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Seeing Humans

- Humans: dominant subject in nearly
all video

- Better algorithms for interpreting
their behaviour can

- help understanding of people’s use
of public spaces

- improve healthcare delivery and
outcomes

- augment people’s interaction with
the world

- improve human-computer and
human-robot interaction
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ML for Vision

» Advances in vision have enabled “sci-fi”
like applications: gesture recognition,
face detection and recognition

- Machine learning is a major driving
force behind this development

- vast amounts of visual data,
inherently large variations

- emergence of new computational
paradigms (GPUs)

- Deep learning has emerged as a major
force in vision
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Challenges Lie Ahead

. Many realistic situations are
currently out of reach

- person-person and
person-object interactions

- long-running dynamical
behaviour in video

- large-scale variation (e.g.
deformable objects)
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This Lecture

Focus on “seeing humans” in images and video using
deep learning methods:

Pose Estimation Tracking Activity /Gesture

—
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Pose Estimation
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Pose Estimation

+ Localization of joints
- Extreme variability in articulations

- Many joints barely visible

- small # pixels

- occlusions
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- Most obvious approach: map input vector directly to a
vector coding the articulated pose (e.g. unbounded 2-D or
3-D positions of joints or angles)



DNNSs for Precise Localization?

- Most obvious approach: map input vector directly to a
vector coding the articulated pose (e.g. unbounded 2-D or
3-D positions of joints or angles)

- Pooling, while useful for recognition, destroys precise
spatial information

- The mapping from input space to kinematic pose is
highly nonlinear and not one-to-one

- Valid poses represent a much lower-dimensional
manifold in the high-dimensional space of configurations



CNNs for Pose Estimation

(Jain et al. 2014)

+ Train multiple convnets to perform independent
body-part classification

- Applied as sliding windows to input, map a window
of pixels to a single binary output

RGB (LCN) 16 feats 32 feats 32 feats 81992

64x64px 32x32px 16x16px 16x16px 0~~~ 500 106
- : X \\ 3 \\ reshape g g E\\\\ |
7 5 In_> H1_—1h —— HT—EI > - 5 (
5x5 Conv  5x5 Conv  5x5 Conv é ,,,,,, - 17:111 Full

+logistic
+ReLU ~ +ReLU  +RelU Ful L pagu 0
+MaxPool +MaxPool +RelLU



Output:Pose Confidence Maps

RGB and Output before Output after
joint predictions Spatial Model Spatial Model
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Spatial Model

Raw output of network produces many
false positives

LDsholclb Ll wri
SMad3a l l | Mma ge con text face shoulder elbow wrist

Nt . . . psho fac pelb sho pwri elb
- training set size limited | | |

Simple spatial model with body-pose
priors can de-emphasize anatomically
Impossible poses

convnet provides unary distributions

body part priors fit to training data



Spatial priors

Sho|fac 0 elb|sh0 0 Wr1|elb 0

For a body part i with a set of neighbouring nodes U :

Di X pz‘/\ H (pﬂu:a *pu)

ucelU

e.g. for the shoulder joint:

10g (ﬁsho) X A lOg (psho) -+ log (psho|fac:6 * pfac) —+ lOg (psho|elb:6 * pelb)

A=1 Inexperiments



Face prior

Incorporating image evidence from the shoulder
joint to the filtered face distribution doesn’t work

Due to the fact that the convnet already does a
good job of localizing the face

Incorporating noisy evidence from the shoulder
Increases uncertainty

Instead use a global position prior:

l()g (ﬁfac) X A lOg (pfac) + log (hfac)



DeepPose

(Toshev and Szegedy 2014)

Pose estimation as DNN-based regression

Normalize joint co-ordinates w.r.t. human bounding
box

Normalize the image by the same box (crop human)

“Alexnet” architecture

220 x 220

legeze : > o eIe el

DNN-based regressor
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Cascade of pose regressors

+ Joint estimation is based on Initialstage

220 x 220

the full image and therefore
relies on context

I»g» —93—9 —>I+ —>I

DNN-based regre

+ Fixed input size of 220 x 220,
only captures pose at .
coarse scale

. Propose to train a cascade
of regressors

_—"
‘f
]
l->g—> —> —> >8->/8>
' h '2 = 2
X e

DNN-based refiner

(X(S'I)i, y (s-1) i) send refined values
to next stage
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Pose Estimation Datasets

