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Context: Big Data and Big Models

We are collecting data at unprecedented rates.

Seen across many fields of science and engineering.
Not gigabytes, but terabytes or petabytes (and beyond).

Machine learning can use big data to fit richer models:

Bioinformatics.
Computer vision.
Speech recognition.
Product recommendation.
Machine translation.
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Common Framework: Empirical Risk Minimization

The most common framework is empirical risk minimization:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

We have n observations ai (and possibly labels bi ).
We want to find optimal parameters x∗.

Examples range from squared error with 2-norm regularization,

min
x∈RD

1

N

N∑

i=1

1

2
(aTi x − bi )

2 +
λ

2
‖x‖2,

to conditional random fields (CRFs) and deep neural networks.
Main practical challenges:

Designing/learning good features ai .
Efficiently solving the problem when N or D are very large.
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Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.
You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
(discussed in part 2)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.
You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
(discussed in part 2)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.

You can do a lot with convex models.
(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
(discussed in part 2)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.
You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
(discussed in part 2)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Motivation: Why Learn about Convex Optimization?

Why learn about large-scale optimization?

Optimization is at the core of many ML algorithms.
Can’t solve huge problems with traditional techniques.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.
You can do a lot with convex models.

(least squares, lasso, generlized linear models, SVMs, CRFs, etc.)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)

Tools from convex analysis are being extended to non-convex.
(discussed in part 2)



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

How hard is real-valued optimization?
How long to find an ε-optimal minimizer of a real-valued function?

min
x∈RD

f (x).

General function: impossible!

We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (x)− f (y)| ≤ L‖x − y‖.
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(and grid-search is nearly optimal)

Optimization is hard, but assumptions make a big difference.
(we went from impossible to very slow)
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Convex Functions: Three Characterizations

A function f is convex if for all x and y we have

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y), for θ ∈ [0, 1].

Function is below linear interpolation between x and y .

Implies that all local minima are global minima.
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A differentiable function f is convex if for all x and y we have

f (y) ≥ f (x) +∇f (x)T (y − x),

The function is globally above the tangent at x .

If ∇f (y) = 0, implies y is a a global minimizer.
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Examples of Convex Functions

Some simple convex functions:

f (x) = c

f (x) = aT x

f (x) = xTAx (for A � 0)

f (x) = exp(ax)

f (x) = x log x (for x > 0)

f (x) = ‖x‖2

f (x) = ‖x‖p
f (x) = maxi{xi}

Some other notable examples:

f (x , y) = log(ex + ey )

f (X ) = log detX (for X positive-definite).

f (x ,Y ) = xTY−1x (for Y positive-definite)
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Operations that Preserve Convexity

1 Non-negative weighted sum:

f (x) = θ1f1(x) + θ2f2(x).

2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max
i
{fi (x)}.

Show that least-residual problems are convex for any `p-norm:

f (x) = ||Ax − b||p

We know that ‖ · ‖p is a norm, so it follows from (2).
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2
||x ||2 + C
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T
i x}.

Know first term is convex, for the other terms use (3) on the two
(convex) arguments, then use (1) to put it all together.
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Motivation for Gradient Methods

We can solve convex optimization problems in
polynomial-time by interior-point methods

But these solvers require O(D2) or worse cost per iteration.

Infeasible for applications where D may be in the billions.

Large-scale problems have renewed interest gradient methods:

x t+1 = x t − αt∇f (x t).

Only have O(D) iteration cost!
But how many iterations are needed?
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Logistic Regression with 2-Norm Regularization

Let’s consider logistic regression with 2-norm regularization:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))) +
λ

2
‖x‖2.

Objective f is convex.

First term is Lipschitz continuous, second term is not.

But we have

µI � ∇2f (x) � LI ,

for some L and µ.
(L ≤ 1

4
‖A‖2

2 + λ, µ ≥ λ)

We say that the gradient is Lipschitz-continuous.

We say that the function is strongly-convex.
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Properties of Lipschitz-Continuous Gradient

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � LI .

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

Global quadratic upper bound on function value.

Set x t+1 to minimum y value:

x t+1 = x t − 1

L
∇f (x t).

Plugging this value in:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2.

