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VVhat is machine learning

Historical perspective

® Born from the ambitious goal /éT )
of Artificial Intelligence

® Founding project: »
The Perceptron (Frank Rosenblatt I957)

First artificial neuron learning form examples

® Jwo historically opposed approaches to Al:

Neuroscience inspired: | Classical symbolic Al:

2> neural nets learning from Primacy of logical reasoning capabilities
examples for artificial = No learning (humans coding rules)
perception = poor handling of uncertainty

Got eventually fixed (Bayes Nets...)
Learning and probabilistic models largely won = machine learning
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Artificial Intelligence
in the 60s

Computer science

Artificial Intelligence

Largely symbolic Al

3D SCIENCE.com

\\Neu rosciences
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Current view of ML founding disciplines

Opimization
+
control

Computer science

Informatio Artificial Intelligey
theory

Statistics =

Physics
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A (hypnotized) User’s perspective

A scientific (witchcraft) field that
® researches fundamental principles (potions)

® and develops magical algorithms (spells to invoke)

® capable of leveraging collected data to (automagically)
produce accurate predictive functions
applicable to similar data (in the future!)

(may also yield informative descriptive functions of data)
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The key ingredient of
machine learning is...

® Collected from nature... or industrial processes.

® Comes stored in many forms (and formats...), strucutred,
unstructured, occasionally clean, usually messy, ...

® |n ML we like to view dataﬁ as a list of examples

(or we'll turn it into one)

= ideally many examples of the same nature.

= preferably with each example a vector of numbers
(or we'll first turn it into one!)
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Input d
D Training data set (training set) dimensionality:
T

—
Inputs: X

(input feature vector)

Inputs:
(what we observe)

X, 1 @35,-2..,127,0, ..

Turn it into
a nice data
matrix...

Number of
examples:

(-9.2,32,...,24,1, ...

n
preprocessing,
feature
extraction
Xn (6'8, 541 ree oy 17, -3, .
New test f@
point: X = (57,-27,..,64,0,.) — 41

x € R?
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Importance of the

=> Determines which learning algorithms will be practically applicable
(based on their algorithmic complexity and memory requirements).

® Number of examples: n
(sometimes several millions)

® |nhput dimensionality: d
number of input features characterizing each example
(often 100 to 1000, sometimes 10000 or much more)

o Target dimensionality ex. number of classes m
(often small, sometimes huge)

== Data suitable for ML will often be organized
as a matrix:n x (d+1) ou n x (d+m)
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Turnlng.glata into a nice list of

@Q’ examples

i data-plumbing

5

Key questions to decide what «examples» should be:

® input: What is all the (potentially relevant) information I will have at my
disposal about a case when I will have to make a prediciton about it?(at fest time)

® target: what I want to predict: Can I get my hands on many such examples
that are actually labeled with prediciton targets?
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Raw input representation: x=(0,0,...54,120, .
x = (125, 125, s 250, ...)

300 1 r \
250 /

200

150

100
50
0

0 5000 10000 15000 20000

OR some preprocessed representation:

‘.j .' ~ ‘ '..’ ‘:t'. . :‘é
— SOODf $ 1-0000_ — 15000 = 't?OOOO
b'O W
NS & o
v o &8s §&s§
=5 5.33 ¥ T I
Bag of words for «The cat jumped»: x=(...0... 0,1, ..0...,1,0,0, ....,0,0, 1,0, ...0

OR vector of hand-engineered features: x = (feature 1, ... , feature d)
ex: Histograms of Oriented Gradients
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Dataset imagined as a point cloud
in a high-dimensional vector space

| target
Input (label)
d
X € R Y

8 X1 X9 X3 X4 X5
= 0.32 0.27 | +1 0 0.82 1
& 0.12 0.42 1 1 0.22 0
Q 0.06 0.35 1 1| -0.37 1
v 0.91 | -0.72 | +1 0| -0.63 1
C e o o e o o e o o

Each example (row) is now a
d+1-dimensional vector

X2

?

x € R?

Each input is a point in
a d-dimensional vector space
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Ex: nearest-neighbor classifier

Algorithm:

For test point x:

I Find nearest neighbor of x
among the training set
according to some distance
measure
(eg: Euclidean distance).

"1 Predict that x has the same
class as this nearest neighbor.

