
Loose Ends Non-Smooth Non-Finite Non-Convex

Non-Smooth, Non-Finite, and Non-Convex
Optimization

Deep Learning Summer School

Mark Schmidt

University of British Columbia

August 2015

Loose Ends Non-Smooth Non-Finite Non-Convex

Complex-Step Derivative
Using complex number to compute directional derivatives:

The usual finite-difference approximation of derivative:

f ′(x) ≈ f (x + h)− f (x)

h
.

Has O(h2) error from Taylor expansion,

f (x + h) = f (x) + hf ′(x) + O(h2),

But h can’t be too small: cancellation in f (x + h)− f (x).

For analytic functions, the complex-step derivative uses:

f (x + ih) = f (x) + ihf ′(x) + O(h2),

that also gives function and derivative to accuracy O(h2):

real(f (x+ih)) = f (x)+O(h2),
imag(f (x + ih))

h
= f ′(x)+O(h2),

but no cancellation so use tiny h (e.g., 10−150 in minFunc).

First appearance is apparently Squire & Trapp [1998].

Loose Ends Non-Smooth Non-Finite Non-Convex

Complex-Step Derivative
Using complex number to compute directional derivatives:

The usual finite-difference approximation of derivative:

f ′(x) ≈ f (x + h)− f (x)

h
.

Has O(h2) error from Taylor expansion,

f (x + h) = f (x) + hf ′(x) + O(h2),

But h can’t be too small: cancellation in f (x + h)− f (x).

For analytic functions, the complex-step derivative uses:

f (x + ih) = f (x) + ihf ′(x) + O(h2),

that also gives function and derivative to accuracy O(h2):

real(f (x+ih)) = f (x)+O(h2),
imag(f (x + ih))

h
= f ′(x)+O(h2),

but no cancellation so use tiny h (e.g., 10−150 in minFunc).

First appearance is apparently Squire & Trapp [1998].

Loose Ends Non-Smooth Non-Finite Non-Convex

Complex-Step Derivative
Using complex number to compute directional derivatives:

The usual finite-difference approximation of derivative:

f ′(x) ≈ f (x + h)− f (x)

h
.

Has O(h2) error from Taylor expansion,

f (x + h) = f (x) + hf ′(x) + O(h2),

But h can’t be too small: cancellation in f (x + h)− f (x).

For analytic functions, the complex-step derivative uses:

f (x + ih) = f (x) + ihf ′(x) + O(h2),

that also gives function and derivative to accuracy O(h2):

real(f (x+ih)) = f (x)+O(h2),
imag(f (x + ih))

h
= f ′(x)+O(h2),

but no cancellation so use tiny h (e.g., 10−150 in minFunc).

First appearance is apparently Squire & Trapp [1998].

Loose Ends Non-Smooth Non-Finite Non-Convex

“Subgradients” of Non-Convex functions

Sub-gradient d of function f at x has

f (y) ≥ f (x) + dT (y − x),

for all y and x .

Sub-gradients always exist for reasonable convex functions.

Clarke subgradient or generalized gradient d of f at x

f (y) ≥ f (x) + dT (y − x)− σ‖y − x‖2,

for some σ > 0 and all y near x [Clarke, 1975].

Exist for reasonable non-convex functions.

Loose Ends Non-Smooth Non-Finite Non-Convex

“Subgradients” of Non-Convex functions

Sub-gradient d of function f at x has

f (y) ≥ f (x) + dT (y − x),

for all y and x .

Sub-gradients always exist for reasonable convex functions.

Clarke subgradient or generalized gradient d of f at x

f (y) ≥ f (x) + dT (y − x)− σ‖y − x‖2,

for some σ > 0 and all y near x [Clarke, 1975].

Exist for reasonable non-convex functions.

Loose Ends Non-Smooth Non-Finite Non-Convex

Convergence Rate of Stochastic Gradient with Constant Step Size

Mark Schmidt

University of British Columbia

September 5, 2014

Abstract
We show that the basic stochastic gradient method applied to a strongly-convex di�erentiable

function with a constant step-size achieves a linear convergence rate (in function value and iterates)

up to a constant proportional the step-size (under standard assumptions on the gradient).

1 Overview and Assumptions
We want to minimize f(x) = E[f

i

(x)], where the expectation is taken with respect to i. The most

common case is minimizing a finite sum,

min

xœRd

1

n

nÿ

i=1

f
i

(x), (1.1)

as in problems like least squares and logistic regression. With use the iteration

xk+1
= xk ≠ –f Õ

ik
(xk

),

where i
k

is sampled uniformly (and step-size – is the step-size). We will assume that f Õ
is L-Lipschitz,

f is µ-strongly convex, Îf Õ
i

(x)Î Æ C for all x and i, that the minimizer is xú
, and 0 < – < 1/2µ. We

will show that

E[f(xk

) ≠ f(xú
)] Æ (1 ≠ 2–µ)

k

(f(x0
) ≠ f(xú

)) + O(–),

E[

..xk ≠ xú..2
] Æ (1 ≠ 2–µ)

k

..x0 ≠ xú..2
+ O(–),

meaning that the function values and iterates converge linearly up to some error level proportional to

–. For the special case of (1.1), Proposition 3.4 in the paper of Nedic and Bertsekas (‘Convergence

Rates of Incremental Subgradient Algorithms’, 2000) gives a similar argument/result but here we

also consider the function value and we work with the expectation to get rid of the dependence on

n.