Frames Labeled In Cinema (FLIC, Sapp
and Taskar 2013)

6,543 training images, 1,016 test
Images

10 upper-body joints

Leeds Sports Dataset (Johnson and
Everingham, 2010, 2011)

11,000 training and 1,000 test images

14 full-body joints
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MPIl Human Pose

Addresses
appearance
variability and
complexity

YouTube as a data
source

Many activities,
indoor and outdoor
scenes, variety of
Imaging conditions

(Andriluka et al. 2014)

Dataset #training #test img. type
Full body pose datasets

Parse [ 1 0] 100 205 diverse
LSP[12] 1,000 1,000 sports (8 types)
PASCAL Person Layout [0] 850 849 everyday
Sport [21] 649 650 sports
UIUC people [21] 346 2477 sports (2 types)
LSP extended [ | 3] 10,000 - sports (3 types)
FashionPose [7] 6,530 775 fashion blogs
J-HMDB [11] 31,838 diverse (21 act.)
Upper body pose datasets

Buffy Stickmen [8] 472 276 TV show (Buffy)
ETHZ PASCAL Stickmen [3] - 549 PASCAL VOC
Human Ob;. Int. (HOI) [23] 180 120 sports (6 types)
We Are Family [5] 350 imgs. 175 1imgs. group photos
Video Pose 2 [ 18] 766 519 TV show (Friends)
FLIC [17] 6,543 1,016 feature movies
Sync. Activities [4] 357 imgs. dance / aerobics
Armlets [Y] 9,593 2,996 PASCAL VOC/Flickr

MPII Human Pose (this paper)

D)

(ﬁverse (491 act.) 2




Metrics

Percentage of Correct Parts (PCP)
measures detection rate of limbs
penalizes shorter [imbs

Percent of Detected Joints (PDJ)

- distance b/w detected and true joint within
certain (varying) fraction of the torso diameter



State-of-the-art

Ours (FLIC) Toshev et. al.
Ours (FLIC—plus) Jain et. al.
100
90+
80r
- /’/_
o == o
© 607 —~ ©
C s C
2 50f 4 2
O // O
% 40} Y st
= 4 g =
30} /4 Pt
20 // //
& //////
10} / S -
oL=z=-
0O 2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels)
(a) FLIC: Elbow
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MODEC
Eichner et. al.

Yang et. al.
Sapp et. al.

100

90
807
7071
60
507
407
3071
207
10}

Enhanced version of the model described earlier

2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels)

(b) FLIC: Wrist

Detection rate

100

90
807
701
601
o507
4071
307
207
107

(Jain et al. 2014)

0
0

Ours: wrist

— — Qurs: elbow

Toshev et al.: wrist

— — Toshev et al.: elbow
Dantone et al.: wrist
— — Dantone et al.: elbow
Pishchulin et al.: wrist
— — Pishchulin et al.: elbow

2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels)

(c) LSP: Wrist and Elbow

» more efficient sliding-window convnet
» learn spatial prior model structure



Tracking
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3-D Human Pose Tracking



3-D Human Pose Tracking

+ Pose estimation + time element
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3-D Human Pose Tracking

Pose estimation + time element

- We will investigate methods
which learn a dynamical prior

. . Q st o) i::r:f’i Q '-“:;:‘Z:
using motion capture data Q é?,; — S Z'i:t!'!_)g 5;:5:;
intuition: if you understand l

the way people move, you
can make a good prediction }*

of where they will be at the
next frame




Prior Models of Human Pose and
Motion

Prior work Limitations

Linear models
(Sidenbladh et al. ‘00, Balan et al. | « Nonlinear dynamics not captured
‘05, Deutscher & Reid ‘05)

Switching LDS e Inferenceis complicated
(Pavlovic et al. ‘99) e Difficulty modeling transitions

Nonlinear dimension reduction
(Sminchisescu & Jepson ‘04, Lee &
Elgammal ‘07, Lu & Carreira-
Perpinan ‘07, Li et al. ‘07)

e Poor generalization

GPLVM / GPDM

(Urtasun et al. 05,’06) e Only small training corpora
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Implicit Mixtures of CRBMs