Training set
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Supervised learning = predict a target y from input x
(and semi-supervised learning)

® vy represents a category or “‘class”
mclassification binary :y € {—1,4+1} or y € {0,1}

multiclass :y € {1,m} ory € {0,m — 1} Predictive
® vy is a real-value number odels
" regression yeR or yeR"™
Unsupervised learning: no explicit prediciton target y
® model the probability distribution of x
% density estimation
, , , Descriptive
® discover underlying structure in data .
. modeling
% clustering

m dimensionality reduction
u% (unsupervised) representation learning

Reinforcement learning: taking good sequential decisions to maximize a rewarc
in an environment influenced by your decisions.
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® Training: we learn a predictive function fy by optimizing
it so that it predicts well on the training set.

® Use for prediction: we can then use fp on new (test) inputs
that were not part of the training set.

=> The GOAL of learning is NOT to learn perfectly (memorize)
the training set.

=>  What’s important is the ability for the predictor to
generalize well on new (future) cases.
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=X: 1D regression

target (label)
1 4

0.25
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......................... 1. Collect training data

Fevusesetetenezetatet ” """"""" . 2 Leam d fUﬂCtiOn (predictor)
s ; nput — target
_______ SV | 3. Use learned function

on New iNputs

.

> Input

*k K X AARA

Original slide by Olivier Delalleau




[ Supervised task: J

predict y from x

" Learn a function [y that will
minimize prediciton errors

| target
Input (label)
d

Xe R )4
g X1 X2 | X3 | X4 X5 t
o 0.32 | -0.27 | +1 0 0.82 || 113
& -0.12 0.42 -1 1 0.22 34
(>‘<’ 0.06 | 0.35 -1 1| -0.37 56
(d)) 0.91 | -0.72 | +1 0| -0.63 77
c

Training set Dn

_as measured by cost (loss) L

L(fG(X)7Y)

4

loss function

f@ : paramters

lundi 3 aodt 2015



A machine learning algorithm
usually corresponds to a combination of

the following 3 elements:
(either explicitly specified or implicit)

\/the choice of a specific function family: F¥
(often a parameterized family)

s/a way to evaluate the quality of a function felF

(typically using a cost (or loss) function L
mesuring how wrongly f predicts)

\/ a way to search for the «best» function feF
(typically an optimization of function parameters to
minimize the overall loss over the training set).
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of a function feF
and

function fel




The performance of a predictor is often evaluated using
several different evaluation metrics:

® Evaluations of true quantities of interest ($ saved,
tlifes saved, ...) when using predictor inside a more
complicated system.

® «Standard» evaluation metrics in a specific field
(€.8. BLEU (Bilingual Evaluation Understudy) SCOI€S in translation)

® Misclassification error rate for a classifier (or precision
and recall, or F-score, ...).

® The loss actually being optimized by the ML algorithm
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. . . . od + a proper probability
® For a density estimation task: f : R™ = R™ 0 tensity function

negative log likelihood loss: L(f(x)) = —log f(x)

® For aregression task: f:R* - R

squared error loss: L(f(z),y) = (f(z) — y)?

® For a classification task: f:R*—={0,...,m—1}

misclassification error loss:  L(f(x),y) = I )2
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® For a classification task:
misclassification error loss:

Problem:

f:R*—=1{0,...,m—1}

(gradient is 0 everywhere. NP-hard with a linear classifier) Must use a surrogate loss:

Binary classifier

Multiclass classifier

Probabilistic

Outputs probability of class 1
g(x) = P(yzl | X) Probability for class 0 is 1-g(x)
Binary cross-entropy loss:

Outputs a vector of probabilities:

8(x) = (P(y=0lx), ..., P(y=m-1lx) )
Negated conditional log likelihood loss

Decision function: f(x) = I4x)>0

e L(g()) = (v log(g() + (1-y) log(1-g(x)) |L(g(x)y) = -log g(x)y
Decision function: f{x) = (x>0 Decision function: f(x) = argmax(g(x))
Outputs a «score» g(x) for class 1. Outputs a vector g(x) of real-valued
Non. score for the other class is -g(x) scores for the m classes.
orobabilistic Hinge loss: Multiclass margin loss
classifier  |L(g(x),1) = max(0, I-7g(x)) where 1=2y-1

L(g(x).y) = max(0,1+max(g(x)o)-g(x)y )

