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Context: Big Data and Big Models

@ We are collecting data at unprecedented rates.

e Seen across many fields of science and engineering.
o Not gigabytes, but terabytes or petabytes (and beyond).

@ Machine learning can use big data to fit richer models:
o Bioinformatics.
o Computer vision.
e Speech recognition.
e Product recommendation.
e Machine translation.
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Common Framework: Empirical Risk Minimization

@ The most common framework is empirical risk minimization:

N

1

Xrg}i{r}) NZL(X’ ai,bj)) + Ar(x)
i=1

data fitting term 4 regularizer

o We have n observations a; (and possibly labels b;).
o We want to find optimal parameters x*.

@ Examples range from squared error with 2-norm regularization,
A
S(@lx— by + Sl

to conditional random fields (CRFs) and deep neural networks.
@ Main practical challenges:
o Designing/learning good features a;.
o Efficiently solving the problem when N or D are very large.
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Motivation: Why Learn about Convex Optimization?

@ Why learn about large-scale optimization?

e Optimization is at the core of many ML algorithms.
e Can't solve huge problems with traditional techniques.

@ Why in particular learn about convex optimization?
e Among only efficiently-solvable continuous problems.
e You can do a lot with convex models.
(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)
e Empirically effective non-convex methods are often based
methods with good properties for convex objectives.
(functions are locally convex around minimizers)
e Tools from convex analysis are being extended to non-convex.

(discussed in part 2)
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How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

min f(x).

xcRP

@ General function: impossible!
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = f(y)I < Llx =y
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Stochastic Subgradient

How hard is real-valued optimization?

Finite-Sum Methods

How long to find an e-optimal minimizer of a real-valued function?
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@ General function: impossible!
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Stochastic Subgradient

How hard is real-valued optimization?

Finite-Sum Methods
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How long to find an e-optimal minimizer of a real-valued function?
@ General function: impossible!
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How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

min f(x).
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@ General function: impossible!
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = F)l < Llix = yll-

o After t iterations, the error of any algorithm is Q(1/tY/P).

(and grid-search is nearly optimal)
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How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?
min f(x).
xeRD
@ General function: impossible!
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = F)l < Llix = yll-

o After t iterations, the error of any algorithm is Q(1/tY/P).

(and grid-search is nearly optimal)

@ Optimization is hard, but assumptions make a big difference.

(we went from impossible to very slow)
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@ Implies that all local minima are global minima.
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(0x+(1—0)y) <0f(x)+ (1 —0)f(y), for6el0,1].

@ Function is below linear interpolation between x and y.

@ Implies that all local minima are global minima.

/

Non-global
local minima
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(0x+ (1 —0)y) <0f(x)+ (1 —0)f(y), for6el0,1].

A differentiable function f is convex if for all x and y we have

fly) > f(x)+ VF(x)T(y — x),

@ The function is globally above the tangent at x.

f(x) + Vi(X)T(y-X)

e If Vf(y) =0, implies y is a a global minimizer.
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f(Ox+ (1 —0)y) <0f(x)+ (1 —6)f(y), for6e]0,1].

A differentiable function f is convex if for all x and y we have

fly) > f(x)+ VF(x)T(y — x),




Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods
Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f(Ox + (1 —0)y) < 0f(x) + (1 — 0)f(y), for6el0,1].

A differentiable function f is convex if for all x and y we have

fly) > f(x)+ VF(x)T(y — x),

A twice-differentiable function f is convex if for all x we have

V2f(x) =0

@ All eigenvalues of ‘Hessian’ are non-negative.
@ The function is flat or curved upwards in every direction.

@ This is usually the easiest way to show a function is convex.
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Examples of Convex Functions

Some simple convex functions:

o f(x)=c

o f(x)=a'x

o f(x) =xTAx (for A= 0)
o f(x) = exp(ax)

o f(x) = xlogx (for x > 0)
o f(x) = |Ix||?

o f(x) = |xlp

o f(x)=max;{x;}
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Examples of Convex Functions

Some simple convex functions:

f(x)=c

f(x)=a'x

f(x) = xTAx (for A = 0)
f(x) = exp(ax)

f(x) = xlog x (for x > 0)
F(x) = IxIP

F(x) = s

f(x) = max;{x;}

Some other notable examples:

f(x,y) = log(e* + &)
f(X) = logdet X (for X positive-definite).
f(x,Y) =xTY~1x (for Y positive-definite)

Finite-Sum Methods
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = max{f(x)}.
Show that least-residual problems are convex for any ¢,-norm:
F(x) = [|Ax = bl|,

We know that || - ||, is a norm, so it follows from (2).
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Operations that Preserve Convexity

© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.