(Taylor et al. 2010)

- Very large datasets, stylistic diversity and multiple
activities

+ Supervised with activity labels, or unsupervised
with automatic discovery of atomic motions

(“movemes”)

- Simultaneous inference of pose and activity



Implicit Mixtures of CRBMs

(Taylor et al. 2010)

- Very large datasets, stylistic diversity and multiple
activities

+ Supervised with activity labels, or unsupervised
with automatic discovery of atomic motions

(“movemes”)

- Simultaneous inference of pose and activity

||
MAP pose Moveme posterior vs time




Bayesian Filtering w/ ImCRBM

Latent variables: a 8 f,,”’":‘::
® il O Fsd

q: discrete activity

Z . multivariate binary
(shared among activities)

3D pose: x
- observed for learning
- latent during tracking

Image features: y
- always observed
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Restricted Boltzmann Machines
(RBM) - Review

.+ Continuous observed
variables (pose)

Latent variables

. Binary latent variables @Q
(capture pose/dynamics) |

Observed variables

. Efficient, exact inference
(bipartite connectivity)

+ Can be stacked
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Restricted Boltzmann Machines
(RBM) - Review

.+ Continuous observed
variables (pose) é‘.:‘!

- Binary latent variables
(capture pose/dynamics)

. Efficient, exact inference

Observed variables

(bipartite connectivity) g

+ Can be stacked
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Conditional Restricted Boltzmann
Machines (CRBM)

- Extend RBM to capture
temporal dependencies

+ Observed and latent
variables conditioned on the
observation history

- Inference and learning
unchanged

+ Proposed for motion
synthesis (Taylor et al. 2006)



Implicit mixture of CRBMs
(imCRBM)

Dlscrgte component 5 . ;_;;
variable sets the 2 s

“effective” CRBM




Implicit mixture of CRBMs
(imCRBM)

Discrete component
variable sets the
“effective” CRBM

Marginalize over latent
variables to obtain
dynamical mixture model

p(Xt|Xht) — Z p(Xt7 Zt, qt|Xht)

Z¢,qt

K
— Zp(qt :k) Zp(xta Ztht :k7 Xht)
k=1

Z¢




Advantages of the ImCRBM

- Approximate learning by
contrastive divergence (or PCD, or
Minimum Probability Flow, or...)

+ Can be trained on 1076 frames
in a few hours (minutes on GPUs)

- Gibbs sampling is simple and fast
for synthesis (at 60Hz)

- Training can be done with and
without activity labels



Tracking via Bayesian Filtering

Filtering distribution:
p(X¢|y1:t) o p(ye|xe) P(Xe|y1:e—1)



Tracking via Bayesian Filtering

Filtering distribution:
p(Xt‘YLt) X p(Yt\Xt)p(Xt Y1:t—1)

posterior likelihood prediction




Tracking via Bayesian Filtering

Filtering distribution:
p(X¢|y1:t) o p(ye|xe) P(Xe|y1:e—1)

Predictive distribution:

p(Xt|Y1:t—1) — /p(Xt|Xt—1)p(Xt—1b’1:t—l)dXt—l

Xt—1 . .
dynamical posterior

model



Tracking via Bayesian Filtering

Filtering distribution:
p(X¢|y1:t) o p(ye|xe) P(Xe|y1:e—1)

Predictive distribution:

p(Xt|Y1:t—1) — /p(Xt|Xt—1)p(Xt—1b’1:t—l)dXt—l

Xt—1 . .
dynamical posterior

model

Inference: Particle filter



Bayesian Filtering

Dynamical Model:

p(Xt ‘ Xht)



Bayesian Filtering

Silhouette

Likelihood:
p(ye | xt)
(Deutscher & Reid ‘05, Balan et al. ‘05)

Dynamical Model:

p(Xt ‘ Xht)



Experiments

- Multi-view and monocular 3D tracking

- HumanEva: multi-view sequences with
synchronized mocap data for training
and quantitative evaluation

