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Hubel and Wiesel, 1959

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Alexnet
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ICA

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Sparse coding

(Olshausen, Field)
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Regularized Autoencoder
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Uncontractive autoencoder

These are features trained with a contractive autoencoder with
negative contraction penalty.

Roland Memisevic DL Summer School



K-means
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Fourier (1768-1830) Gabor (1900-1979)
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Translation invariance and locality

Almost all structure in natural images
is position-invariant and local.
Therefore:
Almost all low-level vision operations
are based on patches.
The universal mathematical
framework for understanding the
structure in images is the Fourier
transform.
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Filtering / Convolution 2-d (aka LSI system)

Figures from Hyvarinen, et al., 2009.
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Convolution 1-d (Wikipedia)
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Phasors

The phasor is the complex valued signal

p(t) = exp
(
iωt
)
= cosωt + i sinωt , i =

√
−1

It represents sine and cosine in a single signal. (This is useful
because all sine waves of a given frequency live in the same,
2-dimensional subspace.)
Phasors are eigenfunctions of translation:

p(t − z) = eiω(t−z) = eiωte−iωz = e−iωzp(t)
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Digression: Complex numbers

Complex numbers are “2d-vectors” with some special arithmetic,
most of which is related to Euler’s formula:

eiϕ = cosϕ+ i sinϕ

Most applications rely on jumping back-and-forth between
cartesian and polar coordinates:

Re

Im

ϕ

r

c = a+ ib = reiϕ

b

a

a = r cos (ϕ)
b = r sin (ϕ)
r = |c| =

√
a2 + b2 : “amplitude”

ϕ = arg(c) = atan
( b

a

)
: “phase”
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Digression: Complex numbers

Addition is the same as for 2d vectors.
Multiplication is standard arithmetic in the polar representation:

c1 · c2 = r1ei(ϕ1) · r2ei(ϕ2) = r1 · r2 · ei(ϕ1+ϕ2)

Thus, multiplication is stretching + rotation.
Multiplying a number by a complex number c of length 1.0, ie.

c = eiα,

amounts to rotating the number by α degrees counter clock-wise
around the origin.
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Digression: Complex numbers

Other useful equations:
Conjugation is reflection at the real axis:

c̄ = a− ib = r exp(−iϕ)

It follows that c̄c = |c|2 and 1
2 (c̄ + c) = real(c)

The standard inner product uses conjugation:〈
~c, ~d

〉
=
∑

i

c̄idi

Why? Because now
〈
~c,~c

〉
= ||~c||2

In practice, use the function atan2() to compute the atan for polar
representations.

— End of digression —
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Phasors

The phasor is the complex valued signal

p(t) = exp
(
iωt
)
= cosωt + i sinωt , i =

√
−1

It represents sine and cosine in a single signal. (This is useful
because all sine waves of a given frequency live in the same,
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Phasors are eigenfunctions of convolution

(
p ∗ h

)
(t) =

∞∑
z=−∞

h(z)p(t − z)

=
( ∞∑

z=−∞
h(z)e−iωz

)
eiωt

=:
(
H(ω)p

)
(t)

The constant H(ω) is called frequency response of the filter h.
Its absolute value |H(ω)| is called amplitude response, its phase
arg H(ω) is called phase response.
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Discrete Fourier Transform (1d)

The Fourier transform decomposes a signal into phasors:

Inverse discrete Fourier Transform 1d

s(t) =
1
T

T−1∑
k=0

S(k)ei 2π
T tk t = 0, . . . ,T − 1

Discrete Fourier Transform (DFT) 1d

S(k) =
T−1∑
t=0

s(t)e−i 2π
T kt k = 0, . . . ,T − 1

S(ω) is called spectrum of the signal.
|S(ω)| is called amplitude spectrum, arg S(ω) is called phase
spectrum.
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2d waves

How to generalize the concept of oscillation to 2d?
Oscillations are functions of a scalar t . So first assign a scalar to
image positions, then pass this scalar to a phasor. For example,

