







#### Deep Learning Summer School 2015

#### Introduction to **Machine Learning**

by Pascal Vincent



MILA Montreal Institute for Learning Algorithms

August 4, 2015



Département d'informatique et de recherche opérationnelle

#### What is machine learning?

Historical perspective

- Born from the ambitious goal of Artificial Intelligence
- Founding project:
   The Perceptron (Frank Rosenblatt 1957)
   First artificial neuron learning form examples
- Two historically opposed approaches to AI:

#### **Neuroscience inspired:**

neural nets learning from examples for artificial perception

#### Classical symbolic Al:

Primacy of logical reasoning capabilities

- No learning (humans coding rules)
- poor handling of uncertainty

Got eventually fixed (Bayes Nets...)

### Artificial Intelligence in the 60s



#### Current view of ML founding disciplines



#### What is machine-learning?



A (hypnotized) user's perspective

A scientific (witchcraft) field that

- researches fundamental principles (potions)
- and develops <u>magical</u> algorithms (spells to invoke)
- capable of leveraging collected data to (automagically)
   produce accurate predictive functions
   applicable to similar data (in the future!)

(may also yield informative descriptive functions of data)

# The key ingredient of machine learning is...



- Collected from nature... or industrial processes.
- Comes stored in many forms (and formats...), strucutred, unstructured, occasionally clean, usually messy, ...
- In ML we like to view data as a list of examples (or we'll turn it into one)
  - ideally many examples of the same nature.
  - preferably with each example a <u>vector of numbers</u> (or we'll first turn it into one!)

#### Input Training data set (training set) dimensionality: targets: inputs: targets: inputs: (label) (what we observe)(what we must predict) (input feature vector) (3.5, -2, ..., 127, 0, ...) "horse" Turn it into a nice data matrix... Number of examples: (-9.2, 32, ..., 24, 1, ...) "cat" n etc... preprocessing, feature extraction (6.8, 54, ... , 17, -3, ...) "horse"

New test point:





 $\mathbf{x} = (5.7, -27, ..., 64, 0, ...) \xrightarrow{f_{\theta}} +1$   $\mathbf{x} \in \mathbb{R}^{d}$ 

# Importance of the Problem dimensions

- Détermines which learning algorithms will be practically applicable (based on their algorithmic complexity and memory requirements).
  - Number of examples: n (sometimes several millions)
  - Input dimensionality: d
     number of input features characterizing each example
     (often 100 to 1000, sometimes 10000 or much more)
  - Target dimensionality ex. number of classes m
     (often small, sometimes huge)
    - Data suitable for ML will often be organized as a matrix: n x (d+I) ou n x (d+m)

# Turning data into a nice list of examples









Key questions to decide what «examples» should be:

- input: What is all the (potentially relevant) information I will have at my disposal about a case when I will have to make a prediction about it?(at test time)
- target: what I want to predict: Can I get my hands on <u>many</u> such examples that are actually labeled with prediciton targets?

Turning an example into an input vector  $\mathbf{x} \in \mathbb{R}^d$ 

Raw input representation:





OR some preprocessed representation:



Bag of words for «The cat jumped»: x = (... 0... ,0,1,...0...,1,

OR vector of hand-engineered features: x = (feature 1, ..., feature d)ex: Histograms of Oriented Gradients

# Dataset imagined as a point cloud in a high-dimensional vector space



#### Ex: nearest-neighbor classifier

#### Algorithm:

#### For test point x:

- Find **nearest neighbor** of x among the training set according to some distance measure (eg: Euclidean distance).
- Predict that x has the same class as this nearest neighbor.



#### Machine learning tasks (problem types)

Supervised learning = predict a target y from input x

(and semi-supervised learning)

y represents a category or "class"

```
binary : \mathbf{y} \in \{-1, +1\} or \mathbf{y} \in \{0, 1\} multiclass : \mathbf{y} \in \{1, m\} or \mathbf{y} \in \{0, m - 1\}
```

- y is a real-value number
  - regression  $\mathbf{y} \in \mathbb{R}$  or  $\mathbf{y} \in \mathbb{R}^m$

Predictive models

Unsupervised learning: no explicit prediciton target y

- model the probability distribution of x
  - density estimation
- discover underlying structure in data
  - clustering
  - dimensionality reduction
  - (unsupervised) representation learning

Descriptive modeling

Reinforcement learning: taking good sequential decisions to maximize a reward in an environment influenced by your decisions.

