Neural Autoregressive Distribution Estimator (NADE)
‣ binary observations (with Iain Murray)

‣ real-valued observations (with Benigno Uria and Iain Murray)

‣ multinomial observations (with Stanislas Lauly and Yin Zheng)

‣ deep NADE (with Benigno Uria and Iain Murray)

• Masked Autoencoder Distribution Estimator (MADE)

‣ binary observations (with Mathieu Germain, Karol Gregor and Iain
Murray)

56

AUTOREGRESSIVE PROPERTY
• NADE is a distribution estimator because it respects the

autoregressive property
‣ each output depends only  

en previous inputs  
(in some ordering)

• Autoencoder doesn’t 
respect that property
‣ is there a simple way to  

adapt the autoencoder 
so that it does 

57

x1 x2 x3 x4

bx1 bx2 bx3 bx4

• NADE is a distribution estimator because it respects the
autoregressive property
‣ each output depends only  

en previous inputs  
(in some ordering)

• Autoencoder doesn’t 
respect that property
‣ is there a simple way to  

adapt the autoencoder 
so that it does 

AUTOREGRESSIVE PROPERTY

58

x1 x2 x3 x4

bx1 bx2 bx3 bx4 autoregressive
connectivity

MADE IN PICTURE
• Masked Autoencoder Distribution Estimator (MADE)

59

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W

1

W

2

V

M

W

1

M

W

2

M

V=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the kth unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2
(k0) inputs, i.e. the first layer units

such that m1
(k)  m2

(k0).

One can generalize this rule to any layer l, as follows:

MW

l

k

0
,k

= 1

m

l(k0)�m

l�1(k) =

⇢
1 if ml

(k0) � ml�1
(k)

0 otherwise.
(12)

Also, taking l = 0 to mean the input layer and defining
m0

(d) = d (which is intuitive, since the dth input unit in-
deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL

(k)
instead of the first:

MV

d,k

= 1

d>m

L(k) =

⇢
1 if d > mL

(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml

(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml

(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. min

k

0 ml�1
(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m

0
= [m0

(1), . . . ,m0
(D)]. Specifically,

m0
(d) corresponds to the position of the original dth dimen-

sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m

0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml

(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml

(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting m

l

= [ml

(1), . . . ,ml

(Kl

)],
and assuming an element-wise and parallel implementation
of the operation 1

a�b

for vectors, such that 1
a�b

is a matrix

0 12

MADE IN WORDS
• Masked Autoencoder Distribution Estimator (MADE)
‣ masks can be generated once and for all or for every update

‣ training is similar to dropout, except the dropping out is on the connections, not
the units (just like DropConnect)

‣ at test time, can create an ensemble if used multiple masks

‣ can easily generalize to other connections between layers  
(e.g. direct input to output)

60

MADE IN WORDS
• Related work
‣ FVSBN is MADE without hidden units

‣ Bengio and Bengio (2000) proposed the first version of MADE (single hidden
layer, no mask sampling)

‣ For the same number of hidden units, MADE is much faster to train than NADE
‣ matrix multiplies are faster + fewer non-linearities to compute

‣ At test time, MADE is much faster to evaluate than deep NADE
‣ can compute the log-likelihood in one pass in MADE, instead of D

61

RESULTS
• UCI benchmark

62

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tra

ct
ab

leDBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.

RESULTS
• Binarize MNIST

63

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tra

ct
ab

leDBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34
In

tra
ct

ab
leDBM 2hl ⇡ 84.62

DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.

CONCLUSION
• Distribution estimation / generative modeling is a very active

topic right now
‣ VAE: Variational Autoencoder (Kingma et al., 2014)

‣ DARN: Deep Autoregressive Networks (Gregor et al. 2014)

‣ DRAW: Deep Recurrent Attentive Writer (Gregor et al. 2015)

‣ GAN: Generative Adversarial Networks (Goodfellow et al. 2014)

‣ GSN: Generative Stochastic Networks (Bengio et al. 2014)

‣ DBM: deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

• Lots of research still needed to yield models with practical
applications

64

Merci !

65