Show that SVMs are convex:

1 n
f(x) = §||XH2 + CZ max{0,1 — b;a] x}.
i=1
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 601f(x) + O22(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.
Show that SVMs are convex:
f(x) = %||XH2 + Czn; max{0,1 — b;a] x}.

Know first term is convex, for the other terms use (3) on the two
(convex) arguments, then use (1) to put it all together.
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@ Motivation
© Gradient Method
© Stochastic Subgradient

e Finite-Sum Methods
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Motivation for Gradient Methods

@ We can solve convex optimization problems in
polynomial-time by interior-point methods

@ But these solvers require O(D?) or worse cost per iteration.
e Infeasible for applications where D may be in the billions.

@ Large-scale problems have renewed interest gradient methods:

X = xt — o, VF(xH).

e Only have O(D) iteration cost!
e But how many iterations are needed?
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Logistic Regression with 2-Norm Regularization

o Let's consider logistic regression with 2-norm regularization:
. A
f(x) = z; log(1 + exp(—bi(x" a;))) + §HXH2.
1=

@ Objective f is convex.

@ First term is Lipschitz continuous, second term is not.
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Logistic Regression with 2-Norm Regularization

o Let's consider logistic regression with 2-norm regularization:

f(x) = log(1+ exp(—bi(xa;))) + %HXH?
i=1

Objective f is convex.

First term is Lipschitz continuous, second term is not.

But we have

pul =< V2F(x) =< LI, J

for some L and p.
(L<FIAIB+ A =)

We say that the gradient is Lipschitz-continuous.

We say that the function is strongly-convex.
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Properties of Lipschitz-Continuous Gradient

@ From Taylor's theorem, for some z we have:
T 1 T2
Fly) =)+ VEC) (v = x) + 5y = x) "V (2)(y = x)
o Use that V2f(z) < LI.
T L 2
Fy) < )+ VEx) (v =x) + 5 lly = |

@ Global quadratic upper bound on function value.
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Properties of Lipschitz-Continuous Gradient

From Taylor’'s theorem, for some z we have:

Fy) = F60 + TF()T(y = x) + 50y =0 P F(2)(y —x)

Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — I

Global quadratic upper bound on function value.
Set x'*! to minimum y value:

1
Xt = xt — ZVf(Xt).

Plugging this value in:

A < F(x) — o 9762

@ Guaranteed decrease of objective with oy = 1/L.
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.
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@ Global quadratic upper bound on function value.
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

@ Global quadratic upper bound on function value.

S\, 109 + ¥i00Tlyx) + (L2)llyxi] [
A I

‘\\\ !

\ /

f(x) /

1) + VO]




Gradient Method

Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 50y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — X2

@ Global quadratic upper bound on function value.
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Properties of Strong-Convexity
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 50y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic lower bound on function value.

f(x)

f(x) + VI T(y-x)}

v

f(x) + VE(X)T(y-X) + (W2)y-xI2[* < _- -
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Properties of Strong-Convexity

From Taylor's theorem, for some z we have:
fly)=f VE(x) T (y - Ly =TV -
() =f0) + V) (y =x) + 50y = x) (2)(y —x)
o Use that V2f(z) = ul.

F(y) 2 F(x) + V)T (y = x) + Slly = xIP

Global quadratic lower bound on function value.

Minimize both sides in terms of y:

Fx*) > F(x) - ;Mw(x)\%

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:
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Gradient Method

Linear Convergence of Gradient Descent

Stochastic Subgradient

@ We have bounds on xtt! and x*:

Finite-Sum Methods

) < F) = S IVAOIE, () > () = 5[V

A

Guaranteed
Progress /
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Linear Convergence of Gradient Descent

@ We have bounds on xtt1 and x*:
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:

S

) < F) = S IVACOIE, () > ) = 5

IVF(x)]%.
combine them to get

FOD) = F(x) < (1= ) 1F(x) = ()]
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Linear Convergence of Gradient Descent

@ We have bounds on xtt! and x*:

A < F() = o [VFGIR 7 () 2 F(x) — 5 |F() P,

- - 2u
combine them to get
FOD) = F(x) < (1= ) 1F(x) = ()]