#### Learning phases

- Training: we learn a predictive function  $f_{\theta}$  by optimizing it so that it predicts well on the training set.
- Use for prediction: we can then use  $f_{\theta}$  on new (test) inputs that were not part of the training set.
- The GOAL of learning is NOT to learn perfectly (memorize) the training set.
- What's important is the ability for the predictor to **generalize** well on new (future) cases.

#### Ex: 1D regression



#### Supervised task:

#### predict y from x



Training set Dn

Learn a function  $f_{\theta}$  that will minimize prediciton errors as measured by cost (loss) L



# A machine learning algorithm usually corresponds to a combination of the following 3 elements:

(either explicitly specified or implicit)

- $\sqrt{}$  the choice of a specific function family: F (often a parameterized family)
- √ a way to evaluate the quality of a function f∈F (typically using a cost (or loss) function L mesuring how wrongly f prédicts)
- √ a way to search for the «best» function f∈F (typically an <u>optimization</u> of function parameters to minimize the overall loss over the training set).

# Evaluating the quality of a function $f \in F$ and

Searching for the «best» function  $f \in F$ 

#### Evaluating a predictor f(x)

The performance of a predictor is often evaluated using several different evaluation metrics:

- Evaluations of true quantities of interest (\$ saved, #lifes saved, ...) when using predictor inside a more complicated system.
- «Standard» evaluation metrics in a specific field (e.g. BLEU (Bilingual Evaluation Understudy) scores in translation)
- Misclassification error rate for a classifier (or precision and recall, or F-score, ...).
- The loss actually being optimized by the ML algorithm (often different from all the above...)

#### Standard loss-functions

- For a density estimation task:  $f: \mathbb{R}^d \to \mathbb{R}^+$  a proper probability negative log likelihood loss:  $L(f(x)) = -\log f(x)$
- For a regression task:  $f: \mathbb{R}^d \to \mathbb{R}$  squared error loss:  $L(f(x), y) = (f(x) y)^2$
- For a classification task:  $f: \mathbb{R}^d \to \{0, \dots, m-1\}$  misclassification error loss:  $L(f(x), y) = I_{\{f(x) \neq y\}}$

#### Surrogate loss-functions

• For a classification task:  $f: \mathbb{R}^d \to \{0, \dots, m-1\}$  misclassification error loss:  $L(f(x), y) = I_{\{f(x) \neq y\}}$ 

Problem: it is hard to <u>optimize</u> the misclassification loss directly (gradient is 0 everywhere. NP-hard with a linear classifier) Must use a <u>surrogate loss</u>:

|                                     | Binary classifier                                                                                                                                                                       | Multiclass classifier                                                                                                                                                                                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probabilistic classifier            | billar y Cross-eritropy loss.                                                                                                                                                           | Outputs a vector of probabilities: $g(x) \approx (P(y=0 x),, P(y=m-1 x))$<br>Negated conditional log likelihood loss $L(g(x),y) = -\log g(x)_y$<br>Decision function: $f(x) = \operatorname{argmax}(g(x))$ |
| Non-<br>probabilistic<br>classifier | Outputs a «score» $g(x)$ for class 1.<br>score for the other class is $-g(x)$<br>Hinge loss:<br>$L(g(x),t) = \max(0, 1-tg(x))$ where $t=2y-1$<br>Decision function: $f(x) = I_{g(x)>0}$ | Outputs a vector $g(x)$ of real-valued scores for the $m$ classes.  Multiclass margin loss $L(g(x),y) = \max(0,1+\max_{k\neq y}(g(x)_k)-g(x)_y)$ Decision function: $f(x) = \operatorname{argmax}(g(x))$   |

lundi 3 août 2015

#### Expected risk v.s. Empirical risk

Examples (x,y) are supposed drawn i.i.d. from an unknown true distribution p(x,y) (from nature or industrial process)

Generalization error = Expected risk (or just «Risk»)
 «how poorly we will do on average on the infinity of future examples from that unknown distribution»

$$R(f) = \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[L(f(\mathbf{x}), \mathbf{y})]$$

Empirical risk = average loss on a finite dataset
 whow poorly we're doing on average on this finite dataset

$$\hat{R}(f, D) = \frac{1}{|D|} \sum_{(\mathbf{x}, \mathbf{y}) \in D} L(f(\mathbf{x}), \mathbf{y})$$

where |D| is the number of examples in D

#### Empirical risk minimization

Examples (x,y) are supposed drawn i.i.d. from an unknown true distribution p(x,y) (nature or industrial process)