2 Useful inequalitites
By L-Lipschitz of f Õ

, for all x and y we have

f(y) Æ f(x) + f Õ
(x)

T

(y ≠ x) +

L

2

Îy ≠ xÎ2.

By µ-strong-convexity of f , for all x and y we have

f(y) Ø f(x) + f Õ
(x)

T

(y ≠ x) +

µ

2

Îy ≠ xÎ2.

Minimizing both sides in terms of y, by setting y = x ≠ 1
µ

f Õ
(x) on the right hand side and using the

definition of xú
on the left hand side,

f(xú
) Ø f(x) ≠ 1

µ

..f Õ
(x)

..2
+

1

2µ

..f Õ
(x)

..2
= f(x) ≠ 1

2µ

..f Õ
(x)

..2
.

Also by strong-convexity,

f Õ
(x)

T

(x ≠ xú
) = (f Õ

(x) ≠ f Õ
(xú

))

T

(x ≠ xú
) Ø µÎx ≠ xúÎ2

.

1

By definition of i
k

and f ,

E[f Õ
ik

(xk

)] = f Õ
(xk

).

Recall the limit of the geometric series,

Œÿ

i=0

ri

=

1

1 ≠ r
, for |r| < 1.

3 Function Value

f(xk+1
) Æ f(xk

) + f Õ
(xk

)

T

(xk+1 ≠ xk

) +

L

2

..xk+1 ≠ xk

..2
(x = xk

, y = xk+1
in L-Lipshitz inequality)

= f(xk

) ≠ –f Õ
(xk

)

T f
ik (xk

) +

L–2

2

..f Õ
ik

(xk

)

..2
(eliminate (xk+1 ≠ xk

) using definition of xk+1
)

Æ f(xk

) ≠ –f Õ
(xk

)

T f
ik (xk

) +

L–2C2

2

. (use

..f Õ
i

(xk

)

.. Æ C)

E[f(xk+1
) ≠ f(xú

)] Æ f(xk

) ≠ f(xú
) ≠ –f Õ

(xk

)E[f
ik (xk

)] +

L–2C2

2

(take expectation WRT i
k

, subtract f(xú
))

Æ f(xk

) ≠ f(xú
) ≠ –

..f Õ
(xk

)

..2
+

L–2C2

2

(use E[f Õ
ik

(xk

)] = f Õ
(xk

)))

Æ f(xk

) ≠ f(xú
) ≠ 2–µ(f(xk

) ≠ f(xú
)) +

L–2C2

2

(use

1

2µ

..f Õ
(xk

)

..2 Ø f(xk

) ≠ f(xú
))

= (1 ≠ 2–µ)(f(xk

) ≠ f(xú
)) +

L–2C2

2

.

E[f(xk

) ≠ f(xú
)] Æ (1 ≠ 2–µ)

k

(f(x0
) ≠ f(xú

)) +

kÿ

i=0

(1 ≠ 2–µ)

i

L–2C2

2

(apply recursively, take total expectation)

Æ (1 ≠ 2–µ)

k

(f(x0
) ≠ f(xú

)) +

Œÿ

i=0

(1 ≠ 2–µ)

i

L–2C2

2

(extra terms are positive because – < 1/2µ)

= (1 ≠ 2–µ)

k

(f(x0
) ≠ f(xú

)) +

L–C2

4µ
. (use that

Œÿ

i=0

(1 ≠ 2–µ)

i

= 1/2–µ)

4 Iterates
..xk+1 ≠ xú..2

=

..
(xk ≠ –f Õ

ik
(xk

)) ≠ xú..2
(definition of xk+1

)

=

..xk ≠ xú..2 ≠ 2–f Õ
ik

(xk

)

T

(x ≠ xú
) + –2..f Õ

ik
(xk

)

..2
(group (xk ≠ xú

), expand)

Æ
..xk ≠ xú..2 ≠ 2–f Õ

ik
(xk

)

T

(xk ≠ xú
) + –2C2. (use

..f Õ
i

(xk

)

.. Æ C)

E[

..xk+1 ≠ xú..2
] Æ

..xk ≠ xú..2 ≠ 2–f Õ
(xk

)

T

(xk ≠ xú
) + –2C2

(take expectation WRT i
k

)

Æ Îx ≠ xúÎ2 ≠ 2–µÎx ≠ xúÎ + –2C2
(use f Õ

(x)

T

(x ≠ xú
) Ø µÎx ≠ xúÎ2

)

= (1 ≠ 2–µ)

..xk ≠ xú..2
+ –2C2

E[

..xk ≠ xú..2
] Æ (1 ≠ 2–µ)

k

..x0 ≠ xú..2
+

kÿ

i=0

(1 ≠ 2–µ)

i–2C2
(apply recursively, take total expectation)

Æ (1 ≠ 2–µ)

k

..x0 ≠ xú..2
+

–C2

2µ
. (as before, use that

kÿ

i=0

(1 ≠ 2–µ)

i Æ 1/2–µ).