Guaranteed decrease of objective with αt = 1/L.
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Guaranteed decrease of objective with αt = 1/L.
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
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Use that ∇2f (z) � µI .
f (y) ≥ f (x) +∇f (x)T (y − x) +

µ

2
‖y − x‖2

Global quadratic lower bound on function value.
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From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � µI .

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

Global quadratic lower bound on function value.

Minimize both sides in terms of y :

f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

We have bounds on x t+1 and x∗:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2, f (x∗) ≥ f (x t)− 1

2µ
‖∇f (x t)‖2.
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Linear Convergence of Gradient Descent

We have bounds on x t+1 and x∗:

f (x t+1) ≤ f (x t)− 1

2L
‖∇f (x t)‖2, f (x∗) ≥ f (x t)− 1

2µ
‖∇f (x t)‖2.

combine them to get

f (x t+1)− f (x∗) ≤
(

1− µ

L

)
[f (x t)− f (x∗)]

This gives a linear convergence rate:

f (x t)− f (x∗) ≤
(

1− µ

L

)t
[f (x0)− f (x∗)]

Each iteration multiplies the error by a fixed amount.

Dimension-independent, and very fast if µ
L ≈ 1.
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Maximum Likelihood Logistic Regression
What about maximum-likelihood logistic regression?

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)
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Maximum Likelihood Logistic Regression

Consider maximum-likelihood logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)

If some x∗ exists, we have the sublinear convergence rate:

f (x t)− f (x∗) = O(1/t)

(compare to slower Ω(1/t−1/D) for general Lipschitz functions)

If f is convex, then f + λ‖x‖2 is strongly-convex.
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Gradient Method: Practical Issues
In practice, searching for step size (line-search) is usually
much faster than α = 1/L.

(and doesn’t require knowledge of L)

Basic Armijo backtracking line-search:
1 Start with a large value of α.
2 Divide α in half until we satisfy (typically value is γ = .0001)

f (x t+1) ≤ f (x t)− γα||∇f (x t)||2.
Practical methods may use Wolfe conditions (so α isn’t too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Also, check your derivative code!

∇i f (x) ≈ f (x + δei )− f (x)

δ
For large-scale problems you can check a random direction d :

∇f (x)Td ≈ f (x + δd)− f (x)

δ
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Accelerated Gradient Method

Is gradient method an optimal first-order method?

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Similar to heavy-ball/momentum and conjugate gradient.

Rates are nearly-optimal for dimension-independent algorithm.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Accelerated Gradient Method

Is gradient method an optimal first-order method?

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Similar to heavy-ball/momentum and conjugate gradient.

Rates are nearly-optimal for dimension-independent algorithm.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Accelerated Gradient Method

Is gradient method an optimal first-order method?

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Similar to heavy-ball/momentum and conjugate gradient.

Rates are nearly-optimal for dimension-independent algorithm.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Accelerated Gradient Method

Is gradient method an optimal first-order method?

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Similar to heavy-ball/momentum and conjugate gradient.

Rates are nearly-optimal for dimension-independent algorithm.

For logistic regression and many other losses, we can get
linear convergence without strong-convexity [Luo & Tseng, 1993].



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Newton’s Method

Newton’s method is a second-order strategy.
(also called IRLS for functions of the form f (Ax))

Modern form uses the update

x t+1 = x t − αtdt ,

where d is a solution to the system

∇2f (xt)dt = ∇f (xt). (Assumes ∇2f (x) � 0)

Equivalent to minimizing the quadratic approximation:

f (y) ≈ f (xt) +∇f (xt)
T (y − xt) +

1

2α
‖y − xt‖2

∇2f (xt)
.

(recall that ‖x‖2
H = xTHx)

We can generalize the Armijo condition to

f (x t+1) ≤ f (x t) + γα∇f (x t)Td .

Has a natural step length of α = 1.
(always accepted when close to a minimizer)
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Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)
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Convergence Rate of Newton’s Method

If ∇2f (x) is Lipschitz-continuous and ∇2f (x) � µ, then close
to x∗ Newton’s method has local superlinear convergence:

f (x t+1)− f (x∗) ≤ ρt [f (x t)− f (x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But requires solving ∇2f (x t)d t = ∇f (x t).

Variant called cubic regularization has global rates.
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with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But requires solving ∇2f (x t)d t = ∇f (x t).