Decision function: f(x) = argmax(g(x))
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Expected risk vs. Empirical risk

Examples (x,y) are supposed drawn i.i.d. from an unknown
true distribution p(x.,y) (from nature or industrial process)

® Generalization error = Expected risk (or just «Risk»)
«how poorly we will do on average on the infinity of future
examples from that unknown distribution»

R(f) =

ﬂp(X,y) [L(f(X), Y)]

® Empirical risk = average loss on a finite dataset
«how poorly we're doing on average on this finite dataset»

A

R(f,

ZL

(x,y)ED

where |DI| is the number of examples in D
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Examples (X,y) are supposed drawn i.i.d. from an unknown
true distribution p(X,y) (nature or industrial process)

® We'd love to find a predictor that
(the expected risk)

® But (expectation over unknown distribution)

Instead: Empirical risk minimization principle
«Find predictor that minimizes average loss over a trainset»

JE(Dtra,in) — argmin é(f7 Dtrain)

JeF

This is the training phase in ML
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P We can’t compute expected risk R(f)
p But R(f, D) isa good estimate of R(f) provided:

® ] was not used to find/choose f
otherwise estimate is biased => can’t be the training set!

® D is large enough (otherwise estimate is too noisy); drawn from p

B Must keep a separate test-set Diesi #Dirain to properly
estimate generalization error of f’( Dirain) -

R(]E(Dtrain)) ~ R(]E(Dtrain)a Dtest)

generalization average error on
error test-set (never used for training)

This is the test phase in ML
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Training
set

* Provided large enough
dataset DD drawn from p(x.y)

* Make sure examples are in
random order.

* Split dataset in twos

D irain and Diegt

® Use Diinto choose/
optimize/find best

PrediCtorf:f(Dtrain)

® Use Diest to evaluate
generalization performance
of predictor f.




Model selection

Choosing a specific

function family F




Ex. of parameterized function families

Polynomial predictor (of degree p): llll

—b P 4awx +. .. P
f®)=btarx+an’+as el [T

I linear

F polynomial p

Linear (affine) predictor: fg(x) =wx+b (in 1 dimension
(«linear regression») fo(x) = w!l x+ b (in d dimensions)
6 ={wecR%becR}

of | [ |1[][]]|
J .I Fconst

= : Constant predictor: fo(x)=b

. I ll.lll where 60={b}
(always predict the same value or class!)
i 3 aolt 2015




function family F'.

® How «big, rich, flexible, expressive, complex» that family
is, defines what is informally called the «capacity» of the
ML algorithm.

® One can come up with several formal measures of
«capacity» for a function family / learning algorithm
(e.g. VC-dimension Vapnik—Chervonenkis)

® One rule-of-thumb estimate, is the number of adaptable
parameters: i.e. how many scalar values are contained in 6.

Notable exception: chaining many linear mappings is still a linear mapping!
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The

«effective» capacity of a ML algo is controlled by:

Choice of ML algo, which determines big family F

Hyper-parameters that further specify F
e.g.: degree p of a polynomial predictor; Kernel choice in SVMs;

#of layers and neurons in a neural network

Hyper-parameters of «regularization» schemes

e.g. constraint on the norm of the weights w
(=> ridge-regression; L, weight decay in neural nets);
Bayesian prior on parameters; noise injection (dropout); ...

Hyper-parameters that control early-stopping of the

iterative search/optimization procedure.
(=> won’t explore as far from the initial starting point)
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(0 for RBF; degree for polynomal)

Capacity-control Learned
Algo
hyperparameters parameters
logistic regression :
(Ls regularized) strength of L2 regularizer w,b
linear SVM C w,b
ernel SYM C; kernel choice & params support vector

weights: o

neural network

layer sizes; early stop; ...

layer weight matrices

decision tree

depth

the tree (with index and
threshold of variables)

k-nearest neighbors

k; choice of metric

memorizes
trainset
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Tuning the capacity

® (Capacity must be optimally tuned to ensure good generalization
® by choosing Algorithm and hyperparameters

® to avoid under-fitting and over-fitting.