2

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.

Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs
for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).

Loose Ends Non-Smooth Non-Finite Non-Convex

Review of Part 1 and Motivation for Part 2

Part 1: low iteration cost and linear rate in restrictive setting:

Objective is smooth.

Objective is a finite sum.

Objective is strongly-convex.

Part 2: ty to relax these assumptions.

Loose Ends Non-Smooth Non-Finite Non-Convex

Outline

1 Loose Ends

2 Non-Smooth

3 Non-Finite

4 Non-Convex

Loose Ends Non-Smooth Non-Finite Non-Convex

Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑
i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

Subgradient methods are optimal (slow) black-box methods.

Are there faster methods for specific non-smooth problems?

Loose Ends Non-Smooth Non-Finite Non-Convex

Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑
i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

Subgradient methods are optimal (slow) black-box methods.

Are there faster methods for specific non-smooth problems?

Loose Ends Non-Smooth Non-Finite Non-Convex

Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑
i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

Subgradient methods are optimal (slow) black-box methods.

Are there faster methods for specific non-smooth problems?

Loose Ends Non-Smooth Non-Finite Non-Convex

Motivation: Sparse Regularization

Recall the regularized empirical risk minimization problem:

min
x∈RP

1

N

N∑
i=1

L(x , ai , bi) + λr(x)

data fitting term + regularizer

Often, regularizer r is used to encourage sparsity pattern in x .

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

Subgradient methods are optimal (slow) black-box methods.

Are there faster methods for specific non-smooth problems?

Loose Ends Non-Smooth Non-Finite Non-Convex

Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Loose Ends Non-Smooth Non-Finite Non-Convex

Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Loose Ends Non-Smooth Non-Finite Non-Convex

Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Loose Ends Non-Smooth Non-Finite Non-Convex

Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge/ReLU loss:

max{0, x} ≈


0 x ≥ 1

1− x2 t < x < 1

(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic smoothing strategy: strongly-convex regularization of
convex conjugate [Nesterov, 2005].

Loose Ends Non-Smooth Non-Finite Non-Convex

Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge/ReLU loss:

max{0, x} ≈


0 x ≥ 1

1− x2 t < x < 1

(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic smoothing strategy: strongly-convex regularization of
convex conjugate [Nesterov, 2005].

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Smoothing Approach

Nesterov [2005] shows that:

Gradient method on smoothed problem has O(1/
√
t)

subgradient rate.
Accelerated gradient method has faster O(1/t) rate.

No results showing improvement in stochastic case.

In practice:

Slowly decrease level of smoothing (often difficult to tune).
Use faster algorithms like L-BFGS, SAG, or SVRG.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using mirror-prox method [Nemirovski, 2004].

See also Chambolle & Pock [2010].

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Smoothing Approach

Nesterov [2005] shows that:

Gradient method on smoothed problem has O(1/
√
t)

subgradient rate.
Accelerated gradient method has faster O(1/t) rate.

No results showing improvement in stochastic case.

In practice:

Slowly decrease level of smoothing (often difficult to tune).
Use faster algorithms like L-BFGS, SAG, or SVRG.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using mirror-prox method [Nemirovski, 2004].

See also Chambolle & Pock [2010].

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Smoothing Approach

Nesterov [2005] shows that:

Gradient method on smoothed problem has O(1/
√
t)

subgradient rate.
Accelerated gradient method has faster O(1/t) rate.

No results showing improvement in stochastic case.

In practice:

Slowly decrease level of smoothing (often difficult to tune).
Use faster algorithms like L-BFGS, SAG, or SVRG.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using mirror-prox method [Nemirovski, 2004].

See also Chambolle & Pock [2010].

Loose Ends Non-Smooth Non-Finite Non-Convex

Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).

Loose Ends Non-Smooth Non-Finite Non-Convex

Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).

Loose Ends Non-Smooth Non-Finite Non-Convex

Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).

Loose Ends Non-Smooth Non-Finite Non-Convex

Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).

Loose Ends Non-Smooth Non-Finite Non-Convex

Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑
i

(x+i + x−i),

or the problems

min
−y≤x≤y

f (x) + λ
∑
i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).

Loose Ends Non-Smooth Non-Finite Non-Convex

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Consider minimizing subject to simple constraints:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Called projected gradient algorithm:

xGDt = x t − αt∇f (x t),

x t+1 = argmin
y∈C

{
‖y − xGDt ‖

}
,

Loose Ends Non-Smooth Non-Finite Non-Convex

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Consider minimizing subject to simple constraints:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Called projected gradient algorithm:

xGDt = x t − αt∇f (x t),

x t+1 = argmin
y∈C

{
‖y − xGDt ‖

}
,

Loose Ends Non-Smooth Non-Finite Non-Convex

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Consider minimizing subject to simple constraints:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
.