@ This gives a linear convergence rate:

Fxt) = 1) < (1= 1) 170) = )

@ Each iteration multiplies the error by a fixed amount.

e Dimension-independent, and very fast if 7 ~ 1.
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f(x*) < f(x)+ Vf(X)T(X* - Xx)
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@ What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)
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Maximum Likelihood Logistic Regression

@ What about maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)

1
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Maximum Likelihood Logistic Regression

@ Consider maximum-likelihood logistic regression:

n

F(x) =) log(1+ exp(—bi(x" a))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x) + VFx)T(x* = x)

@ If some x* exists, we have the sublinear convergence rate:

F(x") — f(x*) = O(1/1)

(compare to slower Q(1/t=1/P) for general Lipschitz functions)
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Maximum Likelihood Logistic Regression
@ Consider maximum-likelihood logistic regression:
F(x) =) log(1+ exp(—bi(x" a))).
i=1
@ We now only have

0 < V2f(x) < LI.

Convexity only gives a linear upper bound on f(x*):

f(x*) < f(x)+ Vf(X)T(X* - X)

If some x* exists, we have the sublinear convergence rate:

F(x") — f(x*) = O(1/1)
(compare to slower Q(1/t=1/P) for general Lipschitz functions)

o If f is convex, then f + \||x||? is strongly-convex.
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@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.

(and doesn't require knowledge of L)
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F(x"1) < F(x) = yal VA
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small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)
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Gradient Method: Practical Issues

In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
Basic Armijo backtracking line-search:
@ Start with a large value of «.
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x1) < F(x*) —yal V(x|
Practical methods may use Wolfe conditions (so « isn't too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)

Also, check your derivative code!
f(x + dej) — f(x)
4]
For large-scale problems you can check a random direction d:
f(x+dd) — f(x)
0

Vif(x) =~

Vi(x)Td ~
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@ Is gradient method an optimal first-order method?

Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — p/L)")
Nesterov | Strongly-Convex | O((1 — +/u/L)")
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Accelerated Gradient Method

@ Is gradient method an optimal first-order method?

Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — p/L)")
O(

Nesterov | Strongly-Convex (1—+/u/L)")
@ Nesterov's accelerated gradient method:

Xe+1 = yr — e VE(yr),
Yer1 = Xe + Be(xer1 — X)),
for appropriate a;, .

e Similar to heavy-ball/momentum and conjugate gradient.
@ Rates are nearly-optimal for dimension-independent algorithm.
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Accelerated Gradient Method

Is gradient method an optimal first-order method?
Algorithm ‘ Assumptions ‘ Rate
Gradient Convex O(1/t)
Nesterov Convex 0(1/t?)

Gradient | Strongly-Convex | O((1 — p/L)")
O(

Nesterov | Strongly-Convex (1—+/p/L)Y)
Nesterov's accelerated gradient method:

Xt+1 = Yt — OétVf(}/t)>
Ver1 = Xt + Be(Xe41 — Xt),

for appropriate a;, .
Similar to heavy-ball/momentum and conjugate gradient.
Rates are nearly-optimal for dimension-independent algorithm.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].
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Newton's Method

@ Newton's method is a second-order strategy.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

t+1 — Xt . atdt)

X
where d is a solution to the system

2 _
\V/ f(Xt)dt = Vf(Xt) (Assumes V2f(x) = 0)
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Newton's Method

@ Newton's method is a second-order strategy.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

t+1

X :Xt—Oétdt,

where d is a solution to the system
2 _
v f(Xt)dt - Vf(xt)' (Assumes V2f(x) > 0)
@ Equivalent to minimizing the quadratic approximation:
1
F(y) = f(xe) + VI(xe) T (y = xe) + sally = Xtl|32¢(xe)-

recall that ||x =X Hx
Il th 2 =xTH
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Newton's Method

Newton's method is a second-order strategy.
(also called IRLS for functions of the form f(Ax))
Modern form uses the update

t+1

X :Xt—atdt,

where d is a solution to the system
2 _
v f(Xt)dt - Vf(xt)' (Assumes V2f(x) > 0)
Equivalent to minimizing the quadratic approximation:
1
F(y) = f(xe) + VI(xe) T (y = xe) + sally = Xtl|32¢(xe)-

recall that ||x =X Hx
Il th 2 =xTH

We can generalize the Armijo condition to
F(xh) < F(x') + yaVF(x)Td.