- Comparisons: annealed particle filter
with smooth zero-order dynamics
(baseline) and other state-of-the-art
methods

- Performance measure: Average joint
location error (mm)
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Multi-view: Walking + Jogging with
Transitions

Model Error (mm)
Baseline 164.2+25.0
CRBM 31.9+12.4
IMCRBM-2L 60.2+1.2
IMCRBM-2L* 75.5+1.8
ImMCRBM-10U 75.8+1.7
IMCRBM-10U™ 84.7+1.1

Pose estimation and segmentation:

W | | | : imCRBM-2L
j | | (supervised)

Component



Multi-view: Walking + Jogging with
Transitions

Model Error (mm)
Baseline 164.2+25.0
CRBM 31.9+12.4
IMCRBM-2L 60.2+1.2
IMCRBM-2L* 75.5+1.8
ImMCRBM-10U 75.8+1.7
IMCRBM-10U™ 84.7+1.1

Pose estimation and segmentation:

100 200 300 400 500 600 700

" imCRBM-2L

g | (supervised)

:

Q 5

E 3 |

S MmCRBM-10U
?3 TR 11 M1 (unsupervised)
9
0

—h



Monocular tracking with
transitions (imCRBM-2L)

- This is a very challenging
scenario at which both

the baseline and CRBM Monocular Tracking with
fail Transitions

Subject S3 Camera y

.+ We track with imCRBM-2L
on each of the 3 views
independently and
repOrt performance Camera 2 84.2616.9
averaged over 5 runs Camera 3 90.4+7.6

Relative Error (mm)

Cameral 118.9+33.1




Monocular tracking with
transitions (imCRBM-2L)

- This is a very challenging
scenario at which both

the baseline and CRBM Monocular Tracking with
fail Transitions

Subject S3 Camera y

.+ We track with imCRBM-2L
on each of the 3 views
independently and
repOrt performance Camera 2 84.2616.9
averaged over 5 runs Camera 3 90.4+7.6

Relative Error (mm)

Cameral 118.9+33.1




Activity /Gesture
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Hybrid Unsupervised/Supervised



Gated RBM (Two views)

(Memisevic and Hinton, 2007)

¢

‘Auto-regressive” mode
with hidden units

l

Hidden

“Modulated” RBM




Convolutional Gated RBM

Like the GRBM, captures
third-order interactions

Shares weights at all
locations in an image

As in a standard RBM, exact
inference is efficient

Inference and reconstruction
are performed through
convolution operations

(Taylor et al. 2010)

k

- < /] 7
Pooling fpa N,
layer 3 /

| .
k
Z A /
Feature / i i
2 N
layer . /z
Y (Output)



Feature extraction examples

We learn 32 feature maps Hand clapping

6 are shown here

._;"E
i

KTH contains 25 subjects
performing 6 actions
under 4 conditions

i y -

Only preprocessing is
local contrast
normalization

NS

« Motion sensitive features (1,3
 Edge features (4)
« Segmentation operator (6)



Pipeline

KTH

Results
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Unsupervised
feature
extraction

3-D Convnet Temporal

(supervised)

pooling

Convolutional

Fully-

Recognition Architecture

i Activity
i labels

connected

Layers

Prior Art architectures
HOG3D+KM+SVM 85.3 |convGRBM+3D-convnet+logistic reg. 88.9
HOG/HOF+KM+SVM 86.1 |convGRBM+3D convnet+MLP 90
HOG+KM+SVM 79 3D convnet+3D convnet+logistic reg. 79.4
HOF+KM+SVM 88 3D convnet+3D convnet+MLP 79.5

DLSS- Seeing People/ G Taylor



Stacked Convolutional Independent

Subspace Analysis (ISA)

» Use of ISA (right) as a
basic module

. Learns features robust
to local translation;
selective to frequency,
rotation and velocity

+ Key idea: scale up ISA
by applying
convolution and
stacking

07 Aug 2015 /
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(Le et al. 2011)

Layer 2 units

Layer 1 units

Typical filters learned by ISA when
trained on static images

(organized in pools - red units above)

Images: Le et al. (2011)



Convolution and Stacking

+ The network is built by
“copying” the learned
network and “pasting” it to
different parts of the input ,.
data (analagous to convnet)