- We'd love to find a predictor that minimizes the generalization error (the expected risk)
- But can't even compute it! (expectation over unknown distribution)
- Instead: Empirical risk minimization principle «Find predictor that minimizes average loss over a trainset»

$$\hat{f}(D_{\text{train}}) = \underset{f \in F}{\operatorname{argmin}} \hat{R}(f, D_{\text{train}})$$

This is the training phase in ML

#### Evaluating the generalization error

- lacktriangle We can't compute expected risk R(f)
- ▶ But  $\hat{R}(f, D)$  is a good estimate of R(f) provided:
  - D was not used to find/choose f
     otherwise estimate is biased ⇒ can't be the training set!
  - ullet D is large enough (otherwise estimate is too noisy); drawn from p

Must keep a separate test-set  $D_{\text{test}} \neq D_{\text{train}}$  to properly estimate generalization error of  $\hat{f}(D_{\text{train}})$ :

$$R(\hat{f}(D_{\text{train}})) \approx \hat{R}(\hat{f}(D_{\text{train}}), D_{\text{test}})$$

generalization average error on

error **test**-set (never used for training)

This is the test phase in ML

#### Simple train/test procedure



 $(x_N,y_N)$ 

- Provided large enough dataset D drawn from p(x,y)
- Make sure examples are in random order.
- Split dataset in **two:**  $D_{\text{train}}$  and  $D_{\text{test}}$
- Use  $D_{\text{train}}$  to choose/ optimize/find best predictor  $f = \hat{f}(D_{\text{train}})$

• Use  $D_{\text{test}}$  to evaluate generalization performance of predictor f.

# Model selection Choosing a specific function family F

#### Ex. of parameterized function families



Polynomial predictor (of degree p):

$$f(x) = b + a_1x + a_2x^2 + a_3x^3 + \dots + a_px^p$$



#### $F_{linear}$

(«linear regression»)

Linear (affine) predictor: 
$$f_{\theta}(x) = wx + b$$
 (in 1 dimension) (*«linear regression»*)  $f_{\theta}(x) = w^T x + b$  (in *d* dimensions)

$$\theta = \{ w \in \mathbb{R}^d, b \in \mathbb{R} \}$$



#### $F_{const}$

Constant predictor:  $f_{\theta}(x)=b$ 

where  $\theta = \{b\}$ 

(always predict the same value or class!)

#### Capacity of a learning algorithm

- Choosing a specific Machine Learning algorithm means choosing a specific function family F.
- How «big, rich, flexible, expressive, complex» that family is, defines what is informally called the «capacity» of the ML algorithm.

Ex: capacity( $F_{polynomial 3}$ ) > capacity( $F_{linear}$ )

- One can come up with <u>several</u> formal measures of «capacity» for a function family / learning algorithm (e.g. VC-dimension Vapnik-Chervonenkis)
- One rule-of-thumb estimate, is the number of adaptable parameters: i.e. how many scalar values are contained in  $\theta$ .

Notable exception: chaining many linear mappings is still a linear mapping!

# Effective capacity, and capacity-control hyper-parameters

The «effective» capacity of a ML algo is controlled by:

- Choice of ML algo, which determines big family F
- Hyper-parameters that further specify F
   e.g.: degree p of a polynomial predictor; Kernel choice in SVMs;
   #of layers and neurons in a neural network
- Hyper-parameters of «regularization» schemes
   e.g. constraint on the norm of the weights w
   (⇒ ridge-regression; L₂ weight decay in neural nets);
   Bayesian prior on parameters; noise injection (dropout); ...
- Hyper-parameters that control early-stopping of the iterative search/optimization procedure.
   won't explore as far from the initial starting point)

#### Popular classifiers

#### their parameters and hyper-parameters

| Algo                                    | Capacity-control hyperparameters                            | Learned parameters                               |
|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| logistic regression<br>(L2 regularized) | strength of L2 regularizer                                  | w,b                                              |
| linear SVM                              | С                                                           | w,b                                              |
| kernel SVM                              | C; kernel choice & params (σ for RBF; degree for polynomal) | support vector weights: $\alpha$                 |
| neural network                          | layer sizes; early stop;                                    | layer weight matrices                            |
| decision tree                           | depth                                                       | the tree (with index and threshold of variables) |
| k-nearest neighbors                     | k; choice of metric                                         | memorizes<br>trainset                            |

#### Tuning the capacity

- Capacity must be optimally tuned to ensure good generalization
- by choosing Algorithm and hyperparameters
- to avoid under-fitting and over-fitting.