Has a natural step length of o = 1.

(always accepted when close to a minimizer)
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Newton's Method

x - of’(x)

E‘
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Convergence Rate of Newton's Method

e If V2f(x) is Lipschitz-continuous and V2f(x) = u, then close
to x* Newton's method has local superlinear convergence:

F(x1) = F(x) < pelf(xF) = F(x)],

with lim;—. pt = 0.

e Converges very fast, use it if you can!
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Convergence Rate of Newton's Method

e If V2f(x) is Lipschitz-continuous and V2f(x) = u, then close
to x* Newton's method has local superlinear convergence:

F(x1) = F(x) < pelf(xF) = F(x)],

with lim;—. pt = 0.
e Converges very fast, use it if you can!
@ But requires solving V2f(xt)dt = Vf(x*).

@ Variant called cubic regularization has global rates.
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Newton's Method: Practical Issues

There are practical large-scale Newton-like methods:
@ Only use the diagonals of the Hessian.

@ Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:
(Xt+1 _ Xt)T(Vf(XH'l) _ Vf(Xt))
IVF(xt) = F(x9)]1?

o=
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Newton's Method: Practical Issues

There are practical large-scale Newton-like methods:
@ Only use the diagonals of the Hessian.

@ Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:
(Xt+1 _ Xt)T(vf(Xt—H) _ Vf(Xt))
IVF(xt) = F(x9)]1?

o=

@ Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (L-BFGS).

@ Hessian-free: Compute d inexactly using Hessian-vector

products: vf 5d) — Vf
V2 (x)d = lim X 0d) = Vi)
6—0 1)

Another related method is nonlinear conjugate gradient.



Gradient Method

Numerical Comparison

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)

x1 = 0.8725, x2 = 0.7569 (minimize.m by C. Rasmussen)

x1 = 0.3654, x2 = 0.1230 (minFunc with steepest descent)

x1 = 0.4974, x2 = 0.2452 (minFunc with cyclic steepest descent)

x1 = 0.8756, x2 = 0.7661 (minFunc with spectral gradient descent)

x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)

x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with conjugate gradient)

x1 = 0.7907, x2 = 0.6256 (minFunc with scaled conjugate gradient)

x1 = 0.9794, x2 = 0.9491 (minFunc with preconditioned conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)
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Outline

© Stochastic Subgradient
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:
1 N
min NZL(X, aj, bi) + Ar(x)

D
xeR i1

data fitting term + regularizer
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1
min NZL(X’ai’b’) +  Ar(x)

x€RP ;
i=1
data fitting term + regularizer
@ Gradient methods are effective when D is very large.

@ What if number of training examples N is very large?
e E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods
e We consider minimizing f(x) = % Z,N:l fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
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Stochastic vs. Deterministic Gradient Methods

e We consider minimizing f(x) = % Z,N:l fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:

e Random selection of iy from {1,2,..., N}.
Xt41 = X¢ — Oltvf;'t(xt).

o Gives unbiased estimate of true gradient,

1 N
B[f()] = 5 D V() = VF(x).
i=1

e lIteration cost is independent of N.
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Stochastic vs. Deterministic Gradient Methods

e We consider minimizing f(x) = % Z,N:l fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

Xt4+1 = X¢ — OétVf(Xt = Xt — Z Vf Xt

e lIteration cost is linear in .
e Convergence with constant a; or line-search.
@ Stochastic gradient method [Robbins & Monro, 1951]:

e Random selection of iy from {1,2,..., N}.
Xt41 = X¢ — Oltvfi[(xt).

o Gives unbiased estimate of true gradient,

1 N
B[f()] = 5 D V() = VF(x).
i=1

e lIteration cost is independent of N.
e Convergence requires a; — 0.
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing g(x) = & >.7_; fi(x).
@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption ‘ Deterministic ‘ Stochastic
Convex 0(1/t?) O(1//'t)
Strongly | O((1 — /u/L)Y) | O(1/t)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable if only unbiased gradient available.
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption ‘ Deterministic ‘ Stochastic
Convex 0(1/t?) O(1//'t)
Strongly | O((1 — /u/L)Y) | O(1/t)

@ Stochastic has low iteration cost but slow convergence rate.
e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable if only unbiased gradient available.
e E.g., Momentum/acceleration does not improve rate:

e In fact, for convergence of SG the momentum must go to zero.
[Tseng, 1998]
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Stochastic vs. Deterministic Convergence Rates
Plot of convergence rates in strongly-convex case:

