
GRAHAM TAYLOR

SEEING PEOPLE 
WITH DEEP LEARNING

SCHOOL OF ENGINEERING 
UNIVERSITY OF GUELPH

Deep Learning Summer School 2015 
Montreal, Quebec



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

2

Source: Austin Granger @ Flickr



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

3

Source: ohadby @ Flickr



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

4

• Humans: dominant subject in nearly 
all video 

• Better algorithms for interpreting 
their behaviour can 

- help understanding of people’s use 
of public spaces 

- improve healthcare delivery and 
outcomes 

- augment people’s interaction with 
the world 

- improve human-computer and 
human-robot interaction

Seeing Humans

?

Image: Neverova et al. (2015)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

5

Source: Daily dose of imagery



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

6

• Advances in vision have enabled “sci-fi” 
like applications: gesture recognition, 
face detection and recognition 

• Machine learning is a major driving 
force behind this development 

- vast amounts of visual data, 
inherently large variations  

- emergence of new computational 
paradigms (GPUs) 

• Deep learning has emerged as a major 
force in vision

ML for Vision
DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

7

• Many realistic situations are 
currently out of reach 

- person-person and 
person-object interactions 

- long-running dynamical 
behaviour in video 

- large-scale variation (e.g. 
deformable objects)

Challenges Lie Ahead

Images:Christian Wolf



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

8

Focus on “seeing humans” in images and video using 
deep learning methods:

This Lecture

Activity /Gesture Tracking Pose Estimation 

 

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

9

Activity /Gesture Tracking Pose Estimation 

 

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

10

• Localization of joints 

• Extreme variability in articulations 

• Many joints barely visible 

- small # pixels 

- occlusions

Pose Estimation
DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4

Images: Toshev and Szegedy (2014)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

11

DNNs for Precise Localization?



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

11

• Most obvious approach: map input vector directly to a 
vector coding the articulated pose (e.g. unbounded 2-D or 
3-D positions of joints or angles)

DNNs for Precise Localization?



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

11

• Most obvious approach: map input vector directly to a 
vector coding the articulated pose (e.g. unbounded 2-D or 
3-D positions of joints or angles)

- Pooling, while useful for recognition, destroys precise 
spatial information

- The mapping from input space to kinematic pose is 
highly nonlinear and not one-to-one

- Valid poses represent a much lower-dimensional 
manifold in the high-dimensional space of configurations

DNNs for Precise Localization?



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

12

• Train multiple convnets to perform independent 
body-part classification 

• Applied as sliding windows to input, map a window 
of pixels to a single binary output

CNNs for Pose Estimation
(Jain et al. 2014)

RGB (LCN)

64x64px


8192


Full

+ReLU


reshape


500

100


Full

+ReLU


Full

+logistic


1


5x5 Conv

+ReLU


+MaxPool


16 feats

32x32px


5x5 Conv

+ReLU


+MaxPool


32 feats

16x16px


5x5 Conv

+ReLU


32 feats

16x16px




07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

13

Output:Pose Confidence Maps
RGB and 

joint predictions
Output before 
Spatial Model

Output after 
Spatial Model



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

14

• Raw output of network produces many 
false positives 

- small image context 

- training set size limited 

• Simple spatial model with body-pose 
priors can de-emphasize anatomically 
impossible poses 

- convnet provides unary distributions 

- body part priors fit to training data

Spatial Model

face
 shoulder
 elbow


psho|fac
 pelb|sho


wrist


pwri|elb


psho|elb
 pelb|wri




07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

15

Spatial priors

50 100 150 200 250 300

50

100

150

200

250

300
50 100 150 200 250 300

50

100

150

200

250

300

p
sho|fac=~

0

50 100 150 200 250 300

50

100

150

200

250

300
50 100 150 200 250 300

50

100

150

200

250

300

p
elb|sho=~

0

50 100 150 200 250 300

50

100

150

200

250

300
50 100 150 200 250 300

50

100

150

200

250

300

pwri|elb=~0

p̂i / pi
�
Y

u2U

⇣
pi|u=~0 ⇤ pu

⌘

For a body part     with a set of neighbouring nodes     :i U

e.g. for the shoulder joint:

log (p̂
sho

) / � log (p
sho

) + log

⇣
p
sho|fac=~

0

⇤ p
fac

⌘
+ log

⇣
p
sho|elb=~

0

⇤ p
elb

⌘

� = 1 in experiments



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

16

• Incorporating image evidence from the shoulder 
joint to the filtered face distribution doesn’t work 

- Due to the fact that the convnet already does a 
good job of localizing the face  

- Incorporating noisy evidence from the shoulder 
increases uncertainty 

• Instead use a global position prior:

Face prior

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

log (p̂fac) / � log (pfac) + log (hfac)
hfac



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

17

• Pose estimation as DNN-based regression 

• Normalize joint co-ordinates w.r.t. human bounding 
box 

• Normalize the image by the same box (crop human) 

• “Alexnet” architecture

DeepPose
(Toshev and Szegedy 2014)

(xi, yi) (x(s-1)i, y (s-1) i)

xsi - x(s-1)i
ysi - y(s-1)i

Initial stage Stage s

send refined values 
to next stage

220 x 220

DNN-based regressor

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48 xi

yi...

DNN-based refiner

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48

Figure 2. Left: schematic view of the DNN-based pose regression. We visualize the network layers with their corresponding dimensions,
where convolutional layers are in blue, while fully connected ones are in green. We do not show the parameter free layers. Right: at stage
s, a refining regressor is applied on a sub image to refine a prediction from the previous stage.

[23]. In a nutshell, the network consists of 7 layers (see
Fig. 2 left). Denote by C a convolutional layer, by LRN

a local response normalization layer, P a pooling layer
and by F a fully connected layer. Only C and F layers
contain learnable parameters, while the rest are parame-
ter free. Both C and F layers consist of a linear trans-
formation followed by a nonlinear one, which in our case
is a rectified linear unit. For C layers, the size is de-
fined as width ⇥ height ⇥ depth, where the first two di-
mensions have a spatial meaning while the depth defines
the number of filters. If we write the size of each layer in
parentheses, then the network can be described concisely
as C(55 ⇥ 55 ⇥ 96) � LRN � P � C(27 ⇥ 27 ⇥ 256) �
LRN � P � C(13 ⇥ 13 ⇥ 384) � C(13 ⇥ 13 ⇥ 384) �
C(13 ⇥ 13 ⇥ 256) � P � F (4096) � F (4096). The filter
size for the first two C layers is 11 ⇥ 11 and 5 ⇥ 5 and for
the remaining three is 3 ⇥ 3. Pooling is applied after three
layers and contributes to increased performance despite the
reduction of resolution. The input to the net is an image
of 220 ⇥ 220 which via stride of 4 is fed into the network.
The total number of parameters in the above model is about
40M. For further details, we refer the reader to [14].

The use of a generic DNN architecture is motivated by
its outstanding results on both classification and localization
problems. In the experimental section we show that such a
generic architecture can be used to learn a model resulting
in state-of-art or better performance on pose estimation as
well. Further, such a model is a truly holistic one — the
final joint location estimate is based on a complex nonlinear
transformation of the full image.

Additionally, the use of a DNN obviates the need to de-
sign a domain specific pose model. Instead such a model
and the features are learned from the data. Although the re-
gression loss does not model explicit interactions between
joints, such are implicitly captured by all of the 7 hidden
layers – all the internal features are shared by all joint re-
gressors.

Training The difference to [14] is the loss. Instead of a
classification loss, we train a linear regression on top of the

last network layer to predict a pose vector by minimizing
L2 distance between the prediction and the true pose vec-
tor. Since the ground truth pose vector is defined in abso-
lute image coordinates and poses vary in size from image to
image, we normalize our training set D using the normal-
ization from Eq. (1):

D

N

= {(N(x), N(y))|(x,y) 2 D} (3)

Then the L2 loss for obtaining optimal network parameters
reads:

argmin
✓

X

(x,y)2DN

kX

i=1

||y
i

�  

i

(x; ✓)||22 (4)

For clarity we write out the optimization over individual
joints. It should be noted, that the above objective can
be used even if for some images not all joints are labeled.
In this case, the corresponding terms in the sum would be
omitted.

The above parameters ✓ are optimized for using Back-
propagation in a distributed online implementation. For
each mini-batch of size 128, adaptive gradient updates are
computed [3]. The learning rate, as the most important pa-
rameter, is set to 0.0005. Since the model has large number
of parameters and the used datasets are of relatively small
size, we augment the data using large number of randomly
translated image crops (see Sec. 3.2), left/right flips as well
as DropOut regularization for the F layers set to 0.6.

3.2. Cascade of Pose Regressors

The pose formulation from the previous section has the
advantage that the joint estimation is based on the full im-
age and thus relies on context. However, due to its fixed
input size of 220 ⇥ 220, the network has limited capacity
to look at detail – it learns filters capturing pose properties
at coarse scale. These are necessary to estimate rough pose
but insufficient to always precisely localize the body joints.
Note that we cannot easily increase the input size since this



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

18

• Joint estimation is based on 
the full image and therefore 
relies on context 

• Fixed input size of 220 x 220, 
only captures pose at 
coarse scale 

• Propose to train a cascade 
of regressors

Cascade of pose regressors
Initial stage

(xi, yi) (x(s-1)i, y (s-1) i)

xsi - x(s-1)i
ysi - y(s-1)i

Initial stage Stage s

send refined values 
to next stage

220 x 220

DNN-based regressor

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48 xi

yi...

DNN-based refiner

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48

Figure 2. Left: schematic view of the DNN-based pose regression. We visualize the network layers with their corresponding dimensions,
where convolutional layers are in blue, while fully connected ones are in green. We do not show the parameter free layers. Right: at stage
s, a refining regressor is applied on a sub image to refine a prediction from the previous stage.