Simple example: 1D data

+ Outputs are then treated as s

the inputs to a new ISA . ' - n ﬁ\)
network ISA .t.

llllll

» PCAis used to reduce
dimensionality

q First half of input : q Second half of input

07 Aug 2015 / .
DLSS- Seeing People/ G Taylor lmage- Le et al. (2011)



Spatio-Temporal Feature
Extraction

+ Inputs to the network

[Local feature

are blocks of video N kA
_+_ —— G 1) 12, ... I;
» Each block is vectorized -
and processed by ISA o] [on] [war] [mor
- e - -

+ Features from Layer 1
and Layer 2 are
combined prior to
classification

. |,1’

FOE X

11 -1 Video block
- I-—




normalized response

Velocity and Orientation
Selectivity

1.5 o 25
velocity (pixel/frame)

Edge velocities (radius) and orientations
(angle) to which filters give maximum response
Outermost velocity: 4 pixels per frame

Velocity tuning curves for five neurons in an
ISA network trained on Hollywood2 data



Coupling of motion and invariance

- Traditional motion energy models (Adelson &
Bergen, 1985) and cross-correlation models (Arndt
et al, 1995, Fleet et al., 1996) are closely related and
they confound representing transformations and
encoding invariance

- (Konda et al. 2014): decouple by computing motion
by “synchrony detection” and achieving content-
invariance by pooling



Motion synchrony

(Konda et al. 2014)

- Say, two images are related by an

. X9 — PX1
orthogonal image warp
» To detect the transformation:
wo = Pwy
- Choose afilter pair, such that it is
an example of that transformation
- Determine whether the two filters Wy Xg = Wi X

yield equal responses when
applied in sequence to two frames



Practically: how to check for
synchrony?
(O r
- Necessary to detect equality

of transformed filter
responses across time (<)

(W) (W] o)
. Can’t use standard sum of /\
filter responses + thresholding
(+) (+)
- Can use multiplicative
(gating) interactions between

filter responses

07 Aug 2015/ 51 :
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Learning to detect synchrony

Synchrony autoencoder Synchrony K-means
« Learn a gated autoencoder  Filters are learned by a
with tied weights, trainec temporal variant of online
to reconstruct x2 from x; K-means (Coates et al.
and vice-versa 2011, Rumelhart & Zipser,
 Use a contractive 1986)
regularization term - Gradient descent-based
optimization

Note: neither method is trained with pooling.
A pooling layer may be learned separately.



Results

KTH Dataset UCF Sports
Method Accuracy (%) Method Accuracy (%)
SAE (Konda et al. 2014) 93.5
SAE (Konda et al. 2014) 86.0
SK-means (Konda et al. 2015) 93.6
SK-means (Konda et al. 2015) 84.7
Conv-ISA (Le et al. 2011) 93.9
Conv-GRBM (Taylor et al. 2010) 90.0 Conv-ISA (Le et al. 2011) 86.5
Hollywood 2 Training Time
Method Mean A.P. Method Mean A.P.
SAE (Konda et al. 2014) 518 SK-means (Konda et al. 2015) (GPU) 2 min
SK-means (Konda et al. 2015) (CPU) 3 min
SK-means (Konda et al. 2015) 50.5
SAE (Konda et al. 2014) (GPU) 1-2hr
-ISA (Le et al. 2011 .
Cconv-ISA (Le et al. 2011) °3.3 Conv-ISA (Le et al. 2011) 1-2 hr
Conv-GRBM (Taylor et al. 2010) 43.3 Conv-GRBM (Taylor et al. 2010) 2 - 3 days

‘gig‘g’gszﬁj,i; P5e3ople/GTaylor Results from (Konda et al. 2014), (Le et al. 2011), (Taylor et al. 2010)



End-to-end Supervised



3D Convnets for Activity
Recognition

One approach: treat video frames as still images
(LeCun et al. 2005)

- Alternatively, perform 3D convolution capturing
discriminative features across space and time

tempora

Multiple convolutions applied to contiguous
frames to extract multiple features




Early CNN Architecture

—»|_|_||_I—_II__|F||__
I"___ll__. I_||_|_|—— 'I_'WT_r I‘rl_. W

input:
7@60x40

Hardwired to
extract:
1)grayscale
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—