)

R

stochastic

deterministic

log(excess cost)

Y

time

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

@ Consider the binary support vector machine objective:

n A
f(x) = Z max{0,1 — b,-(xTa,-)} + EHXH2
i=1
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Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

@ Consider the binary support vector machine objective:
: A
f(x) = Z; max{0,1— bi(x"ai)} + 5 [Ix|*
1=

@ Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1//t) O(1/V't)
Strongly O(1/t) O(1/t)
@ Other black-box methods (cutting plane) are not faster.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:

n A
f(x) = Z max{0,1 — b,-(xTa,-)} + EHXH2
i=1

Rates for subgradient methods for non-smooth objectives:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1//t) O(1/V't)
Strongly O(1/t) O(1/t)
Other black-box methods (cutting plane) are not faster.

For non-smooth problems:

o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).
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Recall that for differentiable convex functions we have
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Recall that for differentiable convex functions we have
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y —x),Vy.

o At differentiable x:
o Only subgradient is Vf(x).
@ At non-differentiable x:
o We have a set of subgradients.
o Called the sub-differential, 9f(x).

e Note that 0 € Of(x) iff x is a global minimum.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.




Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

F(y) > F(x) + VF(x)T(y = x), ¥x, .

A vector d is a subgradient of a convex function f at x if

fly) > f(x) +d" (y — x),Vy.
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
Jdlx] =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
x| = ¢ -1 x <0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)

@ Sub-differential of max function:

O max{fi(x), h(x)} =
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Sub-Differential of Absolute Value and Max Functions

@ Sub-differential of absolute value function:

1 x>0
x| = ¢ -1 x <0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
@ Sub-differential of max function:
VA() A(x) > ()
dmax{fi(x), L(x)} = < Vh(x) f2(x) > f(x)
OVH(x)+ (1 —0)Vh(x) f(x) = f(x)

(any convex combination of the gradients of the argmax)
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Subgradient and Stochastic Subgradient methods

@ The basic subgradient method:

t+1

x = xt — ad,,

for some d; € Of(x*).
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@ The basic subgradient method:
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© The steepest descent choice is given by argmingcyr(x){lld|l}-

(often hard to compute, but easy for ¢1-regularization)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods
Subgradient and Stochastic Subgradient methods

@ The basic subgradient method:

Xt+1 — xt — Oédt,

for some d; € Of (x*).

© The steepest descent choice is given by argmingcyr(x){lld|l}-
(often hard to compute, but easy for ¢1-regularization)

@ Otherwise, may increase the objective even for small «.

o But |[xt! — x*|| < ||xt — x*|| for small enough a.

@ For convergence, we require o — 0.
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Subgradient and Stochastic Subgradient methods

@ The basic subgradient method:

Xt+1 — xt — Oédt,

for some d; € Of (x*).

© The steepest descent choice is given by argmingcyr(x){lld|l}-
(often hard to compute, but easy for ¢1-regularization)
@ Otherwise, may increase the objective even for small «.
o But |[xt! — x*|| < ||xt — x*|| for small enough a.
@ For convergence, we require o — 0.
@ The basic stochastic subgradient method:
Xt = xt _ ad,,

for some d; € Of;,(x*) for some random iy € {1,2,..., N}.
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Stochastic Subgradient Methods in Practice

@ The theory says to use a method like this:

. 1
ir =rand(1,2,...,N), a;= pr:
Xt+1 — Xt _ Oétf;-i(Xt).
e O(1/t) for smooth objectives.
o O(log(t)/t) for non-smooth objectives.
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Stochastic Subgradient Methods in Practice

@ The theory says to use a method like this:

1
ir =rand(1,2,...,N), a;= pr:
X = xt — a.fl(x").

e O(1/t) for smooth objectives.

o O(log(t)/t) for non-smooth objectives.
@ Except for some special cases, you should not do this.
Initial steps are huge: usually = O(1/N) or O(1/v/N).
Later steps are tiny: 1/t gets small very quickly.
Convergence rate is not robust to mis-specification of .
No adaptation to ‘easier’ problems than worst case.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Subgradient Methods in Practice

@ The theory says to use a method like this:

1
ir =rand(1,2,...,N), a;= pr:
X = xt — a.fl(x").
e O(1/t) for smooth objectives.
o O(log(t)/t) for non-smooth objectives.
@ Except for some special cases, you should not do this.
o Initial steps are huge: usually = O(1/N) or O(1/V/N).
o Later steps are tiny: 1/t gets small very quickly.
e Convergence rate is not robust to mis-specification of .
o No adaptation to ‘easier’ problems than worst case.
@ Tricks that can improve theoretical and practical properties:
@ Use smaller initial step-sizes, that go to zero more slowly.
@ Take a (weighted) average of the iterations or gradients:

Zwtxta dt Z5tdt
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:
e Rakhlin et al. [2011], LaCoste-Julien et al. [2013]

o Averaging later iterations achieves O(1/t) in non-smooth case.
e Averaging by iteration number achieves same.

@ Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

e Bach & Moulines [2011]:
o a; = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:
e Rakhlin et al. [2011], LaCoste-Julien et al. [2013]

o Averaging later iterations achieves O(1/t) in non-smooth case.
e Averaging by iteration number achieves same.

@ Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

e Bach & Moulines [2011]:
o a; = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
e Nedic & Bertsekas [2000]:

o Constant step size (a; = «) achieves rate of

E[f(x)] = f(x") < (1 = 2p0) (F(x°) = £(x")) + O(cv).
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Speeding up Stochastic Subgradient Methods

Works that support using large steps and averaging:
e Rakhlin et al. [2011], LaCoste-Julien et al. [2013]

o Averaging later iterations achieves O(1/t) in non-smooth case.
e Averaging by iteration number achieves same.

Nesterov [2007], Xiao [2010]:

o Gradient averaging improves constants (‘dual averaging').
e Finds non-zero variables with sparse regularizers.

e Bach & Moulines [2011]:
o a; = O(1/t?) for B € (0.5,1) more robust than a; = O(1/t).
Nedic & Bertsekas [2000]:

o Constant step size (a; = «) achieves rate of

E[f(x)] = f(x") < (1 = 2p0) (F(x°) = £(x")) + O(cv).

Polyak & Juditsky [1992]:

e In smooth case, iterate averaging is asymptotically optimal.
e Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

@ Should we use accelerated /Newton-like stochastic methods?
e These do not improve the convergence rate.
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Stochastic Newton Methods?

@ Should we use accelerated /Newton-like stochastic methods?
e These do not improve the convergence rate.

@ But some positive results exist.
e Ghadimi & Lan [2010]:

@ Acceleration can improve dependence on L and p.
@ Improves performance at start or if noise is small.

o Duchi et al. [2010]:
@ Newton-like AdaGrad method,

xt = x* 4 aDVf,(x"), with Dy =

t
I ACO]!
k=1

@ improves regret bounds but not optimization error.
e Bach & Moulines [2013]:

o Newton-like method achieves O(1/t) without
strong-convexity. (under extra self-concordance assumption)
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Outline

@ Finite-Sum Methods
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1

XrglngNZL(x, aib) +  Ar(x)
i=1

data fitting term + regularizer
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Big-N Problems

@ Recall the regularized empirical risk minimization problem:

N

1

XEI&%NZL(X, aib) +  Ar(x)
i=1

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.
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Big-N Problems
@ Recall the regularized empirical risk minimization problem:

N

1

XEI&%NZL(X, aib) +  Ar(x)
i=1

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

@ Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.
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Big-N Problems
@ Recall the regularized empirical risk minimization problem:
1N
min —ZL(X, ai, bj)) + Ar(x)
i=1

xERD N

data fitting term + regularizer

@ Stochastic methods:

e O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods
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Motivation for Hybrid Methods

stochastic

deterministic

log(excess cost)

hybrid
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time
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Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
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Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ The FG method uses all N gradients,

REPAG

@ The SG method approximates it with 1 sample,

Vi, (x NZVf

2 \

Finite-Sum Methods



Motivation

Gradient Method Stochastic Subgradient

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ The FG method uses all N gradients,

=

N
1
VF(xh) = > VA(x").
i=1
@ The SG method approximates it with 1 sample,
LN
(xt) ~ = (5t
MACOESY ;w,(x ).

@ A common variant is to use larger sample B¢,

N
1 1
B PR%ACHES N > V(x).
i=1

ieBt

Finite-Sum Methods
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Approach 1: Batching

@ The SG method with a sample Bt uses iterations

t+1
X =x' |Bt| Z

ieBt

e For a fixed sample size |B!|, the rate is sublinear.