Called projected gradient algorithm:

xGDt = x t − αt∇f (x t),

x t+1 = argmin
y∈C

{
‖y − xGDt ‖

}
,

Loose Ends Non-Smooth Non-Finite Non-Convex

Gradient Projection

f(x)

x

Loose Ends Non-Smooth Non-Finite Non-Convex

Gradient Projection

Feasible Set

f(x)

x

Loose Ends Non-Smooth Non-Finite Non-Convex

Gradient Projection

Feasible Set

x - !f’(x)
f(x)

x

Loose Ends Non-Smooth Non-Finite Non-Convex

Gradient Projection

Feasible Set

f(x)

x

x - !f’(x)

Loose Ends Non-Smooth Non-Finite Non-Convex

Gradient Projection

Feasible Set

x+

f(x)

x

x - !f’(x)

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

Projected Newton needs expensive projection under ‖ · ‖Ht :

Two-metric projection methods are efficient Newton-like
strategy for bound constraints.
Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

Projected Newton needs expensive projection under ‖ · ‖Ht :

Two-metric projection methods are efficient Newton-like
strategy for bound constraints.
Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.

Loose Ends Non-Smooth Non-Finite Non-Convex

Discussion of Projected Gradient

Projected gradient has same rate as gradient method!

Can do many of the same tricks (i.e. line-search, acceleration,
Barzilai-Borwein, SAG, SVRG).

Projected Newton needs expensive projection under ‖ · ‖Ht :

Two-metric projection methods are efficient Newton-like
strategy for bound constraints.
Inexact Newton methods allow Newton-like like strategy for
optimizing costly functions with simple constraints.

Loose Ends Non-Smooth Non-Finite Non-Convex

Projection Onto Simple Sets

Projections onto simple sets:

Bound constraints (l ≤ x ≤ u)

Small number of linear equalities/inequalities.
(aT x = b or aT x ≤ b)

Norm-balls and norm-cones (‖x‖ ≤ τ or ‖x‖ ≤ x0).

Probability simplex (x ≥ 0,
∑

i xi = 1).

Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

Intersection of non-disjoint simple sets: Dykstra’s algorithm.

Loose Ends Non-Smooth Non-Finite Non-Convex

Projection Onto Simple Sets

Projections onto simple sets:

Bound constraints (l ≤ x ≤ u)

Small number of linear equalities/inequalities.
(aT x = b or aT x ≤ b)

Norm-balls and norm-cones (‖x‖ ≤ τ or ‖x‖ ≤ x0).

Probability simplex (x ≥ 0,
∑

i xi = 1).

Intersection of disjoint simple sets.

We can solve large instances of problems with these constraints.

Intersection of non-disjoint simple sets: Dykstra’s algorithm.

Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal-Gradient Method

Proximal-gradient generalizes projected-gradient for

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Consider the update:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
.

Applies proximity operator of r to gradient descent on f :

xGDt = x t − αt∇f (xt),

x t+1 = argmin
y

{
1

2
‖y − xGDt ‖2 + αr(y)

}
,

Convergence rates are still the same as for minimizing f .

Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal-Gradient Method

Proximal-gradient generalizes projected-gradient for

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Consider the update:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
.

Applies proximity operator of r to gradient descent on f :

xGDt = x t − αt∇f (xt),

x t+1 = argmin
y

{
1

2
‖y − xGDt ‖2 + αr(y)

}
,

Convergence rates are still the same as for minimizing f .

Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal-Gradient Method

Proximal-gradient generalizes projected-gradient for

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Consider the update:

x t+1 = argmin
y

{
f (x t) +∇f (x t)T (y − x t) +

1

2α
‖y − x t‖2+r(y)

}
.

Applies proximity operator of r to gradient descent on f :

xGDt = x t − αt∇f (xt),

x t+1 = argmin
y

{
1

2
‖y − xGDt ‖2 + αr(y)

}
,

Convergence rates are still the same as for minimizing f .

Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0



Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0



Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0

−1.2075
0

1.6302
0




0
−0.2075

0
0.6302

0



Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0

−0.2075
0

0.6302
0



Loose Ends Non-Smooth Non-Finite Non-Convex

Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y] = argmin
x∈RP

1

2
‖x − y‖2 + r(x).

For L1-regularization, we obtain iterative soft-thresholding:

x t+1 = softThreshαλ[x t − α∇f (x t)].

Example with λ = 1:
Input Threshold Soft-Threshold

0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0



Loose Ends Non-Smooth Non-Finite Non-Convex

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).

Loose Ends Non-Smooth Non-Finite Non-Convex

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.

3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).

Loose Ends Non-Smooth Non-Finite Non-Convex

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).

Loose Ends Non-Smooth Non-Finite Non-Convex

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).