33@60x40

2 different 3D
filters applied to
each of 5 blocks
independently

I_I— & Action
r r units
2x2 rr. 7x6x3 3D . 3x3 r. 7x4 Connrf'luell:tion

subsamplina convolution > . subsampling '.convolution
[ ]

— . —— \—>

r

S5:
13*6@7x4

=

C4:

13*6@21x12

C2: S3:
23"2@54x34 23"2@27x17
Subsample 3 different 3D Two fully-
spatially filters applied to connected
each of 5 layers
channelsin 2
blocks

Figure: Ji et al. (2010)



State-of-the-art CNN Architecture

(Karpathy et al. 2014)

Multi-resolution, foveated
architecture

Released Google Sports-1M
dataset, 487 classes

Significant performance
compared to feature-based
baselines

Modest improvement compared
to single-frame architectures

Also see: Simonyan and Zisserman, 2014



Recognizing intentional gestures

(Neverova et al. 2015)

Communicative gestures

Multiple modalities:
colour and depth video
skeleton (articulated pose)
audio

Multiple scales:

full upper-body motion

fine hand articulation

short and long-term dependencies

f .

y . | A | A ; _ ’,\ \
e ¢ W

Here, subtle finger movements play the primary role

07 Aug 2015/ 58 :
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7 PhD work of Natalia Neverova (here!) and co-advisor Christian Wolf (INSA-Lyon)



A multi-scale architecture

video moddrop

step s=4 _/ ConvNN — }usion
mocap . |
) = o how | — seenexside oot
audio

audio © descriptor

video moddrop

step s=3 / ConvyNN —  fusion
mocap pose \I ONN framewise
\ descriptor / late fusion
audio B

audio = descriptor

video moddrop

step s=2 ConvNN —~ fusion
m o5 I

descriptor / DNN

m—> audio

time audio © descriptor
sampled dynamic pose

—_—

Operates at 3 temporal scales
corresponding to dynamic poses of 3 different durations



Single-scale deep
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PathVI:

depth video,
right hand

PathVI:

intensity video,
right hand

Path V2:

depth video,
left hand

Path V2:

intensity video,
left hand

Path M:

Mocap stream

Path A:

audio stream

max pooling

ConvDI

ConvCIl —

ConvD|

pose feature

extractor

mel frequency

spectrograms

|
IR

/

—/

ConvC2

d

ConvC2

e

ConvD?2

/ HLVI

ﬁ ConvD?2

HLM2
oS

f HLVI

HLV2

HLV2

: HLM3

H/—

H/—

ConvAl

HLMI —

L HLAI

N\

architecture

shared hidden layer

HLS

J

N\

HLA2

/ output layer




Articulated Pose: Input

Extract 11 joints from full-body skeleton (Kinect)

Position normalization: HipCentre is an origin of a body-
centred co-ordinate system

Size normalization by the mean distance between each
pair of joints (compensate for different body sizes,
proportions, and shapes)

Shoulder
Center

1
Final representation (183-D descriptor)

Shqulder Shoulder
Right Left

Joint positions, velocities, and accelerations
Inclination angles

- Azimuth angles

Center

Bending angles Z

O

Pairwise distances

Y
()

HandRight

HipLeft

HipRight HandLeft

1Zanfir M., Leordeanu, M., Sminchisescu, C., “The Moving Pose: An Efficient 3D Kinematics
Descriptor for Low-Latency Action Recognition and Detection”, ICCV 2013



Depth Video Stream

- Interested in capturing fine
movements of palms and fingers

- Extract a bounding box around
RHand, LHand centred at hand
positions provided by skeleton

- Subtract background by
thresholding along depth axis

+ Apply local contrast normalization




Training algorithm

- Difficulties: PathVI:

depth video,
right hand

- Number of parameters: Path V!

intensity video,
right hand

.+ ~12.4M per scale

Path V2:

depth video,
left hand
. ~37.2M total
PathV2:
intensity video,
left hand

- Number of training gestures: ~10,000

Path M:

mocap stream

- Proposed solution:

Structured weight matrices Path A

audio stream

Pretraining of individual channels separately

Careful initialization of shared layers
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ConvD|

ConvCl

ConvDI

ConvCl

pose feature

extractor

mel frequency

spectrograms

P
-

£ |
N\

/ N\
|

I

S

o

N N

[

max pooling N ConvD2
- HLVI
/ —
i / HLV2
N J
L7 N

Conv ConvD2
"f / HLVI
‘ 1
| \\

ConvC2 HLM2 HLM3

HLMI

ConvAl HLAI HLA2

Iterative training algorithm which gradually increases # of parameters

shared hidden layer

HLS

J

/7 output layer




Initialization: structured weights

Top hidden layer from
each path is initially wired
to a subset of neurons in
the shared layer

During fusion, additional
connections between
paths and the shared
hidden layer are added

path V1:
video,
hand 1

path V2:
video,
hand 2

path M:
mocap
data

path A:
audio
signal

Welghts V\/1 :j. -

hidden layer with units
shared across modalities

o

data flOW s—



Slightly different view
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path M: O
mocap O=—>
data Q

path A:
audio
signal

00O

data h
flow

weights W, weights W, when training is completed

vi e mv 1 avi

idden layer HLS with units shared across modalities

OO OO‘OOOO

O

output layer

O
O
O

weights W,

Blocks of the weight matrices are learned iteratively
after proper initialization of the diagonal elements

DLSS* Seeing People/ G Taylor



2014 ChalLearn Looking at People

Challenge (ECCV)

liris

CraSPN

JY
CUHK-SWJTU
Ipigou
stevenwudi
Ismar

Quads
Telepoints
TUM-fortiss
CSU-SCM
iva.mm
Terrier
Team Netherlands
VecsRel
Samgest
YNL

0.8268
0.7919
0.7888
0.7873
0.7466
0.7454

0.8500"
0.8339 1

0.0 0.2
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0.4 0.6 0.8

Accuracy

Metric is mean Jaccard Index (intersection over union)

1.0



Error evolution during iterative
training

70
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Dropout (review)

+ Introduced in 2012, made
famous by ImageNet

- During training, for each
training sample, “drop out”
50% of hidden unit activities

+ Punishes co-adaptation of units

+ Can be viewed as very efficient
model averaging




Moddrop - dropout on shared layer

weights W, ).
[)

path V1: Q A
video, o
hand 1 —

o\ weights W

O

path V2: @ \
video, ‘\
=0
Prodab ———— 0

e S ut ayer
path A: 0 |

a_ud|o ) hidden layer with units
signal ® shared across modalities

data oW s—

FY,
=g [Zw(k R (k) HLL”“J(R ) )y b“ﬂ
1=1

n=11=1

n*k



Moddrop: modality-wise dropout

+ Punish co-adaptation of individual units (like
dropout)

»+ Train a network which is robust/resistent to
dropping of individual modalities (e.g. fail of audio)

A= o wa R)(0) +‘Zw(n DMON b(k)
1=1

Bernoulli selector

p(g(k) =1) = p(k)



Moddrop results

Classification accuracy on the validation set
(dynamic poses)

Modalties Propout Joropout &
All 96.77 96.81
Mocap missing 38.41 92.82
Audio missing 84.10 92.59
Hands missing 53.13 73.28

Jacquard index on test set (full gestures)

" Dropout Dropout +
Modalities (%) Moddrop (%)
All 87.6 88.0
Mocap missing 30.6 85.9
Audio missing 78.9 85.4
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Summary

Pose Estimation Tracking, Activity /Gesture
. Extreme variability « Pose estimation +  Two families:
« Small # pixels Dynamical models . unsupervised feature
« Occlusions « Still difficult outside of extraction + pipeline
- Dominated by convnets controlled environments e convnets (supervised)
« Structured output « Potential for multi-

modal data
07 Aug 2015/
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Where to go from here?

- Limited labeled data

- Unsupervised, weakly
supervised learning?

+ Going beyond classification
of short, simple activities
or gestures

- Capture structural 7: m—
relationships w/ =
structured models: less
flexible and efficient
than DL models

e @ @ @
Action @ @ @

[—
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Pass

Images: Greg Mori
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