Finite-Sum Methods
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Approach 1: Batching

@ The SG method with a sample Bt uses iterations
t+1 _ Z
X = X
IBtI
ieBt

e For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size || increases.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Approach 1: Batching

The SG method with a sample B! uses iterations

t+1 _
X =x' |Bt| Z

ieBt

For a fixed sample size |B*|, the rate is sublinear.

Gradient error decreases as sample size |B!| increases.

Common to gradually increase the sample size |Bf|.
[Bertsekas & Tsitsiklis, 1996]
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Approach 1: Batching

The SG method with a sample B! uses iterations

t+1 _
X =x' |Bt| Z

ieBt

For a fixed sample size |B*|, the rate is sublinear.

Gradient error decreases as sample size |B!| increases.

Common to gradually increase the sample size |Bf|.
[Bertsekas & Tsitsiklis, 1996]

We can choose || to achieve a linear convergence rate:

o Early iterations are cheap like SG iterations.
o Later iterations can use a Newton-like method.
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
e YES!
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

t N
Xt+1 — %ZVﬁ(xt)
i=1
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

t N
Xt+1 — %ZVﬂ(xt)
i=1
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
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Stochastic Average Gradient

e Growing |Bf| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select i from {1,2,..., N} and compute f(x").

e Memory: y{ = Vf(x") from the last t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’t change.
o Assumption becomes accurate as ||x**! — xt|| — 0.
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Convergence Rate of SAG

o If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f(xt) — F(x")] < <1 ~ min {l’gL g;l,\,})t C,

where

4l
X — x|+ =

C = [F(x°) = F(x)] + m oL
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Convergence Rate of SAG

o If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f(xt) — F(x")] < <1 ~ min {1’6‘L 81N}>t C,
where

4l
X — x|+ =

C = [F(x°) = F(x)] + m oL

@ Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1 1 N<e 1Y _ 0.8825
- — xp | —= ) =0. .
sn) =P 73

e For ill-conditioned problems, almost same as deterministic
method (but N times faster).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0.25, u=1/N:
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o Gradient method has rate (§5)" = 0.99998.
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Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u = 1/N:
2
. L—
o Gradient method has rate (§5)" = 0.99998.
o Accelerated gradient method has rate (1 — /%) = 0.99761.
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Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u = 1/N:

2
o Gradient method has rate (§5)" = 0.99998.

o Accelerated gradient method has rate (1 — /%) = 0.99761.
o SAG (N iterations) has rate (1 — min {4, - })" = 0.88250.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(-

n {1735
(42
Vit /i

vz

e Fastest possible first-order method:
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(1-

n {1735
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.
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o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(1-
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e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate (g“) = 0.99998.

VE) = 0.99761.

WY = 0.88250.
2
= 0.99048.

o Accelerated gradient method has rate
o SAG (N iterations) has rate (1 — mi

‘ L

(1-

n {1735
(s
Vit /i

vz

e Fastest possible first-order method:

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f,-’ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).

o Accelerated: O(N\/Elog(l/e)).
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Rate of Convergence Comparison
@ Assume that N = 700000, L = 0. 25, w=1/N:
o Gradient method has rate ( L;“) — 0.99998.
o Accelerated gradient method has rate (1 — /%) = 0.99761.

o SAG (N iterations) has rate (1 —min {4, 2 })" = 0.88250.
e £ (Vv _
e Fastest possible first-order method: (f+f) = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, u, and N).

@ Number of f/ evaluations to reach e:
o Stochastic: O((1/e)).
o Gradient: O(Nﬁ log(1/€)).
o Accelerated: O(N\/Elog(l/e)).
e SAG: O(max{N, ;%} log(1/€)).
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Objective minus Optimum

Comparing Deterministic and Stochatic Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

T T T T
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Effective Passes Effective Passes
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SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

KT

Objective minus Optimum
S
Il

Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Other Linearly-Convergent Stochastic Methods

@ Subsequent stochastic algorithms with linear rates:

e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
o Incremental surrogate optimization [Mairal, 2013].
e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]
o SAGA [Defazio et al., 2014]
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Other Linearly-Convergent Stochastic Methods

@ Subsequent stochastic algorithms with linear rates:
e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
o Incremental surrogate optimization [Mairal, 2013].
e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]
o SAGA [Defazio et al., 2014]

@ SVRG has a much lower memory requirement (later in talk).