[23]. In a nutshell, the network consists of 7 layers (see
Fig. 2 left). Denote by C a convolutional layer, by LRN

a local response normalization layer, P a pooling layer
and by F a fully connected layer. Only C and F layers
contain learnable parameters, while the rest are parame-
ter free. Both C and F layers consist of a linear trans-
formation followed by a nonlinear one, which in our case
is a rectified linear unit. For C layers, the size is de-
fined as width ⇥ height ⇥ depth, where the first two di-
mensions have a spatial meaning while the depth defines
the number of filters. If we write the size of each layer in
parentheses, then the network can be described concisely
as C(55 ⇥ 55 ⇥ 96) � LRN � P � C(27 ⇥ 27 ⇥ 256) �
LRN � P � C(13 ⇥ 13 ⇥ 384) � C(13 ⇥ 13 ⇥ 384) �
C(13 ⇥ 13 ⇥ 256) � P � F (4096) � F (4096). The filter
size for the first two C layers is 11 ⇥ 11 and 5 ⇥ 5 and for
the remaining three is 3 ⇥ 3. Pooling is applied after three
layers and contributes to increased performance despite the
reduction of resolution. The input to the net is an image
of 220 ⇥ 220 which via stride of 4 is fed into the network.
The total number of parameters in the above model is about
40M. For further details, we refer the reader to [14].

The use of a generic DNN architecture is motivated by
its outstanding results on both classification and localization
problems. In the experimental section we show that such a
generic architecture can be used to learn a model resulting
in state-of-art or better performance on pose estimation as
well. Further, such a model is a truly holistic one — the
final joint location estimate is based on a complex nonlinear
transformation of the full image.

Additionally, the use of a DNN obviates the need to de-
sign a domain specific pose model. Instead such a model
and the features are learned from the data. Although the re-
gression loss does not model explicit interactions between
joints, such are implicitly captured by all of the 7 hidden
layers – all the internal features are shared by all joint re-
gressors.

Training The difference to [14] is the loss. Instead of a
classification loss, we train a linear regression on top of the

last network layer to predict a pose vector by minimizing
L2 distance between the prediction and the true pose vec-
tor. Since the ground truth pose vector is defined in abso-
lute image coordinates and poses vary in size from image to
image, we normalize our training set D using the normal-
ization from Eq. (1):

D

N

= {(N(x), N(y))|(x,y) 2 D} (3)

Then the L2 loss for obtaining optimal network parameters
reads:

argmin
✓

X

(x,y)2DN

kX

i=1

||y
i

�  

i

(x; ✓)||22 (4)

For clarity we write out the optimization over individual
joints. It should be noted, that the above objective can
be used even if for some images not all joints are labeled.
In this case, the corresponding terms in the sum would be
omitted.

The above parameters ✓ are optimized for using Back-
propagation in a distributed online implementation. For
each mini-batch of size 128, adaptive gradient updates are
computed [3]. The learning rate, as the most important pa-
rameter, is set to 0.0005. Since the model has large number
of parameters and the used datasets are of relatively small
size, we augment the data using large number of randomly
translated image crops (see Sec. 3.2), left/right flips as well
as DropOut regularization for the F layers set to 0.6.

3.2. Cascade of Pose Regressors

The pose formulation from the previous section has the
advantage that the joint estimation is based on the full im-
age and thus relies on context. However, due to its fixed
input size of 220 ⇥ 220, the network has limited capacity
to look at detail – it learns filters capturing pose properties
at coarse scale. These are necessary to estimate rough pose
but insufficient to always precisely localize the body joints.
Note that we cannot easily increase the input size since this

(xi, yi) (x(s-1)i, y (s-1) i)

xsi - x(s-1)i
ysi - y(s-1)i

Initial stage Stage s

send refined values 
to next stage

220 x 220

DNN-based regressor

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48 xi

yi...

DNN-based refiner

27
 x

 2
7 

x 
12

8

13
 x

 1
3 

x 
19

2

13
 x

 1
3 

x1
92

13
 x

 1
3 

x1
92

40
96

 

40
96

 

55
 x

 5
5 

x 
48

Figure 2. Left: schematic view of the DNN-based pose regression. We visualize the network layers with their corresponding dimensions,
where convolutional layers are in blue, while fully connected ones are in green. We do not show the parameter free layers. Right: at stage
s, a refining regressor is applied on a sub image to refine a prediction from the previous stage.

[23]. In a nutshell, the network consists of 7 layers (see
Fig. 2 left). Denote by C a convolutional layer, by LRN

a local response normalization layer, P a pooling layer
and by F a fully connected layer. Only C and F layers
contain learnable parameters, while the rest are parame-
ter free. Both C and F layers consist of a linear trans-
formation followed by a nonlinear one, which in our case
is a rectified linear unit. For C layers, the size is de-
fined as width ⇥ height ⇥ depth, where the first two di-
mensions have a spatial meaning while the depth defines
the number of filters. If we write the size of each layer in
parentheses, then the network can be described concisely
as C(55 ⇥ 55 ⇥ 96) � LRN � P � C(27 ⇥ 27 ⇥ 256) �
LRN � P � C(13 ⇥ 13 ⇥ 384) � C(13 ⇥ 13 ⇥ 384) �
C(13 ⇥ 13 ⇥ 256) � P � F (4096) � F (4096). The filter
size for the first two C layers is 11 ⇥ 11 and 5 ⇥ 5 and for
the remaining three is 3 ⇥ 3. Pooling is applied after three
layers and contributes to increased performance despite the
reduction of resolution. The input to the net is an image
of 220 ⇥ 220 which via stride of 4 is fed into the network.
The total number of parameters in the above model is about
40M. For further details, we refer the reader to [14].

The use of a generic DNN architecture is motivated by
its outstanding results on both classification and localization
problems. In the experimental section we show that such a
generic architecture can be used to learn a model resulting
in state-of-art or better performance on pose estimation as
well. Further, such a model is a truly holistic one — the
final joint location estimate is based on a complex nonlinear
transformation of the full image.

Additionally, the use of a DNN obviates the need to de-
sign a domain specific pose model. Instead such a model
and the features are learned from the data. Although the re-
gression loss does not model explicit interactions between
joints, such are implicitly captured by all of the 7 hidden
layers – all the internal features are shared by all joint re-
gressors.

Training The difference to [14] is the loss. Instead of a
classification loss, we train a linear regression on top of the

last network layer to predict a pose vector by minimizing
L2 distance between the prediction and the true pose vec-
tor. Since the ground truth pose vector is defined in abso-
lute image coordinates and poses vary in size from image to
image, we normalize our training set D using the normal-
ization from Eq. (1):

D

N

= {(N(x), N(y))|(x,y) 2 D} (3)

Then the L2 loss for obtaining optimal network parameters
reads:

argmin
✓

X

(x,y)2DN

kX

i=1

||y
i

�  

i

(x; ✓)||22 (4)

For clarity we write out the optimization over individual
joints. It should be noted, that the above objective can
be used even if for some images not all joints are labeled.
In this case, the corresponding terms in the sum would be
omitted.

The above parameters ✓ are optimized for using Back-
propagation in a distributed online implementation. For
each mini-batch of size 128, adaptive gradient updates are
computed [3]. The learning rate, as the most important pa-
rameter, is set to 0.0005. Since the model has large number
of parameters and the used datasets are of relatively small
size, we augment the data using large number of randomly
translated image crops (see Sec. 3.2), left/right flips as well
as DropOut regularization for the F layers set to 0.6.

3.2. Cascade of Pose Regressors

The pose formulation from the previous section has the
advantage that the joint estimation is based on the full im-
age and thus relies on context. However, due to its fixed
input size of 220 ⇥ 220, the network has limited capacity
to look at detail – it learns filters capturing pose properties
at coarse scale. These are necessary to estimate rough pose
but insufficient to always precisely localize the body joints.
Note that we cannot easily increase the input size since this

Stage s

Images: Toshev and Szegedy (2014)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

19

• Frames Labeled In Cinema (FLIC, Sapp 
and Taskar 2013) 

- 6,543 training images, 1,016 test 
images 

- 10 upper-body joints 

• Leeds Sports Dataset (Johnson and 
Everingham, 2010, 2011) 

- 11,000 training and 1,000 test images 

- 14 full-body joints

Pose Estimation Datasets



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

20

• Addresses 
appearance 
variability and 
complexity 

• YouTube as a data 
source 

• Many activities, 
indoor and outdoor 
scenes, variety of 
imaging conditions

MPII Human Pose
(Andriluka et al. 2014)

bicycling conditioning exercise dancing fishing and hunting
bicycling, BMX ski machine ballroom fish. from river bank

home activities home repair inactivity quiet lawn and garden
tanning hides carpentry sitting quietly driving tractor

miscellaneous music playing occupation religious activities
standing violin, sitting horse grooming sit., playing instrum.

running self care sports transportation
running, stairs, up taking medication soccer riding in a bus

volunteer activities walking water activities winter activities
playing with children bird watching snorkeling skating, ice dancing

Figure 1. Randomly chosen images from each of 20 activity cat-
egories of the proposed “MPII Human Pose” dataset. Image cap-
tions indicate activity category (1st row) and activity (2nd row). To
view the full dataset visit human-pose.mpi-inf.mpg.de.

Some efforts have been made to collect larger sets of
images. For example [13] extends the LSP dataset to
10, 000 images of people performing gymnastics, athletics
and parkour. [2] proposes a large “FashionPose” dataset
collected from fashion blogs. This dataset aims to cover
a wide variety in people clothing. The LSP and Fashion-
Pose datasets are complementary and focus on two different
challenges for human pose estimation: pose variability and
variability of people appearance. However since they are
collected with a specific focus in mind, these datasets do
not cover real-life challenges such as truncation, occlusions
by scene objects and variability of imaging conditions.