Ex: ID regression with polynomial predictor

iﬁﬁ!ﬁi IR EEER

HNNNEEE RRRERERER
capacity too low

capacity too high optimal capacity
Dunder-fitting =>over-fitting =>good generalisation

performance on training set is not a good estimate of generalization




Ex: 2D classification ® Function family too poor

(too inflexible)

Linear classifier e = Capacity too low for this problem

(relative to number of examples)

® => Under-fitting

largeur

22‘: saumon bar

20 .ot

]8;- ¢« . .

oot

16} S

H————————————" luminosité
2 4 6 8 10
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® Function family too rich
(too flexible)

e = Capacity too high for this problem

(relative to the number of examples)

® => QOverfitting

largeur

224 _ saumon

b L

0f .. "

S

s,

15} o

]4:"""""'"""""""’lumz’nasz’té
2 4 6 8 10

Nombre d’erreurs d’entrainement: 0
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o Optimal capacity for this problem
(par rapport a la quantité de donnees)

® => Best generalization
(on future test points)

largeur

224 saumon bar

20 .

]8_ ° ‘o

7y

16 | .
> uminosité

2 4 6 8 10
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Decomposing the generalization error

Set of all possible best possible
functions Fun]c:klon
in the universe ] approxiation
& error
i
I edﬁ .
. : Zl/ﬁgfl.g/?
best functions Varg, <0
. in F f;‘ \\\ /?Ce
Considered e
function family I .
f(Dtrain)
function ouralgo
learnt using trainset
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What is responsibe for the variance!

Set of all possible best P°§Sible
fJunctions Fun]c:klon
in the universe e approxiation
= error
f(Dtrain3)‘ RS AYs) :
. ‘\: ”?QZZOI?
best functiony  1g,.. e,
nF o fi e
Considered Fl e,
unction family F 3 ¢
J Jamily f (Dtraird) f (Dtrain)
function ouralgo
learnt usind trainset
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biais-variance dilemma

® Choosing richer F': capacity |
> bias |, but

® Choosing smaller F' : capacity |,
= but bias .

® Optimal compromise... will depend on number of examples n

® Biggern =
So we can afford to increase capacity (to lower the bias)
L) can use more expressive models

® The best regularizer 1s more data!
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Training
set
Dirain

Validation
set

Dyalid

Test set
DtGSt

Make sure examples are in random order

Spllt data D in 3: Dtrain Dva]id Dtest

4 )
Model selection meta-algorithm:

For each considered model (ML algo) A:
For each considered hyper-parameter config A:

* train model A with hyperparams A on Diain
fAA — A)\(Dtrain)
* evaluate resulting predictor on /Jy.id
(with preferred evaluation metric)

CA, = R(fAA7 Vahd)
Locate A", A" that yielded best €A,
Either return f* = fAi*

Or retrain and return

f* — (Dtraln U Dvalld)
\___ T T T T T <

" Finally: compute unbiased estimate of
generalization performance of f ™ using Dies

R(f*a Dtest)

Diest must never have been used during training or

_model selection to select, learn, or tune anything.
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Ex of model hyper-parameter selection

©O Training set error
O Validation set error

6,0

4,5 |

3,0

1,5

1 3 @ 7 9 1 13 15

Hyper-parameter value

Hyper-parameter value which yields smallest error on validaiton set is 5
(it was 1 for the training set)
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What if we selected capacity-control
hyper-parameters that yield best
performance on the training set?

What would we tend to select!?

s it a good idea? Why?
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Model selection procedure
summary:

Figure by Nicolas Chapados




Ensemble methods

® Principle: train and combine multiple predictors to good effect

® Bagging: average many high-variance predictors
> variance |
(e.g.: average deep trees = Random decision forests)

® Boosting: build weighted combination of low-capacity classifiers
o bias | and capacity |
(e.g. boosting shallow trees; or linear classifiers)
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Bagging
for reducing variance
on a regression problem

90

Temperature

70

60
|

| |
0 50 100 150
Ozone
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How to obtain non-linear
predictor with a linear predictor

Three ways to map X to a feature representation X = ¢(x)

® Use an explicit fixed mapping (ex: hand-crafted features)

® Use an implicit fixed mapping
> Kernel Methods (SVMs, Kernel Logistic Regression ...)

° a parameterized mapping

(i.e. let the ML algo learn the new representation)
I 2

such as Multilayer Perceptrons (MLP)
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Levels of
representation

very high level representation:

CAT

.. etc ...

4

slightly higher level representation

A

raw input vector representation:
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Questions ?