Loose Ends Non-Smooth Non-Finite Non-Convex

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

We can again do many of the same tricks (line-search,
acceleration, Barzilai-Borwein, two-metric
subgradient-projection, inexact proximal operators, inexact
proximal Newton, SAG, SVRG).

Loose Ends Non-Smooth Non-Finite Non-Convex

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.

Loose Ends Non-Smooth Non-Finite Non-Convex

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.

Loose Ends Non-Smooth Non-Finite Non-Convex

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.

Loose Ends Non-Smooth Non-Finite Non-Convex

Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.

Loose Ends Non-Smooth Non-Finite Non-Convex

Frank-Wolfe Method

In some cases the projected gradient step

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
,

may be hard to compute.

Frank-Wolfe method simply uses:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t)

}
,

requires compact C, takes convex combination of x t and x t+1.

O(1/t) rate for smooth convex objectives, some linear
convergence results for strongly-convex [Jaggi, 2013].

Loose Ends Non-Smooth Non-Finite Non-Convex

Frank-Wolfe Method

In some cases the projected gradient step

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t) +

1

2αt
‖y − x t‖2

}
,

may be hard to compute.

Frank-Wolfe method simply uses:

x t+1 = argmin
y∈C

{
f (x t) +∇f (x t)T (y − x t)

}
,

requires compact C, takes convex combination of x t and x t+1.

O(1/t) rate for smooth convex objectives, some linear
convergence results for strongly-convex [Jaggi, 2013].

Loose Ends Non-Smooth Non-Finite Non-Convex

Summary

No black-box method can beat subgradient methods

For most objectives, you can beat subgradient methods.

You just need a long list of tricks:

Smoothing.
Chambolle-Pock.
Projected-gradient.
Two-metric projection.
Proximal-gradient.
Proximal-Newton.
ADMM
Frank-Wolfe.
Mirror descent.
Incremental surrogate optimization.
Solving smooth dual.

Loose Ends Non-Smooth Non-Finite Non-Convex

Summary

No black-box method can beat subgradient methods

For most objectives, you can beat subgradient methods.

You just need a long list of tricks:

Smoothing.
Chambolle-Pock.
Projected-gradient.
Two-metric projection.
Proximal-gradient.
Proximal-Newton.
ADMM
Frank-Wolfe.
Mirror descent.
Incremental surrogate optimization.
Solving smooth dual.

Loose Ends Non-Smooth Non-Finite Non-Convex

Outline

1 Loose Ends

2 Non-Smooth

3 Non-Finite

4 Non-Convex

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

min
x∈IRD

E[fi (x)],

including the generalization error in machine learning.

Error ε has two parts [Bottou & Bousquet, 2007]:

ε = (optimization error) + (estimation error).

(for generalization error, also have model error)

Consider two strategies:
Generate t samples, then minimize exactly (ERM):

Optimization error = 0.
Estimation error = Õ(1/t).

Or just applying stochastic gradient as we go:

Optimization error = O(1/t).
Estimation error = Õ(1/t).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

min
x∈IRD

E[fi (x)],

including the generalization error in machine learning.

Error ε has two parts [Bottou & Bousquet, 2007]:

ε = (optimization error) + (estimation error).

(for generalization error, also have model error)

Consider two strategies:
Generate t samples, then minimize exactly (ERM):

Optimization error = 0.
Estimation error = Õ(1/t).

Or just applying stochastic gradient as we go:

Optimization error = O(1/t).
Estimation error = Õ(1/t).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

min
x∈IRD

E[fi (x)],

including the generalization error in machine learning.

Error ε has two parts [Bottou & Bousquet, 2007]:

ε = (optimization error) + (estimation error).

(for generalization error, also have model error)

Consider two strategies:
Generate t samples, then minimize exactly (ERM):

Optimization error = 0.
Estimation error = Õ(1/t).

Or just applying stochastic gradient as we go:

Optimization error = O(1/t).
Estimation error = Õ(1/t).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

min
x∈IRD

E[fi (x)],

including the generalization error in machine learning.

Error ε has two parts [Bottou & Bousquet, 2007]:

ε = (optimization error) + (estimation error).

(for generalization error, also have model error)

Consider two strategies:
Generate t samples, then minimize exactly (ERM):

Optimization error = 0.
Estimation error = Õ(1/t).

Or just applying stochastic gradient as we go:

Optimization error = O(1/t).
Estimation error = Õ(1/t).

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all
actual data, the ERM is better. However, we have no
understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all
actual data, the ERM is better. However, we have no
understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all
actual data, the ERM is better. However, we have no
understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all
actual data, the ERM is better. However, we have no
understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.

Loose Ends Non-Smooth Non-Finite Non-Convex

Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all
actual data, the ERM is better. However, we have no
understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.

Loose Ends Non-Smooth Non-Finite Non-Convex

Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

Start with x0 and initial sample size N

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs) for N fresh samples.

x0 = xs
for t = 1, 2, . . .m

Randomly pick 1 fresh sample.
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Increase samples size N.