The works of [6] and [9] propose a challenging dataset
building on the PASCAL VOC image collection. Results
reported in [9] indicate that the best performing approaches
for pose estimation of people in the presence of occlusion
and complex appearance are under-performing on sport-
oriented datasets such as LSP [12] and vice versa. There are
qualitative differences between methods that work well for
LSP and “Armlets” datasets. On LSP the best performing
methods are typically based on flexible part-based models
that are well suited for capturing pose variability. In con-
trary on the “Armlets” dataset the best performing approach
[9] uses a set of rigid detectors for groups of parts, that are
more robust to the variability in appearance.

Our dataset is complementary to the J-HMDB dataset
[11] and provides more images and a wider coverage of ac-

Dataset #training #test img. type

Full body pose datasets
Parse [16] 100 205 diverse
LSP [12] 1,000 1,000 sports (8 types)
PASCAL Person Layout [6] 850 849 everyday
Sport [21] 649 650 sports
UIUC people [21] 346 247 sports (2 types)
LSP extended [13] 10,000 - sports (3 types)
FashionPose [2] 6,530 775 fashion blogs
J-HMDB [11] 31,838 - diverse (21 act.)

Upper body pose datasets
Buffy Stickmen [8] 472 276 TV show (Buffy)
ETHZ PASCAL Stickmen [3] - 549 PASCAL VOC
Human Obj. Int. (HOI) [23] 180 120 sports (6 types)
We Are Family [5] 350 imgs. 175 imgs. group photos
Video Pose 2 [18] 766 519 TV show (Friends)
FLIC [17] 6,543 1,016 feature movies
Sync. Activities [4] - 357 imgs. dance / aerobics
Armlets [9] 9,593 2,996 PASCAL VOC/Flickr

MPII Human Pose (this paper) 28,821 11,701 diverse (491 act.)

Table 1. Overview of the publicly available datasets for articulated
human pose estimation. For each dataset we report the number of
annotated people in training and test sets and the type of images the
set include. The numbers indicate the number of unique annotated
people without mirroring.

tivities (491 in our dataset vs. 21 in J-HMDB), whereas
J-HMDB provides densely annotated image sequences and
larger number of videos for each activity. Our dataset
also addresses a different set of challenges compared to the
datasets such as “HumanEva” [19] and “Human3.6M” [10]
that include images and 3D poses of people but are captured
in the controlled indoor environments, whereas our dataset
includes real-world images but provides 2D poses only.

2. Dataset
In this paper we introduce a large dataset of images that

covers a wide variety of human poses and clothing types
and includes people interacting with various objects and en-
vironments. The key rationale behind our data collection
strategy is that we want to represent both common and rare
human poses that might be missed when simply collecting
more images without aiming for good coverage. To this end,
we use a two-level hierarchy of human activities proposed
in [1] to guide the collection process. This hierarchy was
developed for the assignment of standardized energy levels
during physical activity surveys and includes 823 activities
in total of 21 different activity categories. The activities at
the first level of the hierarchy correspond to thematically re-
lated groups of activities such as “Home Activities”, “Lawn
and Garden” or “Sports”. The activities at the second level
then correspond to individual activities such as “Washing
windows”, “Picking fruit” or “Rock climbing”. Note that
using the activity hierarchy for collection has an additional
advantage that all images have an associated activity label.
As a result one can assess and analyze any performance
measure also on subsets of activities or activity categories.



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

21

• Percentage of Correct Parts (PCP) 

- measures detection rate of limbs 

- penalizes shorter limbs 

• Percent of Detected Joints (PDJ) 

- distance b/w detected and true joint within 
certain (varying) fraction of the torso diameter

Metrics



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

22

State-of-the-art

The FLIC-full dataset contains 20928 training images, however many of these training set
images contain samples from the 1016 test set scenes and so would allow unfair over-
training on the FLIC test set. Therefore, we propose a new dataset - called FLIC-plus
(http://cims.nyu.edu/⇠tompson/flic plus.htm) - which is a 17380 image subset from the FLIC-plus
dataset. To create this dataset, we produced unique scene labels for both the FLIC test set and FLIC-
plus training sets using Amazon Mechanical Turk. We then removed all images from the FLIC-plus
training set that shared a scene with the test set. Since 253 of the sample images from the original
3987 FLIC training set came from the same scene as a test set sample (and were therefore removed
by the above procedure), we added these images back so that the FLIC-plus training set is a superset
of the original FLIC training set. Using this procedure we can guarantee that the additional samples
in FLIC-plus are sufficiently independent to the FLIC test set samples.

For evaluation of the test-set performance we use the measure suggested by Sapp et. al. [27]. For a
given normalized pixel radius (normalized by the torso height of each sample) we count the number
of images in the test-set for which the distance of the predicted UV joint location to the ground-truth
location falls within the given radius.

Fig 7a and 7b show our model’s performance on the the FLIC test-set for the elbow and wrist joints
respectively and trained using both the FLIC and FLIC-plus training sets. Performance on the LSP
dataset is shown in Fig 7c and 8a. For LSP evaluation we use person-centric (or non-observer-
centric) coordinates for fair comparison with prior work [30, 8]. Our model outperforms existing
state-of-the-art techniques on both of these challenging datasets with a considerable margin.

 

 

Ours (FLIC)

Ours (FLIC−plus)

Toshev et. al.

Jain et. al.

MODEC

Eichner et. al.

Yang et. al.

Sapp et. al.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

 

 

(a) FLIC: Elbow

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

 

 

(b) FLIC: Wrist

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e
te

ct
io

n
 r

a
te

 

 

Ours: wrist
Ours: elbow
Toshev et al.: wrist
Toshev et al.: elbow
Dantone et al.: wrist
Dantone et al.: elbow
Pishchulin et al.: wrist
Pishchulin et al.: elbow

(c) LSP: Wrist and Elbow

Figure 7: Model Performance

Fig 8b illustrates the performance improvement from our simple Spatial-Model. As expected the
Spatial-Model has little impact on accuracy for low radii threshold, however, for large radii it in-
creases performance by 8 to 12%. Unified training of both models (after independent pre-training)
adds an additional 4-5% detection rate for large radii thresholds.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

 

 

Ours: ankle
Ours: knee
Toshev et al.: ankle
Toshev et al.: knee
Dantone et al.: ankle
Dantone et al.: knee
Pishchulin et al.: ankle
Pishchulin et al.: knee

(a) LSP: Ankle and Knee

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

 

 

Part−Model
Part and Spatial−Model
Joint Training

(b) FLIC: Wrist

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

 

 

1 Bank
2 Banks
3 Banks

(c) FLIC: Wrist

Figure 8: (a) Model Performance (b) With and Without Spatial-Model (c) Part-Detector Performance
Vs Number of Resolution Banks (FLIC subset)

7

(Jain et al. 2014)

Enhanced version of the model described earlier: 
• more efficient sliding-window convnet 
• learn spatial prior model structure



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

23

Activity /Gesture Tracking Pose Estimation 

 

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

24

3-D Human Pose Tracking



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

24

• Pose estimation + time element

3-D Human Pose Tracking



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

24

• Pose estimation + time element

• We will investigate methods 
which learn a dynamical prior 
using motion capture data 

- intuition: if you understand 
the way people move, you 
can make a good prediction 
of where they will be at the 
next frame

3-D Human Pose Tracking



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

25

Prior Models of Human Pose and 
Motion

Prior work Limitations

Linear models  
(Sidenbladh et al. ‘00, Balan et al. 
‘05, Deutscher & Reid ‘05)

• Nonlinear dynamics not captured

Switching LDS 
(Pavlovic et al. ‘99)

• Inference is complicated 
• Difficulty modeling transitions

Nonlinear dimension reduction  
(Sminchisescu & Jepson ‘04, Lee & 
Elgammal ‘07, Lu & Carreira-
Perpinan ‘07, Li et al. ‘07)

• Poor generalization

GPLVM / GPDM  
(Urtasun et al. ‘05,’06) • Only small training corpora



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

26

• Very large datasets, stylistic diversity and multiple 
activities 

• Supervised with activity labels, or unsupervised 
with automatic discovery of atomic motions 
(“movemes”) 

• Simultaneous inference of pose and activity

Implicit Mixtures of CRBMs
(Taylor et al. 2010)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

26

• Very large datasets, stylistic diversity and multiple 
activities 

• Supervised with activity labels, or unsupervised 
with automatic discovery of atomic motions 
(“movemes”) 

• Simultaneous inference of pose and activity

Implicit Mixtures of CRBMs
(Taylor et al. 2010)

w

j

C
o

m
p

o
n

e
n

t

100 200 300 400 500 600 700

1
2
3
4
5
6
7
8
9

10

Moveme posterior vs time

+

MAP pose



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

27

Bayesian Filtering w/ imCRBM

Image features: 

- always observed 

y

3D pose: 

- observed for learning

- latent during tracking 

x

Latent variables:

     :  discrete activity

     :  multivariate binary 

        (shared among activities) 

q
z



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

28

• Continuous observed 
variables (pose) 

• Binary latent variables 
(capture pose/dynamics) 

• Efficient, exact inference 
(bipartite connectivity) 

• Can be stacked

Restricted Boltzmann Machines 
(RBM) - Review

xi

Latent variables

Observed variables

zj

xi



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

29

• Continuous observed 
variables (pose) 

• Binary latent variables 
(capture pose/dynamics) 

• Efficient, exact inference 
(bipartite connectivity) 

• Can be stacked

Restricted Boltzmann Machines 
(RBM) - Review

xi

Latent variables

Observed variables

zj

xi



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

30

• Continuous observed 
variables (pose) 

• Binary latent variables 
(capture pose/dynamics) 

• Efficient, exact inference 
(bipartite connectivity) 

• Can be stacked

Restricted Boltzmann Machines 
(RBM) - Review

xi

Latent variables

Observed variables

zj

xi x

z



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

31

Conditional Restricted Boltzmann 
Machines (CRBM)

x

z



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

31

• Extend RBM to capture 
temporal dependencies

Conditional Restricted Boltzmann 
Machines (CRBM)

x

z



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

31

• Extend RBM to capture 
temporal dependencies

• Observed and latent 
variables conditioned on the 
observation history

Conditional Restricted Boltzmann 
Machines (CRBM)

x

z

xht



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

31

• Extend RBM to capture 
temporal dependencies

• Observed and latent 
variables conditioned on the 
observation history

• Inference and learning 
unchanged

Conditional Restricted Boltzmann 
Machines (CRBM)

x

z

xht



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

31

• Extend RBM to capture 
temporal dependencies

• Observed and latent 
variables conditioned on the 
observation history

• Inference and learning 
unchanged

• Proposed for motion 
synthesis (Taylor et al. 2006)