@ There are also non-smooth extensions (last part of talk).
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SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi = f{(x).

x=x-—qd.
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SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi = f{(x).

x=x-—qd.

@ Practical variants of the basic algorithm allow:

Regularization.

Sparse gradients.

Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
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SAG Implementation Issues

@ Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi =1/ ().

&
X=X Nd.

@ Practical variants of the basic algorithm allow:

Regularization.

Sparse gradients.

Automatic step-size selection.

Termination criterion.

Acceleration [Lin et al., 2015].

Adaptive non-uniform sampling [Schmidt et al., 2013].
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@ Does re-shuffling and doing full passes work better?
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@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?
o Noncommutative arithmetic-geometric mean inequality

conjecture.
[Recht & Ré, 2012]
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@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

@ Can non-uniform sampling help?



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

@ Can non-uniform sampling help?
o For classic SG methods, can only improve constants.
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Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
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Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality

conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

@ Can non-uniform sampling help?

o For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVi(x) = VEi(y)l < Lillx = .

improves rate to depend on Lyean instead of Lay.
(with bigger step size)
o Adaptively estimate L; as you go. (see paper/code).
o Slowly learns to ignore well-classified examples.
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Objective minus Optimum

SAG with Adaptive Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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@ Datasets where SAG had the worst relative performance.
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SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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@ Adaptive non-uniform sampling helps a lot.
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SAG with Mini-Batches

@ Reasons to use mini-batches with SAG:
@ Parallelize gradient calculation.
@ Decrease memory (only store gradient of the mini-batch).
© Increase convergence rate.
(classic SG methods: only changes constant)

o Convergence rate depends on L for mini-batches:
o L(B) < L(i), possibly by up to |B].
o Allows bigger step-size, a = 1/L(B).
o Place examples in batches to make L(5) small.
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Minimizing Finite Sums: Dealing with the Memory

o Use mini-batches.
e Use structure in the objective:

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

o For fi(x) = L(a] x), only need to store N values of a x.

o For CRFs, only need to store marginals of parts.
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Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

o Use mini-batches.

e Use structure in the objective:

o For fi(x) = L(a] x), only need to store N values of a x.
o For CRFs, only need to store marginals of parts.
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(optical character and named-entity recognition tasks)

@ If the above don't work, use SVRG...
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Stochastic Variance-Reduced Gradient

Motivation

SVRG algorithm:
e Start with xp
e fors=0,1,2...
o do= 5 T, (x)
o X% =x,
o fort=1,2,...m

e Randomly pick ir € {1,2,..., N}
o x'=x""1 —ar(f(x"1) — fi(x) + ).

o X541 = x* for random t € {1,2,..., m}.
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Stochastic Variance-Reduced Gradient

Motivation

SVRG algorithm:
e Start with xp

e fors=0,1,2...
o di= 5 3 /()
o X% =x,

o fort=1,2,...m

e Randomly pick ir € {1,2,..., N}
o x'=x""1 —ar(f(x"1) — fi(x) + ).

o X541 = x* for random t € {1,2,..., m}.
Requires 2 gradients per iteration and occasional full passes,

but only requires storing ds and xs.
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Stochastic Variance-Reduced Gradient

SVRG algorithm:
e Start with xp
e fors=0,1,2...
o di= 5 3 /()

o X% =x,
o fort=1,2,...m
oRandomepickite{l ..., N}
o x'=x'" —at(f,(t )—f(xs)—i-ds)
o X541 = x* for random t € {1,2,..., m}.

Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs.

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity /regularization, non-uniform

sampling, mini-batches).
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Summary

Summary of Part 1:

Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

Part 2: Gradient-based methods allow scaling with
dimensionality of problem.

Part 3: Stochastic-gradient methods allow scaling with
number of training examples, at cost of slower convergence
rate.

Part 4: For finite datasets, SAG fixes convergence rate of
stochastic gradient methods, and SVRG fixes memory
problem of SAG.
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Summary
Summary of Part 1:

@ Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

@ Part 2: Gradient-based methods allow scaling with
dimensionality of problem.

@ Part 3: Stochastic-gradient methods allow scaling with
number of training examples, at cost of slower convergence
rate.

@ Part 4: For finite datasets, SAG fixes convergence rate of
stochastic gradient methods, and SVRG fixes memory
problem of SAG.

What is coming in Part 2:
@ Can we beat subgradient methods for non-smooth problems?
@ How do these optimization errors related to the test error?

@ What can we say about non-convex problems?
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