Streaming SVRG is optimal in non-asymptotic regime.

Same variance as ERM (only true for avg(SG) asymptotically).

Second-order methods are not necessary.

Loose Ends Non-Smooth Non-Finite Non-Convex

Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

Start with x0 and initial sample size N

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs) for N fresh samples.

x0 = xs

for t = 1, 2, . . .m

Randomly pick 1 fresh sample.
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Increase samples size N.

Streaming SVRG is optimal in non-asymptotic regime.

Same variance as ERM (only true for avg(SG) asymptotically).

Second-order methods are not necessary.

Loose Ends Non-Smooth Non-Finite Non-Convex

Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

Start with x0 and initial sample size N

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs) for N fresh samples.

x0 = xs
for t = 1, 2, . . .m

Randomly pick 1 fresh sample.
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Increase samples size N.

Streaming SVRG is optimal in non-asymptotic regime.

Same variance as ERM (only true for avg(SG) asymptotically).

Second-order methods are not necessary.

Loose Ends Non-Smooth Non-Finite Non-Convex

Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

Start with x0 and initial sample size N

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs) for N fresh samples.

x0 = xs
for t = 1, 2, . . .m

Randomly pick 1 fresh sample.
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Increase samples size N.

Streaming SVRG is optimal in non-asymptotic regime.

Same variance as ERM (only true for avg(SG) asymptotically).

Second-order methods are not necessary.

Loose Ends Non-Smooth Non-Finite Non-Convex

Constant-Step SG under Strong Assumptions

We can beat O(1/t) under stronger assumptions.

E.g., Schmidt & Le Roux [2013],

‖f ′i (x)‖ ≤ B‖f ′(x)‖.

Crazy assumption: assumes x∗ minimizes fi .

With αt = 1
LB2 , stochastic gradient has

E[f (x t)]− f (x∗) ≤
(

1− µ

LB2

)t
[f (x0)− f (x∗)].

If you expect to over-fit, maybe constant αt is enough?

Loose Ends Non-Smooth Non-Finite Non-Convex

Constant-Step SG under Strong Assumptions

We can beat O(1/t) under stronger assumptions.

E.g., Schmidt & Le Roux [2013],

‖f ′i (x)‖ ≤ B‖f ′(x)‖.

Crazy assumption: assumes x∗ minimizes fi .

With αt = 1
LB2 , stochastic gradient has

E[f (x t)]− f (x∗) ≤
(

1− µ

LB2

)t
[f (x0)− f (x∗)].

If you expect to over-fit, maybe constant αt is enough?

Loose Ends Non-Smooth Non-Finite Non-Convex

Constant-Step SG under Strong Assumptions

We can beat O(1/t) under stronger assumptions.

E.g., Schmidt & Le Roux [2013],

‖f ′i (x)‖ ≤ B‖f ′(x)‖.

Crazy assumption: assumes x∗ minimizes fi .

With αt = 1
LB2 , stochastic gradient has

E[f (x t)]− f (x∗) ≤
(

1− µ

LB2

)t
[f (x0)− f (x∗)].

If you expect to over-fit, maybe constant αt is enough?

Loose Ends Non-Smooth Non-Finite Non-Convex

Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction x t .
Receive arbitrary convex loss ft .

OCO analyzes regret,

t∑
k=1

ft(x
t)− ft(x

∗),

comparing vs. best fixed x∗ for any sequence {ft}.
SG-style methods achieve optimal O(

√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.

Loose Ends Non-Smooth Non-Finite Non-Convex

Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction x t .

Receive arbitrary convex loss ft .

OCO analyzes regret,

t∑
k=1

ft(x
t)− ft(x

∗),

comparing vs. best fixed x∗ for any sequence {ft}.
SG-style methods achieve optimal O(

√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.

Loose Ends Non-Smooth Non-Finite Non-Convex

Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction x t .
Receive arbitrary convex loss ft .

OCO analyzes regret,

t∑
k=1

ft(x
t)− ft(x

∗),

comparing vs. best fixed x∗ for any sequence {ft}.

SG-style methods achieve optimal O(
√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.

Loose Ends Non-Smooth Non-Finite Non-Convex

Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction x t .
Receive arbitrary convex loss ft .

OCO analyzes regret,

t∑
k=1

ft(x
t)− ft(x

∗),

comparing vs. best fixed x∗ for any sequence {ft}.
SG-style methods achieve optimal O(

√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.

Loose Ends Non-Smooth Non-Finite Non-Convex

Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction x t .
Receive arbitrary convex loss ft .

OCO analyzes regret,

t∑
k=1

ft(x
t)− ft(x

∗),

comparing vs. best fixed x∗ for any sequence {ft}.
SG-style methods achieve optimal O(

√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.

Loose Ends Non-Smooth Non-Finite Non-Convex

Outline

1 Loose Ends

2 Non-Smooth

3 Non-Finite

4 Non-Convex

Loose Ends Non-Smooth Non-Finite Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Loose Ends Non-Smooth Non-Finite Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.