Variant called cubic regularization has global rates.
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Newton’s Method: Practical Issues

There are practical large-scale Newton-like methods:

Only use the diagonals of the Hessian.

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:

α =
(x t+1 − x t)T (∇f (x t+1)−∇f (x t))

‖∇f (x t+1)− f (x t)‖2

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector
products:

∇2f (x)d = lim
δ→0

∇f (x + δd)−∇f (x)

δ

Another related method is nonlinear conjugate gradient.
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Numerical Comparison

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.8725, x2 = 0.7569 (minimize.m by C. Rasmussen)
x1 = 0.3654, x2 = 0.1230 (minFunc with steepest descent)
x1 = 0.4974, x2 = 0.2452 (minFunc with cyclic steepest descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with spectral gradient descent)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with conjugate gradient)
x1 = 0.7907, x2 = 0.6256 (minFunc with scaled conjugate gradient)
x1 = 0.9794, x2 = 0.9491 (minFunc with preconditioned conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

Gradient methods are effective when D is very large.

What if number of training examples N is very large?

E.g., ImageNet has more than 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f (xt) = xt −
αt

N

N∑

i=1

∇fi (xt).

Iteration cost is linear in N.
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of it from {1, 2, . . . ,N}.

xt+1 = xt − αt∇fit (xt).
Gives unbiased estimate of true gradient,

E[f ′it (x)] =
1

N

N∑

i=1

∇fi (x) = ∇f (x).

Iteration cost is independent of N.
Convergence requires αt → 0.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are N times faster, but how many iterations?

Assumption Deterministic Stochastic

Convex O(1/t2) O(1/
√
t)

Strongly O((1−
√
µ/L)t) O(1/t)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable if only unbiased gradient available.

E.g., Momentum/acceleration does not improve rate:

In fact, for convergence of SG the momentum must go to zero.
[Tseng, 1998]
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Stochastic vs. Deterministic Convergence Rates
Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:

f (x) =
n∑

i=1

max{0, 1− bi (x
Tai )}+

λ

2
‖x‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/
√
t) O(1/

√
t)

Strongly O(1/t) O(1/t)

Other black-box methods (cutting plane) are not faster.

For non-smooth problems:

Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

At differentiable x :

Only subgradient is ∇f (x).

At non-differentiable x :

We have a set of subgradients.
Called the sub-differential, ∂f (x).

Note that 0 ∈ ∂f (x) iff x is a global minimum.
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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∇f1(x) f1(x) > f2(x)
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θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any convex combination of the gradients of the argmax)
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Subgradient and Stochastic Subgradient methods

The basic subgradient method:

x t+1 = x t − αdt ,

for some dt ∈ ∂f (x t).

The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.

But ‖x t+1 − x∗‖ ≤ ‖x t − x∗‖ for small enough α.

For convergence, we require α→ 0.

The basic stochastic subgradient method:

x t+1 = x t − αdt ,

for some dt ∈ ∂fit (x t) for some random it ∈ {1, 2, . . . ,N}.
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The steepest descent choice is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)
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Stochastic Subgradient Methods in Practice

The theory says to use a method like this:

it = rand(1, 2, . . . ,N), αt =
1

µt

x t+1 = x t − αt f
′
it (x

t).

O(1/t) for smooth objectives.
O(log(t)/t) for non-smooth objectives.

Except for some special cases, you should not do this.
Initial steps are huge: usually µ = O(1/N) or O(1/

√
N).

Later steps are tiny: 1/t gets small very quickly.
Convergence rate is not robust to mis-specification of µ.
No adaptation to ‘easier’ problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly.
2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑

i=1

ωtxt , d̄t =
t∑

i=1

δtdt .
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Speeding up Stochastic Subgradient Methods
Works that support using large steps and averaging:

Rakhlin et al. [2011], LaCoste-Julien et al. [2013]

Averaging later iterations achieves O(1/t) in non-smooth case.
Averaging by iteration number achieves same.

Nesterov [2007], Xiao [2010]:

Gradient averaging improves constants (‘dual averaging’).
Finds non-zero variables with sparse regularizers.