Conditional Restricted Boltzmann 
Machines (CRBM)

x

z

xht



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

32

Implicit mixture of CRBMs 
(imCRBM)

x

z

xht

Discrete component 
variable sets the 
“effective” CRBM

qt



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

32

Implicit mixture of CRBMs 
(imCRBM)

x

z

xht

Discrete component 
variable sets the 
“effective” CRBM

qt
Marginalize over latent 

variables to obtain 
dynamical mixture model

p(xt|xht) =
X

zt,qt

p(xt, zt,qt|xht)

=
KX

k=1

p(qt=k)
X

zt

p(xt, zt|qt=k,xht)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

33

Advantages of the imCRBM

x

z

xht

qt

• Approximate learning by 
contrastive divergence (or PCD, or 
Minimum Probability Flow, or…)          

• Can be trained on 10^6 frames      
in a few hours (minutes on GPUs) 

• Gibbs sampling is simple and fast 
for synthesis (at 60Hz) 

• Training can be done with and 
without activity labels



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

34

Tracking via Bayesian Filtering

p(xt|y1:t) � p(yt|xt) p(xt|y1:t�1)

Filtering distribution:



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

34

Tracking via Bayesian Filtering

p(xt|y1:t) � p(yt|xt) p(xt|y1:t�1)

Filtering distribution:

posterior likelihood prediction



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

34

Tracking via Bayesian Filtering

p(xt|y1:t) � p(yt|xt) p(xt|y1:t�1)

Filtering distribution:

dynamical 
model

posterior

Predictive distribution:

p(xt|y1:t�1) =

Z

xt�1

p(xt|xt�1) p(xt�1|y1:t�1) dxt�1



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

34

Tracking via Bayesian Filtering

p(xt|y1:t) � p(yt|xt) p(xt|y1:t�1)

Filtering distribution:

dynamical 
model

posterior

Predictive distribution:

p(xt|y1:t�1) =

Z

xt�1

p(xt|xt�1) p(xt�1|y1:t�1) dxt�1

Inference: Particle filter



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

35

Bayesian Filtering

Dynamical Model:

xt

ztqt

xht

p(xt |xht)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

35

Bayesian Filtering

Dynamical Model:

xt

ztqt

xht

p(xt |xht)

Likelihood:

Edge Silhouette

p(yt |xt)

(Deutscher & Reid ‘05, Balan et al. ‘05)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

36

• Multi-view and monocular 3D tracking 

• HumanEva: multi-view sequences with 
synchronized mocap data for training 
and quantitative evaluation 

• Comparisons: annealed particle filter 
with smooth zero-order dynamics 
(baseline) and other state-of-the-art 
methods  

• Performance measure: Average joint 
location error (mm)

Experiments



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

37

Multi-view: Walking + Jogging with 
Transitions

Model Error (mm)
Baseline 164.2±25.0
CRBM 81.9±12.4 
imCRBM-2L 60.2±1.2 
imCRBM-2L* 75.5±1.8 
imCRBM-10U 75.8±1.7 
imCRBM-10U* 84.7±1.1 

w

j

C
o

m
p

o
n

e
n

t

100 200 300 400 500 600 700

1
2
3
4
5
6
7
8
9

10

imCRBM-2L 
(supervised)

imCRBM-10U     
(unsupervised)

Pose estimation and segmentation:



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

37

Multi-view: Walking + Jogging with 
Transitions

Model Error (mm)
Baseline 164.2±25.0
CRBM 81.9±12.4 
imCRBM-2L 60.2±1.2 
imCRBM-2L* 75.5±1.8 
imCRBM-10U 75.8±1.7 
imCRBM-10U* 84.7±1.1 

w

j

C
o

m
p

o
n

e
n

t

100 200 300 400 500 600 700

1
2
3
4
5
6
7
8
9

10

imCRBM-2L 
(supervised)

imCRBM-10U     
(unsupervised)

Pose estimation and segmentation:



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

38

• This is a very challenging 
scenario at which both 
the baseline and CRBM 
fail 

• We track with imCRBM-2L 
on each of the 3 views 
independently and 
report performance 
averaged over 5 runs

Monocular tracking with 
transitions (imCRBM-2L)

Relative Error (mm)

Camera 1 118.9±33.1

Camera 2 84.26±6.9

Camera 3 90.4±7.6



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

38

• This is a very challenging 
scenario at which both 
the baseline and CRBM 
fail 

• We track with imCRBM-2L 
on each of the 3 views 
independently and 
report performance 
averaged over 5 runs

Monocular tracking with 
transitions (imCRBM-2L)

Relative Error (mm)

Camera 1 118.9±33.1

Camera 2 84.26±6.9

Camera 3 90.4±7.6



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

39

Activity /Gesture Tracking Pose Estimation 

 

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

40

Hybrid Unsupervised/Supervised



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

“Modulated” RBM “Auto-regressive” model 
with hidden units  

41

Gated RBM (Two views)
(Memisevic and Hinton, 2007)

Hidden

Input Output

vi

hj

zk

Input

Output

hj

vi

zk



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

42

• Like the GRBM, captures 
third-order interactions 

• Shares weights at all 
locations in an image 

• As in a standard RBM, exact 
inference is efficient 

• Inference and reconstruction 
are performed through 
convolution operations

Convolutional Gated RBM
(Taylor et al. 2010)

X (Input) Y (Output)

    Z
k

Feature
layer

    P
k

Pooling
layer

Nx

Nx Ny

Ny

Nz

Nz

Np

Np

pk
α

zk
m,n

N
x
w

N
x
w

N
y
w

N
y
w



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

43

• We learn 32 feature maps 

• 6 are shown here 

• KTH contains 25 subjects 
performing 6 actions 
under 4 conditions  

• Only preprocessing is 
local contrast 
normalization

Feature extraction examples

Fe
at

ur
e 

(  
   )z k

Time

Walking

Hand clapping

• Motion sensitive features (1,3) 
• Edge features (4) 
• Segmentation operator (6)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

44

Recognition Architecture

convGRBM

Pipeline

Video Activity 
labels

Unsupervised 
feature 
extraction

3-D Convnet 
(supervised)

Temporal 
pooling

C R/
N P

Fully-
connected 
Layers

P

Prior Art Acc 
(%)

Convolutional

architectures

Acc.

(%)

HOG3D+KM+SVM 85.3 convGRBM+3D-convnet+logistic reg. 88.9

HOG/HOF+KM+SVM 86.1 convGRBM+3D convnet+MLP 90

HOG+KM+SVM 79 3D convnet+3D convnet+logistic reg. 79.4

HOF+KM+SVM 88 3D convnet+3D convnet+MLP 79.5

KTH 
Results



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

45

• Use of ISA (right) as a 
basic module 

• Learns features robust 
to local translation; 
selective to frequency, 
rotation and velocity 

• Key idea: scale up ISA 
by applying 
convolution and 
stacking

Stacked Convolutional Independent 
Subspace Analysis (ISA)

Input

Layer 1 units

Layer 2 units

()2

√()
Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Figure 1. The neural network architecture of an ISA network. The
red bubbles are the pooling units whereas the green bubbles are
the simple units. In this picture, the size of the subspace is 2: each
red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1 are whitened input examples.

2 Here, W ∈
Rk×n is the weights connecting the input data to the simple
units, V ∈ Rm×k is the weights connecting the simple units
to the pooling units (V is typically fixed); n, k,m are the
input dimension, number of simple units and pooling units
respectively. The orthonormal constraint is to ensure the
features are diverse.
In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA
algorithm is able to learn Gabor filters (“edge detectors”)
with many frequencies and orientations. Further, it is also
able to group similar features in a group thereby achieving
invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained
on static images. Here, we visualize three groups of bases pro-
duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they
are invariant and thus suitable for recognition tasks. To il-
lustrate this, we train the ISA algorithm on natural static
images and then test its invariance properties using the tun-
ing curve test [10]. In detail, we find the optimal stimulus of
a particular neuron pi in the network by fitting a parametric
Gabor function to the filter. We then vary its three degrees
of freedom: translation (phase), rotation and frequency and
plot the activations of the neurons in the network with re-
spect to the variation. 3 Figure 3 shows results of the tuning
curve test for a randomly selected neuron in the network
with respect to spatial variations. As can be seen from this
figure, the neuron is robust to translation (phase) while be-
ing more sensitive to frequency and rotation. This combi-
nation of robustness and selectivity makes features learned
by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained
on static images. The x-axes are variations in transla-
tion/frequency/rotation, the y-axes are the normalized activations
of the network. Left: change in translation (phase). Middle:
change in frequency. Right: change in rotation. These three plots
show that pooling units in an ISA network are robust to translation
and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-
erty makes ISA perform much better than other simpler
methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-
cient when input patches are large. This is because an or-
thogonalization method has to be called at every step of pro-
jected gradient descent. The cost of the orthogonalization
step grows as a cubic function of the input dimension (see
Section 3.4). Thus, training this algorithm with high dimen-
sional data, especially video data, takes days to complete.
In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-
gressively makes use of PCA and ISA as sub-units for un-
supervised learning as shown in Figure 4.
The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then
take this learned network and convolve with a larger region
of the input image. The combined responses of the convo-
lution step are then given as input to the next layer which is
also implemented by another ISA algorithm with PCA as a
prepossessing step. Similar to the first layer, we use PCA
to whiten the data and reduce their dimensions such that the
next layer of the ISA algorithm only works with low dimen-
sional inputs.
In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed
in the deep learning literature [7, 2, 22]. More specifically,
we train layer 1 until convergence before training layer 2.
Using this idea, the training time requirement is reduced to
1-2 hours.