But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Loose Ends Non-Smooth Non-Finite Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Loose Ends Non-Smooth Non-Finite Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).

Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Loose Ends Non-Smooth Non-Finite Non-Convex

Two Classic Perspectives of Non-Convex Optimization

Local non-convex optimization:

Apply method with good properties for convex functions.
First phase is getting near minimizer.
Second phase applies rates from convex optimization.
But how long does the first phase take?

Global non-convex optimization:

Search for global min for general function class.
E.g., search over a sucessively-refined grid.
Optimal rate for Lipschitz functions is O(1/ε1/D).
Can only solve low-dimensional problems.

We’ll go over recent local, global, and hybrid results..

Loose Ends Non-Smooth Non-Finite Non-Convex

Strong Property: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2.

Which implies the inequality often used in the proofs,

‖∇f (x)‖2 ≥ 2µ[f (x)− f ∗].

A bunch of weaker assumptions imply this inequality,
Essentially strong-convexity.
Optimal strong-convexity.
Restricted secant inequality.
Etc.

Strong property: Just assume the inequality holds.
Special case of Lojasiewicz [1963] inequality.
Also introduced in Polyak [1963].
Weaker than all the above conditions.
Does not imply solution is unique.

Holds for f (Ax) with f strongly-convex and rank(A) ≥ 1.

Does not imply convexity.

Loose Ends Non-Smooth Non-Finite Non-Convex

Strong Property: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2.

Which implies the inequality often used in the proofs,

‖∇f (x)‖2 ≥ 2µ[f (x)− f ∗].

A bunch of weaker assumptions imply this inequality,
Essentially strong-convexity.
Optimal strong-convexity.
Restricted secant inequality.
Etc.

Strong property: Just assume the inequality holds.
Special case of Lojasiewicz [1963] inequality.
Also introduced in Polyak [1963].
Weaker than all the above conditions.
Does not imply solution is unique.

Holds for f (Ax) with f strongly-convex and rank(A) ≥ 1.

Does not imply convexity.

Loose Ends Non-Smooth Non-Finite Non-Convex

Strong Property: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2.

Which implies the inequality often used in the proofs,

‖∇f (x)‖2 ≥ 2µ[f (x)− f ∗].

A bunch of weaker assumptions imply this inequality,
Essentially strong-convexity.
Optimal strong-convexity.
Restricted secant inequality.
Etc.

Strong property: Just assume the inequality holds.
Special case of Lojasiewicz [1963] inequality.
Also introduced in Polyak [1963].
Weaker than all the above conditions.
Does not imply solution is unique.

Holds for f (Ax) with f strongly-convex and rank(A) ≥ 1.

Does not imply convexity.

Loose Ends Non-Smooth Non-Finite Non-Convex

Strong Property: Expanding the Second Phase

Linear convergence proofs usually assume strong-convexity

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2.

Which implies the inequality often used in the proofs,

‖∇f (x)‖2 ≥ 2µ[f (x)− f ∗].

A bunch of weaker assumptions imply this inequality,
Essentially strong-convexity.
Optimal strong-convexity.
Restricted secant inequality.
Etc.

Strong property: Just assume the inequality holds.
Special case of Lojasiewicz [1963] inequality.
Also introduced in Polyak [1963].
Weaker than all the above conditions.
Does not imply solution is unique.

Holds for f (Ax) with f strongly-convex and rank(A) ≥ 1.

Does not imply convexity.

Loose Ends Non-Smooth Non-Finite Non-Convex

Global Linear Convergence with the Strong Property
Function satisfying the strong-convexity property:

(unique optimum, convex, growing faster than linear)

Function satisfying the strong property:

Linear convergence rate for this non-convex function.

Second phase of local solvers is larger than we thought.

Loose Ends Non-Smooth Non-Finite Non-Convex

Global Linear Convergence with the Strong Property
Function satisfying the strong-convexity property:

(unique optimum, convex, growing faster than linear)

Function satisfying the strong property:

Linear convergence rate for this non-convex function.

Second phase of local solvers is larger than we thought.

Loose Ends Non-Smooth Non-Finite Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f (x t)‖2 = O(ρt), f (x t)−f (x∗) = O(ρt), ‖xt−x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f (x t)‖2 = O(1/t), f (x t)− f (x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f (xk)‖2 = O(1/t).

[Ghadimi & Lan, 2013].

Loose Ends Non-Smooth Non-Finite Non-Convex

General Global Non-Convex Rates?

For strongly-convex smooth functions, we have

‖∇f (x t)‖2 = O(ρt), f (x t)−f (x∗) = O(ρt), ‖xt−x∗‖ = O(ρt).

For convex smooth functions, we have

‖∇f (x t)‖2 = O(1/t), f (x t)− f (x∗) = O(1/t).

For non-convex smooth functions, we have

min
k
‖∇f (xk)‖2 = O(1/t).

[Ghadimi & Lan, 2013].