Bach & Moulines [2011]:

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Nedic & Bertsekas [2000]:

Constant step size (αt = α) achieves rate of

E[f (x t)]− f (x∗) ≤ (1− 2µα)t(f (x0)− f (x∗)) + O(α).

Polyak & Juditsky [1992]:

In smooth case, iterate averaging is asymptotically optimal.
Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

Should we use accelerated/Newton-like stochastic methods?

These do not improve the convergence rate.

But some positive results exist.
Ghadimi & Lan [2010]:

Acceleration can improve dependence on L and µ.
Improves performance at start or if noise is small.

Duchi et al. [2010]:

Newton-like AdaGrad method,

x t+1 = x t + αD∇fit (x
t), with Djj =

√√√√ t∑
k=1

‖∇j fik (x t)‖.

improves regret bounds but not optimization error.

Bach & Moulines [2013]:

Newton-like method achieves O(1/t) without
strong-convexity. (under extra self-concordance assumption)
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Big-N Problems

Recall the regularized empirical risk minimization problem:

min
x∈RD

1

N

N∑

i=1

L(x , ai , bi ) + λr(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
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Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f (x t) =
1

N

N∑

i=1

∇fi (x t).

The SG method approximates it with 1 sample,

∇fit (x t) ≈
1

N

N∑

i=1

∇fi (x t).

A common variant is to use larger sample Bt ,

1

|Bt |
∑

i∈Bt
∇fi (x t) ≈

1

N

N∑

i=1

∇fi (x t).
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Approach 1: Batching

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt
fi (x

t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.
Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.
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Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES!

The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . ,N} and compute f ′it (x
t).

x t+1 = x t − αt

N

N∑
i=1

y t
i

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex,
with αt = 1/16L SAG has

E[f (x t)− f (x∗)] 6

(
1−min

{
µ

16L
,

1

8N

})t

C ,

where

C = [f (x0)− f (x∗)] +
4L

N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergence rate but only 1 gradient per iteration.
For well-conditioned problems, constant reduction per pass:

(
1− 1

8N

)N

≤ exp

(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic
method (but N times faster).
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Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2

= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2

= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O( L

µ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, L
µ} log(1/ε)).
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Comparing Deterministic and Stochatic Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
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Other Linearly-Convergent Stochastic Methods

Subsequent stochastic algorithms with linear rates:

Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

Incremental surrogate optimization [Mairal, 2013].
Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,

2013, Zhang et al., 2013]

SAGA [Defazio et al., 2014]

SVRG has a much lower memory requirement (later in talk).

There are also non-smooth extensions (last part of talk).
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SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N d .

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.
Termination criterion.
Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].
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Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?

For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.
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For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li ,

‖∇fi (x)−∇fi (y)‖ ≤ Li‖x − y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.



Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality
conjecture.

[Recht & Ré, 2012]
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SAG with Adaptive Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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Datasets where SAG had the worst relative performance.
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SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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Adaptive non-uniform sampling helps a lot.
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SAG with Mini-Batches

Reasons to use mini-batches with SAG:
1 Parallelize gradient calculation.
2 Decrease memory (only store gradient of the mini-batch).

3 Increase convergence rate.
(classic SG methods: only changes constant)

Convergence rate depends on L for mini-batches:

L(B) ≤ L(i), possibly by up to |B|.
Allows bigger step-size, α = 1/L(B).
Place examples in batches to make L(B) small.
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Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

There are several ways to avoid this:

Use mini-batches.
Use structure in the objective:

For fi (x) = L(aTi x), only need to store N values of aTi x .
For CRFs, only need to store marginals of parts.
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(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...
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Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i (xs)

x0 = xs

for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . ,N}
x t = x t−1 − αt(f

′
it (x

t−1)− f ′it (xs) + ds).

xs+1 = x t for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs .

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity/regularization, non-uniform
sampling, mini-batches).
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Summary
Summary of Part 1:

Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

Part 2: Gradient-based methods allow scaling with
dimensionality of problem.

Part 3: Stochastic-gradient methods allow scaling with
number of training examples, at cost of slower convergence
rate.

Part 4: For finite datasets, SAG fixes convergence rate of
stochastic gradient methods, and SVRG fixes memory
problem of SAG.

What is coming in Part 2:

Can we beat subgradient methods for non-smooth problems?

How do these optimization errors related to the test error?

What can we say about non-convex problems?
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