3.3. Learning spatio-temporal features

Applying the models above to the video domain is rather
straightforward: the inputs to the network are 3D video
blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.

3363

Typical filters learned by ISA when 
trained on static images 
(organized in pools - red units above)

Images: Le et al. (2011)

(Le et al. 2011)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

46

• The network is built by 
“copying” the learned 
network and “pasting” it to 
different parts of the input 
data (analagous to convnet) 

• Outputs are then treated as 
the inputs to a new ISA 
network 

• PCA is used to reduce 
dimensionality

Convolution and Stacking

Figure 4. Stacked Convolutional ISA network. The network is
built by “copying” the learned network and “pasting” it to different
places of the input data and then treating the outputs as inputs to a
new ISA network. For clarity, the convolution step is shown here
non-overlapping, but in the experiments the convolution is done
with overlapping.

a sequence of image patches and flatten them into a vector.
This vector becomes input features to the network above.
To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an
architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,
convolution is done with overlapping; the ISA network in the sec-
ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from
both layers and use them as local features for classification
(previously suggested in [22]). In the experiment section,
we will show that this combination works better than using
one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-
scent. Compared to other feature learning methods (e.g.,
RBMs [7]), the gradient of the objective function in Eq. 1 is
tractable.
The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-
mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT )−
1

2 W . Note
that the inverse square root of the matrix usually involves
solving an eigenvector problem, which requires cubic time.
Therefore, this algorithm is expensive when the input di-
mension is large. The convolution and stacking ideas ad-
dress this problem by slowly expanding the receptive fields
via convolution. And although we have to resort to PCA for
whitening and dimension reduction, this step is called only
once and hence much less expensive.
Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because
batch gradient descent does not need any tweaking with the
learning rate and the convergence criterion. This is in stark
contrast with other methods such as Deep Belief Nets [7]
and Stacked Autoencoders [2] where tuning the learning
rate, weight decay, convergence parameters, etc. is essential
for learning good features.

3.5. Norm-thresholding interest point detector

In many datasets, an interest point detector is neces-
sary for improving recognition and lowering computational
costs. This can be achieved in our framework by discarding
features at locations where the norm of the activations is
below a certain threshold. This is based on the observation
that the first layer’s activations tend to have significantly
higher norms at edge and motion locations than at static
and feature-less locations (c.f. [13]). Hence, by threshold-
ing the norm, the first layer of our network can be used as
a robust feature detector that filters out features from the
non-informative background:

If ∥p1(xt;W,V )∥1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-
work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the
dataset are discarded. In our experiments, we only use this
detector the KTH dataset where an interest point detector
has been shown to be useful [42]. The value of δ is chosen
via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties
of ISA when applied to image patches. In this section, we
extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect
a moving edge in time as shown in Figure 6. In addition
to previously mentioned spatial invariances, these spatio-
temporal bases give rise to another property: velocity selec-
tivity.
We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.

3364

Simple example: 1D data

Image: Le et al. (2011)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

47

• Inputs to the network 
are blocks of video 

• Each block is vectorized 
and processed by ISA 

• Features from Layer 1 
and Layer 2 are 
combined prior to 
classification

Spatio-Temporal Feature 
Extraction

Figure 4. Stacked Convolutional ISA network. The network is
built by “copying” the learned network and “pasting” it to different
places of the input data and then treating the outputs as inputs to a
new ISA network. For clarity, the convolution step is shown here
non-overlapping, but in the experiments the convolution is done
with overlapping.

a sequence of image patches and flatten them into a vector.
This vector becomes input features to the network above.
To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an
architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,
convolution is done with overlapping; the ISA network in the sec-
ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from
both layers and use them as local features for classification
(previously suggested in [22]). In the experiment section,
we will show that this combination works better than using
one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-
scent. Compared to other feature learning methods (e.g.,
RBMs [7]), the gradient of the objective function in Eq. 1 is
tractable.
The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-
mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT )−
1

2 W . Note
that the inverse square root of the matrix usually involves
solving an eigenvector problem, which requires cubic time.
Therefore, this algorithm is expensive when the input di-
mension is large. The convolution and stacking ideas ad-
dress this problem by slowly expanding the receptive fields
via convolution. And although we have to resort to PCA for
whitening and dimension reduction, this step is called only
once and hence much less expensive.
Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because
batch gradient descent does not need any tweaking with the
learning rate and the convergence criterion. This is in stark
contrast with other methods such as Deep Belief Nets [7]
and Stacked Autoencoders [2] where tuning the learning
rate, weight decay, convergence parameters, etc. is essential
for learning good features.

3.5. Norm-thresholding interest point detector

In many datasets, an interest point detector is neces-
sary for improving recognition and lowering computational
costs. This can be achieved in our framework by discarding
features at locations where the norm of the activations is
below a certain threshold. This is based on the observation
that the first layer’s activations tend to have significantly
higher norms at edge and motion locations than at static
and feature-less locations (c.f. [13]). Hence, by threshold-
ing the norm, the first layer of our network can be used as
a robust feature detector that filters out features from the
non-informative background:

If ∥p1(xt;W,V )∥1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-
work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the
dataset are discarded. In our experiments, we only use this
detector the KTH dataset where an interest point detector
has been shown to be useful [42]. The value of δ is chosen
via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties
of ISA when applied to image patches. In this section, we
extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect
a moving edge in time as shown in Figure 6. In addition
to previously mentioned spatial invariances, these spatio-
temporal bases give rise to another property: velocity selec-
tivity.
We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.

3364

Image: Le et al. (2011)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

48

Velocity and Orientation 
Selectivity

Figure 6. Examples of three ISA features learned from Holly-
wood2 data (16x16 spatial size). In this picture, each row consists
of two sets of filters. Each set of filters is a filter in 3D (i.e., a
row in matrixW ), and two sets grouped together to form an ISA
feature.

In detail, we fit Gabor functions to all temporal bases to
estimate the velocity of the bases. We then vary this veloc-
ity and plot the response of the features with respect to the
changes. In Figure 7, we visualize this property by plotting
the velocity tuning curves of five randomly-selected units in
the first layer of the network.

Figure 7. Velocity tuning curves of five neurons in a ISA network
trained on Hollywood2. Most of the tuning curves are unimodal
and this means that ISA temporal bases can be used as velocity
detectors.

As can be seen from the figure, the neurons are highly
sensitive to changes in the velocity of the stimuli. This
suggests that the features can be used as velocity detec-
tors which are valuable for detecting actions in movies. For
example, the “Running” category in Hollywood2 has fast
motions whereas the “Eating” category in Hollywood2 has
slow motions.

Informally, we can interpret filters learned with our ISA
model as features detecting a moving edge through time. In
particular, the pooling units are sensitive to motion – how
fast the edge moves – and also sensitive to orientation but
less sensitive to (translational) locations of the edge.

We found that the ability to detect accurate velocities is
very important for good recognition. In a control exper-
iment, we limit this ability by using a temporal size of 2
frames instead of 10 frames and the recognition rate drops
by 10% for the Hollywood2 dataset.

Not only can the bases detect velocity, they also adapt
to the statistics of the dataset. This ability is shown in Fig-
ure 8. As can be seen from the figure, for Hollywood2, the
algorithm learns that there should be more edge detectors in
vertical and horizontal orientations than other orientations.
Informally, we can interpret that the bases spend more ef-
fort to detect velocity changes in the horizontal and vertical

directions than other directions.

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8. A polar plot of edge velocities (radius) and orientations
(angle) to which filters give maximum response. Each red dot in
the figure represents a pair of (velocity, orientation) for a spatio-
temporal filter learned from Hollywood2. The outermost circle
has velocity of 4 pixels per frame.

4.2. Higher layers

Figure 9. Visualization of five typical optimal stimuli in the second
layer learned from Hollywood2 data (for the purpose of better vi-
sualization, we use the size of 24x24x18 built on top of 16x16x10
first layer filters). Compare this figure with Figure 6

Figure 10. Comparison of layer 1 filters (left) and layer 2 filters
(right) learned from Hollywood2. For ease of visualization, we
ignore the temporal dimension and only visualize the middle filter.

Visualizing and analyzing higher layer units are usually
difficult. Here, we follow [3] and visualize the optimal
stimuli of the higher layer neurons.4 Some typical optimal
stimuli for second layer neurons are shown in Figure 9 and

4In detail, the method was presented for visualizing optimal stimuli of
neurons in a quadratic network for which the corresponding optimization
problem has an analytical solution. As our network is not quadratic, we
have to solve an optimization problem subject to a norm bound constraint
of the input. We implement this with minConf [36].

3365

Figure 6. Examples of three ISA features learned from Holly-
wood2 data (16x16 spatial size). In this picture, each row consists
of two sets of filters. Each set of filters is a filter in 3D (i.e., a
row in matrixW ), and two sets grouped together to form an ISA
feature.

In detail, we fit Gabor functions to all temporal bases to
estimate the velocity of the bases. We then vary this veloc-
ity and plot the response of the features with respect to the
changes. In Figure 7, we visualize this property by plotting
the velocity tuning curves of five randomly-selected units in
the first layer of the network.

Figure 7. Velocity tuning curves of five neurons in a ISA network
trained on Hollywood2. Most of the tuning curves are unimodal
and this means that ISA temporal bases can be used as velocity
detectors.

As can be seen from the figure, the neurons are highly
sensitive to changes in the velocity of the stimuli. This
suggests that the features can be used as velocity detec-
tors which are valuable for detecting actions in movies. For
example, the “Running” category in Hollywood2 has fast
motions whereas the “Eating” category in Hollywood2 has
slow motions.

Informally, we can interpret filters learned with our ISA
model as features detecting a moving edge through time. In
particular, the pooling units are sensitive to motion – how
fast the edge moves – and also sensitive to orientation but
less sensitive to (translational) locations of the edge.