Ex: ID regression with polynomial predictor



performance on training set is not a good estimate of generalization

#### Ex: 2D classification

#### Linear classifier

- Function family too poor (too inflexible)
- = Capacity too low for this problem (relative to number of examples)
- => Under-fitting



- Function family too rich (too flexible)
- = Capacity too high for this problem (relative to the number of examples)
- => Over-fitting



- Optimal capacity for this problem (par rapport à la quantité de données)
- => Best generalization (on future test points)



#### Decomposing the generalization error



#### What is responsibe for the variance?



## Optimal capacity & the biais-variance dilemma

- Choosing richer F: capacity  $\uparrow$  bias  $\downarrow$  but variance  $\uparrow$ .
- Choosing smaller F: capacity  $\downarrow$  variance  $\downarrow$  but bias  $\uparrow$ .
- Optimal compromise... will depend on number of examples n
- Bigger n ⇒ variance ↓
   So we can afford to increase capacity (to lower the bias)
   ⇒ can use more expressive models
- The best regularizer is more data!

#### Model selection how to

$$D=$$

$$(x_1, y_1)$$
$$(x_2, y_2)$$

 $(x_N,y_N)$ 

Training set

 $D_{\text{train}}$ 

**Validation** set  $D_{\mathrm{valid}}$ 

Test set  $D_{\text{test}}$ 

Make sure examples are in random order Split data D in 3:  $D_{\text{train}} D_{\text{valid}} D_{\text{test}}$ 

#### Model selection meta-algorithm:

For each considered model (ML algo) A:

For each considered hyper-parameter config  $\lambda$ :

• train model A with hyperparams  $\lambda$  on  $D_{\text{train}}$ 

$$\hat{f}_{\mathbf{A}_{\lambda}} = \mathbf{A}_{\lambda}(D_{\text{train}})$$

 $\bullet$  evaluate resulting predictor on  $D_{\text{valid}}$ (with preferred evaluation metric)

$$e_{\mathbf{A}_{\lambda}} = \hat{R}(\hat{f}_{\mathbf{A}_{\lambda}}, D_{\text{valid}})$$

Locate  $A^*, \lambda^*$  that yielded best  $e_{A_{\lambda}}$ Either return  $f^* = f_{\mathbf{A}_{\lambda *}^*}$ 

Or retrain and return

$$f^* = \mathbf{A}_{\lambda^*}^*(D_{\mathbf{train}} \cup D_{\mathbf{valid}})$$

Finally: compute unbiased estimate of generalization performance of  $f^*$  using  $D_{\text{test}}$ 

$$\hat{R}(f^*, D_{\mathbf{test}})$$

 $D_{\mathrm{test}}$  must never have been used during training or model selection to select, learn, or tune anything.

#### Ex of model hyper-parameter selection

- Training set error
- Validation set error



Hyper-parameter value which yields smallest error on validation set is 5 (it was 1 for the training set)

#### Question

What if we selected capacity-control hyper-parameters that yield best performance on the <u>training</u> set?

What would we tend to select?

Is it a good idea? Why?

# Model selection procedure summary:



#### Ensemble methods

- Principle: train and combine multiple predictors to good effect
- Bagging: average many high-variance predictors
   ⇒ variance ↓
   (e.g.: average deep trees ⇒ Random decision forests)
- Boosting: build weighted combination of low-capacity classifiers
   ⇒ bias ↓ and capacity ↑
   (e.g. boosting shallow trees; or linear classifiers)

# Bagging for reducing variance on a regression problem



# How to obtain non-linear predictor with a linear predictor

Three ways to map x to a feature representation  $\tilde{\mathbf{x}} = \phi(\mathbf{x})$ 

- Use an explicit fixed mapping (ex: hand-crafted features)
- Use an implicit fixed mapping
   Kernel Methods (SVMs, Kernel Logistic Regression ...)
- Learn a parameterized mapping
   (i.e. let the ML algo learn the new representation)
  - Multilayer feed-forward Neural Networks such as Multilayer Perceptrons (MLP)

## Levels of representation



very high level representation:





... etc ...



slightly higher level representation



raw input vector representation:





#### Questions?