Loose Ends Non-Smooth Non-Finite Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].
Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f (xk) + 〈∇f (xk), d〉+

1

2
dT∇2f (xk)d +

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Loose Ends Non-Smooth Non-Finite Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].

Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f (xk) + 〈∇f (xk), d〉+

1

2
dT∇2f (xk)d +

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Loose Ends Non-Smooth Non-Finite Non-Convex

Escaping Saddle Points

Ghadimi & Lan type of rates could be good or bad news:

No dimension dependence (way faster than grid-search).
But gives up on optimality (e.g., approximate saddle points).

Escaping from saddle points:

Classical: trust-region methods allow negative eigenvalues.
Modify eigenvalues in Newton’s method [Dauphin et al., 2014].
Add random noise to stochastic gradient [Ge et al., 2015].
Cubic regularization of Newton [Nesterov & Polyak, 2006],

xk+1 = min
d

{
f (xk) + 〈∇f (xk), d〉+

1

2
dT∇2f (xk)d +

L

6
‖d‖3

}
,

if within ball of saddle point then next step:

Moves outside of ball.
Has lower objective than saddle-point.

Loose Ends Non-Smooth Non-Finite Non-Convex

Globally-Optimal Methods for Matrix Problems

Classic: principal component analysis (PCA)

max
WTW=I

‖XTW ‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X |X�0,rank(X)≤k}

f (X)⇒ min
V

f (VVT),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− VVT ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UVT dictionary learning and phase
retrieval problems [Agarwal et al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and
tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW ‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X |X�0,rank(X)≤k}

f (X)⇒ min
V

f (VVT),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− VVT ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UVT dictionary learning and phase
retrieval problems [Agarwal et al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and
tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW ‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X |X�0,rank(X)≤k}

f (X)⇒ min
V

f (VVT),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− VVT ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UVT dictionary learning and phase
retrieval problems [Agarwal et al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and
tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW ‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X |X�0,rank(X)≤k}

f (X)⇒ min
V

f (VVT),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− VVT ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UVT dictionary learning and phase
retrieval problems [Agarwal et al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and
tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Globally-Optimal Methods for Matrix Problems
Classic: principal component analysis (PCA)

max
WTW=I

‖XTW ‖2F ,

and rank-constrained version.
Shamir [2015] gives SAG/SVRG rates for PCA.

Burer & Monteiro [2004] consider SDP re-parameterization

min
{X |X�0,rank(X)≤k}

f (X)⇒ min
V

f (VVT),

and show does not introduce spurious local minimum.

De Sa et al. [2015]: For class of non-convex problems of the form

min
Y

E[‖A− VVT ‖2F].

random initialization leads to global optimum.

Under certain assumptions, can solve UVT dictionary learning and phase
retrieval problems [Agarwal et al., 2014, Candes et al., 2015].

Certain latent variable problems like training HMMs can be solved via SVD and
tensor-decomposition methods [Hsu et al., 2012, Anankumar et al, 2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Loose Ends Non-Smooth Non-Finite Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Loose Ends Non-Smooth Non-Finite Non-Convex

Convex Relaxations/Representations

Convex relaxations approximate non-convex with convex:

Convex relaxations exist for neural nets.
[Bengio et al., 2005, Aslan et al., 2015].

But may solve restricted problem or be a bad approximation.

Can solve convex dual:

Strong-duality holds for some non-convex problems.
Sometimes dual has nicer properties.
Efficiently representation/calculation of neural network dual?

Exact convex re-formulations of non-convex problems:

Laserre [2001].
But the size may be enormous.

Loose Ends Non-Smooth Non-Finite Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/t1/d) to O(1/tv/d).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular
assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan
& Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al.,
2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/t1/d) to O(1/tv/d).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular
assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan
& Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al.,
2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

General Non-Convex Rates

Grid-search is optimal, but can be beaten:

Convergence rate of Bayesian optimization [Bull, 2011]:

Slower than grid-search with low level of smoothness.
Faster than grid-search with high level of smoothness:

Improves error from O(1/t1/d) to O(1/tv/d).

Regret bounds for Bayesian optimization:

Exponential scaling with dimensionality [Srinivas et al., 2010].
Better under additive assumption [Kandasamy et al., 2015].

Other known faster-than-grid-search rates:

Simulated annealing under complicated non-singular
assumption [Tikhomirov, 2010].
Particle filtering can improve under certain conditions [Crisan
& Doucet, 2002].
Graduated Non-Convexity for σ-nice functions [Hazan et al.,
2014].

Loose Ends Non-Smooth Non-Finite Non-Convex

Summary

Summary:

Part 1: Can solve constrained/non-smooth efficiently with a
variety of tricks (two-metric, proximal-gradient, dual, etc.).

Part 2: SG is optimal for learning, but constants matter and
finite-sum methods are leading to improved results.

Part 3: We are starting to be able to understand non-convex
problems, but there is a lot of work to do.

	Loose Ends
	Non-Smooth
	Non-Finite
	Non-Convex