We found that the ability to detect accurate velocities is
very important for good recognition. In a control exper-
iment, we limit this ability by using a temporal size of 2
frames instead of 10 frames and the recognition rate drops
by 10% for the Hollywood2 dataset.

Not only can the bases detect velocity, they also adapt
to the statistics of the dataset. This ability is shown in Fig-
ure 8. As can be seen from the figure, for Hollywood2, the
algorithm learns that there should be more edge detectors in
vertical and horizontal orientations than other orientations.
Informally, we can interpret that the bases spend more ef-
fort to detect velocity changes in the horizontal and vertical

directions than other directions.

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8. A polar plot of edge velocities (radius) and orientations
(angle) to which filters give maximum response. Each red dot in
the figure represents a pair of (velocity, orientation) for a spatio-
temporal filter learned from Hollywood2. The outermost circle
has velocity of 4 pixels per frame.

4.2. Higher layers

Figure 9. Visualization of five typical optimal stimuli in the second
layer learned from Hollywood2 data (for the purpose of better vi-
sualization, we use the size of 24x24x18 built on top of 16x16x10
first layer filters). Compare this figure with Figure 6

Figure 10. Comparison of layer 1 filters (left) and layer 2 filters
(right) learned from Hollywood2. For ease of visualization, we
ignore the temporal dimension and only visualize the middle filter.

Visualizing and analyzing higher layer units are usually
difficult. Here, we follow [3] and visualize the optimal
stimuli of the higher layer neurons.4 Some typical optimal
stimuli for second layer neurons are shown in Figure 9 and

4In detail, the method was presented for visualizing optimal stimuli of
neurons in a quadratic network for which the corresponding optimization
problem has an analytical solution. As our network is not quadratic, we
have to solve an optimization problem subject to a norm bound constraint
of the input. We implement this with minConf [36].

3365

Edge velocities (radius) and orientations 
(angle) to which filters give maximum response

Outermost velocity: 4 pixels per frame

Velocity tuning curves for five neurons in an 
ISA network trained on Hollywood2 data



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

49

• Traditional motion energy models (Adelson & 
Bergen, 1985) and cross-correlation models (Arndt 
et al, 1995, Fleet et al., 1996) are closely related and 
they confound representing transformations and 
encoding invariance 

• (Konda et al. 2014): decouple by computing motion 
by “synchrony detection” and achieving content-
invariance by pooling

Coupling of motion and invariance



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

50

• Say, two images are related by an 
orthogonal image warp 

• To detect the transformation: 

- Choose a filter pair, such that it is 
an example of that transformation  

- Determine whether the two filters 
yield equal responses when 
applied in sequence to two frames

Motion synchrony

w2 = Pw1

w

T
2 x2 = w

T
1 x1

x2 = Px1

(Konda et al. 2014)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

51

• Necessary to detect equality 
of transformed filter 
responses across time 

• Can’t use standard sum of 
filter responses + thresholding 

• Can use multiplicative 
(gating) interactions between 
filter responses

Practically: how to check for 
synchrony?

Image: Konda et al. (2014)

(wT
1 x1)(w

T
2 x2)

(⇥)

(+) (+)

p



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

52

Learning to detect synchrony

Synchrony K-means 

• Filters are learned by a 
temporal variant of online 
K-means (Coates et al. 
2011, Rumelhart & Zipser, 
1986) 

• Gradient descent-based 
optimization

Synchrony autoencoder 

• Learn a gated autoencoder 
with tied weights, trained 
to reconstruct       from      
and vice-versa 

• Use a contractive 
regularization term

x2 x1

Note: neither method is trained with pooling. 
A pooling layer may be learned separately. 



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

53

Results
Method Accuracy (%)

SAE (Konda et al. 2014) 93.5

SK-means (Konda et al. 2015) 93.6

Conv-ISA (Le et al. 2011) 93.9

Conv-GRBM (Taylor et al. 2010) 90.0

KTH Dataset

Method Accuracy (%)

SAE (Konda et al. 2014) 86.0

SK-means (Konda et al. 2015) 84.7

Conv-ISA (Le et al. 2011) 86.5

UCF Sports

Method Mean A.P.

SAE (Konda et al. 2014) 51.8

SK-means (Konda et al. 2015) 50.5

Conv-ISA (Le et al. 2011) 53.3

Conv-GRBM (Taylor et al. 2010) 43.3

Hollywood 2

Method Mean A.P.

SK-means (Konda et al. 2015) (GPU) 2 min

SK-means (Konda et al. 2015) (CPU) 3 min

SAE (Konda et al. 2014) (GPU) 1 - 2 hr

Conv-ISA (Le et al. 2011) 1-2 hr

Conv-GRBM (Taylor et al. 2010) 2 - 3 days

Training Time

Results from (Konda et al. 2014), (Le et al. 2011), (Taylor et al. 2010)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

54

End-to-end Supervised



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

55

• One approach: treat video frames as still images 
(LeCun et al. 2005) 

• Alternatively, perform 3D convolution capturing 
discriminative features across space and time

3D Convnets for Activity 
Recognition

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p 
o r

 a l
 

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p 
o r

 a l
 

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution 

t e
 m

 p 
o r

 a l
 

(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

vxyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, wpqr

ijm is the (p, q, r)th value of the
kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

t e
 m

 p 
o r

 a l
 

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.

Multiple convolutions applied to contiguous 
frames to extract multiple features 

Figure: Ji et al. (2010)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

56

Early CNN Architecture
3D Convolutional Neural Networks for Human Action Recognition

H1: 
33@60x40 C2: 

23*2@54x34 

7x7x3 3D 
convolution 

2x2 
subsampling 

S3: 
23*2@27x17 

7x6x3 3D 
convolution 

C4: 
13*6@21x12 

3x3 
subsampling 

S5: 
13*6@7x4 

7x4 
convolution 

C6: 
128@1x1 

full 
connnection 

hardwired 

input: 
7@60x40 

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7 × 7 × 3 (7 × 7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 sets of feature maps in the C2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2 × 2 subsampling on
each of the feature maps in the C2 layer, which leads
to the same number of feature maps with reduced spa-
tial resolution. The number of trainable parameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7 × 6 × 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3 subsampling on each feature maps in the C4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7 × 4 so that the sizes of the
output feature maps are reduced to 1×1. The C6 layer
consists of 128 feature maps of size 1 × 1, and each of
them is connected to all the 78 feature maps in the S5
layer, leading to 289,536 trainable parameters.

By the multiple layers of convolution and subsampling,

the 7 input frames have been converted into a 128D
feature vector capturing the motion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. Related Work

CNNs belong to the class of biologically inspired mod-
els for visual recognition, and some other variants have
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image is first analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortions on the input. The S2 maps are obtained

Hardwired to 
extract:  
1)grayscale 
2)grad-x 
3)grad-y 
4)flow-x 
5)flow-y

2 different 3D 
filters applied to 
each of 5 blocks 
independently

3 different 3D 
filters applied to 
each of 5 
channels in 2 
blocks

Subsample 
spatially

Two fully-
connected 
layers

Action 
units

Figure: Ji et al. (2010)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

57

• Multi-resolution, foveated 
architecture 

• Released Google Sports-1M 
dataset, 487 classes 

• Significant performance 
compared to feature-based 
baselines 

• Modest improvement compared 
to single-frame architectures 

State-of-the-art CNN Architecture
(Karpathy et al. 2014)

Figure 2: Multiresolution CNN architecture. Input frames
are fed into two separate streams of processing: a con-
text stream that models low-resolution image and a fovea
stream that processes high-resolution center crop. Both
streams consist of alternating convolution (red), normaliza-
tion (green) and pooling (blue) layers. Both streams con-
verge to two fully connected layers (yellow).

89 ⇥ 89 clips of video. Since the input is only of half the
spatial size as the full-frame models, we take out the last
pooling layer to ensure that both streams still terminate in a
layer of size 7⇥7⇥256. The activations from both streams
are concatenated and fed into the first fully connected layer
with dense connections.

3.3. Learning
Optimization. We use Downpour Stochastic Gradient

Descent [6] to optimize our models across a computing
cluster. The number of replicas for each model varies be-
tween 10 and 50 and every model is further split across 4
to 32 partitions. We use mini-batches of 32 examples, mo-
mentum of 0.9 and weight decay of 0.0005. All models are
initialized with learning rates of 1e�3 and this value is fur-
ther reduced by hand whenever the validation error stops
improving.

Data augmentation and preprocessing. Following
[11], we take advantage of data augmentation to reduce the
effects of overfitting. Before presenting an example to a net-
work, we preprocess all images by first cropping to center
region, resizing them to 200 ⇥ 200 pixels, randomly sam-
pling a 170⇥ 170 region, and finally randomly flipping the
images horizontally with 50% probability. These prepro-
cessing steps are applied consistently to all frames that are
part of the same clip. As a last step of preprocessing we sub-
tract a constant value of 117 from raw pixel values, which
is the approximate value of the mean of all pixels in our
images.

4. Results
We first present results on our Sports-1M dataset and

qualitatively analyze the learned features and network pre-

dictions. We then describe our transfer learning experi-
ments on UCF-101.

4.1. Experiments on Sports-1M
Dataset. The Sports-1M dataset consists of 1 million

YouTube videos annotated with 487 classes. The classes
are arranged in a manually-curated taxonomy that contains
internal nodes such as Aquatic Sports, Team Sports, Winter
Sports, Ball Sports, Combat Sports, Sports with Animals,
and generally becomes fine-grained by the leaf level. For
example, our dataset contains 6 different types of bowling,
7 different types of American football and 23 types of bil-
liards.

There are 1000-3000 videos per class and approximately
5% of the videos are annotated with more than one class.
The annotations are produced automatically by analyzing
the text metadata surrounding the videos. Thus, our data is
weakly annotated on two levels: first, the label of a video
may be wrong if the tag prediction algorithm fails or if the
provided description does not match the video content, and
second, even when a video is correctly annotated it may still
exhibit significant variation on the frame level. For exam-
ple, a video tagged as soccer may contain several shots of
the scoreboard, interviews, news anchors, the crowd, etc.

We split the dataset by assigning 70% of the videos to
the training set, 10% to a validation set and 20% to a test
set. As YouTube may contain duplicate videos, it is pos-
sible that the same video could appear in both the training
and test set. To get an idea about the extent of this prob-
lem we processed all videos with a near-duplicate finding
algorithm on the frame level and determined that only 1755
videos (out of 1 million) contain a significant fraction of
near-duplicate frames. Furthermore, since we only use a
random collection of up to 100 half-second clips from ev-
ery video and our videos are 5 minutes and 36 seconds in
length on average, it is unlikely that the same frames occur
across data splits.

Training. We trained our models over a period of one
month, with models processing approximately 5 clips per
second for full-frame networks and up to 20 clips per sec-
ond for multiresolution networks on a single model replica.
The rate of 5 clips per second is roughly 20 times slower
than what one could expect from a high-end GPU, but we
expect to reach comparable speeds overall given that we use
10-50 model replicas. We further estimate the size of our
dataset of sampled frames to be on the order of 50 million
examples and that our networks have each seen approxi-
mately 500 million examples throughout the training period
in total.

Video-level predictions. To produce predictions for an
entire video we randomly sample 20 clips and present each
clip individually to the network. Every clip is propagated
through the network 4 times (with different crops and flips)

Also see: Simonyan and Zisserman, 2014



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

58

• Communicative gestures 

• Multiple modalities: 

- colour and depth video 

- skeleton (articulated pose) 

- audio 

• Multiple scales: 

- full upper-body motion 

- fine hand articulation 

- short and long-term dependencies

Recognizing intentional gestures

This gesture can be fully characterized by upper-body motion

Here, subtle finger movements play the primary role

PhD work of Natalia Neverova (here!) and co-advisor Christian Wolf (INSA-Lyon)

(Neverova et al. 2015)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

59

A multi-scale architecture
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 2. The deep convolutional multi-modal architecture operating at 3 temporal scales corresponding to dynamic
poses of 3 different durations. Although the audio modality is not present in the 2014 ChaLearn Looking at
People Challenge dataset, we have conducted additional experiments by augmenting the visual signal with audio
recordings from the 2013 version of the data.

of kernels may reach the same performance while being
orders of magnitude faster.

In [43] the authors propose a late fusion strategy com-
pensating for errors of individual classifiers by minimising
the rank of a score matrix, and in a follow up work [44]
identify sample-specific optimal fusion weights by enforc-
ing similarity in fusion scores for visually similar labeled
and unlabelled samples. Xu et al. introduced the Feature
Weighting via Optimal Thresholding (FWOT) algorithm
[45] jointly optimising feature weights and thresholds. In
[46] MKL-based combinations of features act together with
Bayesian model combination and weighted average fusion
of scores from multiple systems.

A number of deep architectures have recently been pro-
posed specifically for multi-modal data. Ngiam et al. [47]
employ sparse RBMs and bimodal deep antoencoders for
learning cross-modality correlations in the context of audio-
visual speech classification of isolated letters and digits.
Srivastava et al. [48] use a multi-modal deep Boltzmann
machine in a generative fashion to tackle the problem
of integrating image data and text annotations. Kahou et
al. [7] won the 2013 Emotion Recognition in the Wild
Challenge by building two convolutional architectures on
several modalities, such as facial expressions from video
frames, audio signal, scene context and features extracted
around mouth regions. Finally, in [49] the authors propose
a multi-modal convolutional network for gesture detection
and classification from a combination of depth, skeletons
and audio.

3 GESTURE CLASSIFICATION

On a dataset such as ChaLearn 2014, we face several
key challenges: learning representations at multiple spatial
and temporal scales, integrating the various modalities, and
training a complex model when the number of labeled
examples is not at web-scale like static image datasets
(e.g. [3]). We start by describing how the first two chal-
lenges are overcome at an architectural level. Our training
strategy to overcome the last challenge is described in
Sec. 4.

Our proposed multi-scale deep neural model consists
of a combination of single-scale paths connected in a
parallel way (see Fig. 2). Each path independently learns
a representation and performs gesture classification at its
own temporal scale given input from RGB-D video and
articulated pose descriptors (audio channel can be also
added, if available). Predictions from all paths are then
aggregated through additive late fusion. This strategy allows
us to first extract the most salient (in a discriminative sense)
motions at a fine temporal resolution and, at the same time,
consider them in the context of global gesture structure,
smoothing and compensating for per-block errors typical
for a given gesture class.

To differentiate among temporal scales, a notion of
dynamic pose is introduced. By dynamic pose we mean a
sequence of video frames, synchronized across modalities,
sampled at a given temporal step s and concatenated to
form a spatio-temporal 3d volume. Varying the value of s
allows the model to leverage multiple temporal scales for
prediction, thereby accommodating differences in tempos
and styles of articulation of different users. Our model is
therefore different from the one proposed in [4], where by

Operates at 3 temporal scales  
corresponding to dynamic poses of 3 different durations

(see next slide for detail)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

60

Single-scale deep architecture

HLV2

ConvD2

ConvD1

ConvC1

ConvC1 ConvC2

ConvC2

max pooling ConvD2

ConvD1

HLV1

shared hidden layer

            HLS

HLV1

HLV2

output layer

HLA2

HLM3HLM2

depth video,

Path V1:

right hand

HLM1

ConvA1 HLA1

intensity video,
right hand

Path V1:

Path V2:

left hand
depth video,

left hand
intensity video,

Path V2:

Path M:
mocap stream

Path A:
audio stream

mel frequency

spectrograms

pose feature

extractor



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

61

• Extract 11 joints from full-body skeleton (Kinect) 

• Position normalization: HipCentre is an origin of a body-
centred co-ordinate system 

• Size normalization by the mean distance between each 
pair of joints (compensate for different body sizes, 
proportions, and shapes) 

• Final representation (183-D descriptor)
1
 

- Joint positions, velocities, and accelerations 

- Inclination angles 

- Azimuth angles 

- Bending angles 

- Pairwise distances

Articulated Pose: InputIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 3. The pose descriptor is calculated from normal-
ized coordinates of 11 upper body joints (on the left)
also including their velocities and accelerations, a set
of angles (triples of joints forming inclination angles
are shown on the right) and pairwise distances. The
body coordinate system (shown in blue on the left) is
calculated from 6 torso joints (shown in dark gray on
the left).

“multi-scale” the authors imply a multi-resolution spatial
pyramid rather than a fusion of temporal sampling strate-
gies. Regardless of the step s, we use the same number of
frames (5) at each scale. Fig. 2 shows the three such paths
used in this work (with s = 2 . . . 4). At each scale and for
each dynamic pose, the classifier outputs a per-class score.

All available modalities, such as depth, gray scale video,
and articulated pose (as well as the audio signal, if
provided), contribute to the network’s prediction. Global
appearance of each gesture instance is captured by the
skeleton descriptor, while video streams convey additional
information about hand shapes and their dynamics which
are crucial for discriminating between gesture classes per-
formed in similar body poses.

Due to the high dimensionality of the data and the
non-linear nature of cross-modality structure, an immediate
concatenation of raw skeleton and video signals is sub-
optimal. However, initial discriminative learning of in-
dividual data representations from each isolated channel
followed by fusion has proven to be efficient in similar tasks
[47]. Therefore, in our approach, discriminative data rep-
resentations are first learned within each separate channel,
followed by joint fine tuning and fusion by a meta-classifier
(independently at each scale, for more details see Sec. 4). A
shared set of hidden layers is employed at different levels
for, first, fusing of “similar by nature” gray scale and depth
video streams and, second, combining the obtained joint
video representation with the transformed articulated pose
descriptor (and audio signal, if available).

3.1 Articulated pose

The full body skeleton provided by modern consumer depth
cameras and associated middleware consists of 20 or fewer
joints identified by their coordinates in a 3D coordinate

system aligned with the depth sensor. For our purposes we
exploit only 11 of them corresponding to the upper body
(see Fig. 3). We also do not use wrist joints as their detected
positions are often unstable.

We formulate a pose descriptor, consisting of 7 logical
subsets, and allow the classifier to perform online feature
selection. Raw, i.e. pre-normalization, positions of 11 upper
body joints in a 3D coordinate system associated with the
depth sensor are denoted as p(i)

raw = {x(i), y(i), z(i)}, i =

0...10 (i = 0 corresponds to the HipCenter joint).
Following the procedure proposed in [50], we first cal-

culate normalized joint positions, as well as their velocities
and accelerations, and then augment the descriptor with a
set of characteristic angles and pairwise distances.

Joint positions. The skeleton is represented as a tree
structure with the HipCenter joint playing the role of a
root node. Its coordinates are subtracted from the rest of
the vectors praw to eliminate the influence of position of
the body in space. To compensate for differences in body
sizes, proportions and shapes, we start from the top of
the tree and iteratively normalize each skeleton segment
to a corresponding average “bone” length estimated from
all available training data. It is done in the way that
absolute joint positions are corrected while corresponding
orientations remain unchanged:

p(i)
= p(i�1)

raw +

p(i)
raw � p(i�1)

raw

||p(i)
raw � p(i�1)

raw ||
b(i�1,i) � p(0)

raw, (1)

where p(i)
raw is a current joint, p(i�1)

raw is its direct predecessor
in the tree, b(i�1,i), i = 1 . . . 10 is a set of estimated average
lengths of “bones” and p are corresponding normalized
joints. Once the normalized joint positions are obtained, we
perform Gaussian smoothing along the temporal dimension
(� = 1, filter size 5⇥1) to decrease the influence of skeleton
jitter.

Joint velocities are calculated as first derivatives of
normalized joint positions:

�p(i)
(t) ⇡ p(i)

(t+ 1)� p(i)
(t� 1) (2)

Joint accelerations correspond to the second derivatives
of the same positions:

�2p(i)
(t) ⇡ p(i)

(t+ 2) + p(i)
(t� 2)� 2p(i)

(t). (3)

Inclination angles are formed by all triples of anatom-
ically connected joints (i, j, k), plus two “virtual” angles
(Right,Left)Elbow-(Right,Left)Hand-HipCenter (Fig. 3):

↵(i,j,k)
= arccos

(p(k) � p(j)
)(p(i) � p(j)

)

||p(k) � p(j)|| · ||p(i) � p(j)||
(4)

Azimuth angles � provide additional information about
the pose in the coordinate space associated with the body.
We apply PCA on the positions of 6 torso joints (Hip-
Center, HipLeft, HipRight, ShoulderCenter, ShoulderLeft,
ShoulderRight) (Fig. 3) to obtain 3 vectors forming the
basis: {ux,uy,uz}, where ux is approximately parallel to
the shoulder line, uy is aligned with the spine and uz is
perpendicular to the torso.

1Zanfir M., Leordeanu, M., Sminchisescu, C., “The Moving Pose:  An Efficient 3D Kinematics 
Descriptor for Low-Latency Action Recognition and Detection”, ICCV 2013



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

62

• Interested in capturing fine 
movements of palms and fingers 

• Extract a bounding box around 
RHand, LHand centred at hand 
positions provided by skeleton 

• Subtract background by 
thresholding along depth axis 

• Apply local contrast normalization

Depth Video Stream



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

63

• Difficulties: 

- Number of parameters: 

• ~12.4M per scale 

• ~37.2M total 

- Number of training gestures: ~10,000 

• Proposed solution: 

- Structured weight matrices 

- Pretraining of individual channels separately 

- Careful initialization of shared layers 

- Iterative training algorithm which gradually increases # of parameters

Training algorithm
HLV2

ConvD2

ConvD1

ConvC1

ConvC1 ConvC2

ConvC2

max pooling ConvD2

ConvD1

HLV1

shared hidden layer

            HLS

HLV1

HLV2

output layer

HLA2

HLM3HLM2

depth video,

Path V1:

right hand

HLM1

ConvA1 HLA1

intensity video,
right hand

Path V1:

Path V2:

left hand
depth video,

left hand
intensity video,

Path V2:

Path M:
mocap stream

Path A:
audio stream

mel frequency

spectrograms

pose feature

extractor



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

64

• Top hidden layer from 
each path is initially wired 
to a subset of neurons in 
the shared layer 

• During fusion, additional 
connections between 
paths and the shared 
hidden layer are added

Initialization: structured weights

weights W1

weights W2

hidden layer with units
shared across modalities

output layer

path A:
audio
signal

path M:
mocap
data

path V2:
video,
hand 2

path V1:
video,
hand 1

data flow



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

65

Slightly different view

hidden�layer�HLS�with�units�shared�across�modalities

weights�W1

weights�W2

path�A:
audio
signal

path�M:
mocap
data

path�V2:
depth,
hand�2

path�V1:
depth,
hand�1

output�layer

data
flow

weights�W when�training�is�completed1

W
a

1W
ma

1W
va2

1W
va1

1

W
vm1

1 W
vm2

1 W
am

1W
m

1

W
v2

1

W
v1

1

W
md2

1 W
av2

1

W
av1

1W
mv1

1W
vv21

1

W
vv12

1

W
a

2W
m

2W
d1

2 W
d2

2

Blocks of the weight matrices are learned iteratively 
after proper initialization of the diagonal elements



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

66

2014 ChaLearn Looking at People 
Challenge (ECCV)

Metric is mean Jaccard Index (intersection over union)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

67

Error evolution during iterative 
training



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

68

• Introduced in 2012, made 
famous by ImageNet 

• During training, for each 
training sample, “drop out” 
50% of hidden unit activities 

• Punishes co-adaptation of units 

• Can be viewed as very efficient 
model averaging

Dropout (review)

x x x



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

69

Moddrop - dropout on shared layer

h

(k)
j =�

h FkX

i=1

w

(k,k)
i,j x

(k)
i +�

KX

n=1
n 6=k

FnX

i=1

w

(n,k)
i,j x

(n)
i + b

(k)
j

i

weights W1

weights W2

hidden layer with units
shared across modalities

output layer

path A:
audio
signal

path M:
mocap
data

path V2:
video,
hand 2

path V1:
video,
hand 1

data flow



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

70

• Punish co-adaptation of individual units (like 
dropout) 

• Train a network which is robust/resistent to 
dropping of individual modalities (e.g. fail of audio)

Moddrop: modality-wise dropout

P (�(k) = 1) = p(k)

Bernoulli selector

h̄

(k)
j =�

h FkX

i=1

w

(k,k)
i,j x

(k)
i +

KX

n=1
n 6=k

�

(k)
FnX

i=1

w

(n,k)
i,j x

(n)
i + b

(k)
j

i



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

71

Moddrop results

Modalities Dropout  
(%)

Dropout + 
Moddrop (%)

All 96.77 96.81

Mocap missing 38.41 92.82

Audio missing 84.10 92.59

Hands missing 53.13 73.28

Classification accuracy on the validation set  
(dynamic poses)

Modalities Dropout  
(%)

Dropout + 
Moddrop (%)

All 87.6 88.0

Mocap missing 30.6 85.9

Audio missing 78.9 85.4

Hands missing 46.6 68.0

Jacquard index on test set (full gestures)



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

72

Summary

Tracking 

• Pose estimation + 
Dynamical models 

• Still difficult outside of 
controlled environments

Pose Estimation 

 

• Extreme variability 
• Small # pixels 
• Occlusions 
• Dominated by convnets 
• Structured output

Activity /Gesture 

• Two families: 
• unsupervised feature 

extraction + pipeline 
• convnets (supervised) 

• Potential for multi-
modal data

DeepPose: Human Pose Estimation via Deep Neural Networks

Alexander Toshev Christian Szegedy
Google

1600 Amphitheatre Pkwy
Mountain View, CA 94043
toshev,szegedy@google.com

Figure 1. Besides extreme variability in articulations, many of the
joints are barely visible. We can guess the location of the right
arm in the left image only because we see the rest of the pose and
anticipate the motion or activity of the person. Similarly, the left
body half of the person on the right is not visible at all. These
are examples of the need for holistic reasoning. We believe that
DNNs can naturally provide such type of reasoning.

Abstract

We propose a method for human pose estimation based
on Deep Neural Networks (DNNs). The pose estimation
is formulated as a DNN-based regression problem towards
body joints. We present a cascade of such DNN regres-
sors which results in high precision pose estimates. The
approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formula-
tion which capitalizes on recent advances in Deep Learn-
ing. We present a detailed empirical analysis with state-of-
art or better performance on four academic benchmarks of
diverse real-world images.

1. Introduction

The problem of human pose estimation, defined as the
problem of localization of human joints, has enjoyed sub-
stantial attention in the computer vision community. In
Fig. 1, one can see some of the challenges of this prob-
lem – strong articulations, small and barely visible joints,
occlusions and the need to capture the context.

The main stream of work in this field has been motivated

mainly by the first challenge, the need to search in the large
space of all possible articulated poses. Part-based models
lend themselves naturally to model articulations ([16, 8])
and in the recent years a variety of models with efficient
inference have been proposed ([6, 19]).

The above efficiency, however, is achieved at the cost of
limited expressiveness – the use of local detectors, which
reason in many cases about a single part, and most impor-
tantly by modeling only a small subset of all interactions
between body parts. These limitations, as exemplified in
Fig. 1, have been recognized and methods reasoning about
pose in a holistic manner have been proposed [15, 21] but
with limited success in real-world problems.

In this work we ascribe to this holistic view of human
pose estimation. We capitalize on recent developments of
deep learning and propose a novel algorithm based on a
Deep Neural Network (DNN). DNNs have shown outstand-
ing performance on visual classification tasks [14] and more
recently on object localization [23, 9]. However, the ques-
tion of applying DNNs for precise localization of articulated
objects has largely remained unanswered. In this paper we
attempt to cast a light on this question and present a simple
and yet powerful formulation of holistic human pose esti-
mation as a DNN.

We formulate the pose estimation as a joint regression
problem and show how to successfully cast it in DNN set-
tings. The location of each body joint is regressed to using
as an input the full image and a 7-layered generic convolu-
tional DNN. There are two advantages of this formulation.
First, the DNN is capable of capturing the full context of
each body joint – each joint regressor uses the full image
as a signal. Second, the approach is substantially simpler
to formulate than methods based on graphical models – no
need to explicitly design feature representations and detec-
tors for parts; no need to explicitly design a model topology
and interactions between joints. Instead, we show that a
generic convolutional DNN can be learned for this problem.

Further, we propose a cascade of DNN-based pose pre-
dictors. Such a cascade allows for increased precision of

1

ar
X

iv
:1

31
2.

46
59

v3
  [

cs
.C

V
]  

20
 A

ug
 2

01
4



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

73

• Limited labeled data 

- Unsupervised, weakly 
supervised learning? 

• Going beyond classification 
of short, simple activities 
or gestures 

- Capture structural 
relationships w/
structured models: less 
flexible and efficient 
than DL models

Where to go from here?
Context: classroom

Action: P1 gives pen to P2

Part: pen

P1

P2

Event 

Video evidence 

x2 xN 

Y : 


Attack play Corner hit 





rN r2 r1 
Social 
Role 

Y

 hN h2 h1 

x1 

Action 

r : 


Man-marking Attacker 

h : 


jog Pass 

Images: Greg Mori



07 Aug 2015 /  
DLSS･ Seeing People/ G Taylor 

74

• Much of the background was 
developed in collaboration with a 
larger research team: 

- Christian Wolf and Julien Mille 
(INSA-Lyon) 

- Greg Mori (SFU) 

- Matthieu Cord and Nicolas Thome 
(UPMC-Paris 6)

Acknowledgements



Toronto

Montreal

New York

Guelph

Thank You!