S(y) = exp(iωTy)

where ω is called frequency vector.
ωTy grows in the direction of ω and is constant in the direction
orthogonal to ω.
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2d waves
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Separability of complex waves

Complex valued waves are separable:

S(y) = exp(i(ωT y))

= exp(iω1y1 + iω2y2))

= exp(iω1y1) · exp(iω2y2)

=: S1(y1) · S2(y2)

The same is not true of real valued waves.
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DFT on images

Inverse Discrete Fourier Transform in 2d

s(m,n) =
1

MN

M−1∑
k=0

N−1∑
`=0

S(k , `)ei2π( km
M + `n

N )

Discrete Fourier Transform (DFT) in 2d

S(k , `) =
M−1∑
m=0

N−1∑
n=0

s(m,n)e−i2π( km
M + `n

N )
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Spectrum example
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More amplitude spectra (average over cross-sections
on the right)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Torralba, Oliva; 2003
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PCA and Fourier transform (1d)

Due to translation invariance, the covariance matrix of natural
images shows very strong structure:

cov 1-d scan lines cov of images
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PCA and Fourier transform (1d)

A (covariance) matrix whose entries are translation invariant has
phasors as eigenvectors:(

Cp
)
(t) =

∑
t ′

cov(t , t ′)eiωt ′

=
∑

t ′
c(t − t ′)eiωt ′

=
∑

z

c(z)eiωte−iωz

=
[∑

z

c(z)e−iωz]eiωt =: λωeiωt

(In fact, multiplying by the covariance matrix is a convolution.)
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PCA and Fourier transform (1d)

Covariance matrices are symmetric (c(z) = c(T − z))
So the eigenvalues are real:∑

t ′
cov(t , t ′)eiωt ′

=
[∑

z

c(z)e−iωz]eiωt

=
[
c(0) +

T−1
2∑

z=1

c(z)
(
e−iωz + eiωz)]eiωt

=
[
c(0) + 2

T−1
2∑

z=1

c(z) cos(ωz)
]
eiωt
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PCA and Fourier transform (2d)

In 2d: (
Cw
)
(t) =

∑
x ′,y ′

cov
(
(x , y), (x ′, y ′)

)
ei(ω1x ′+ω2y ′)

=
∑
x ′,y ′

c
(
x − x ′, y − y ′

)
ei(ω1x ′+ω2y ′)

=
∑
ξ,η

c(ξ, η)ei(ω1x−ω1ξ+ω2y−ω2η)

=
[∑
ξ,η

c(ξ, η)e−i(ω1ξ+ω2η)
]
ei(ω1x+ω2y)
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PCA example (first 96 EVs)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Fourier transform and convolution

Convolution in the time-domain is multiplication in the frequency
domain.

“Proof:” The Fourier transform of the convolved signal, g(t) = s(t) ∗ h(t) =
∑

k h(k) · s(t − k), can be written

G(ω) =
∑

t

∑
k

h(k) · s(t − k)

 e−iωt

=
∑

t

∑
k

h(k) · e−iωk · s(t − k) e−iω(t−k)

=
∑

k

h(k) · e−iωk ·
∑

t
s(t − k) e−iω(t−k)

= H(ω) · S(ω)

This can be used to speed up conv net inference and training
using FFT (eg. Mathieu, et al.)
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Fourier transform and convolution

Multiplication in the time-domain is convolution in the frequency
domain.

This is the source of ringing, aliasing and leakage effects.
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DFT leakage

We can think of the DFT of a finite signal as the DFT of a periodic
signal after multiplying it by a rectangular window.
The DFT spectrum you get can be thought of as the spectrum of
the periodic signal convolved with a sinc-function.
Because of the zero-crossings of the sinc-function the convolution
will have no effect on signal components whose frequencies are
integer multiples of the window length.
For any other components, the convolution will generate additional
components in the spectrum.
This effect is known as leakage.
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Leakage
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Leakage
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Leakage
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Leakage
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Leakage
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Windowing

Leakage cannot be avoided.
But a window other than the box-window may lead to different,
possibly less undesirable, leakage properties.
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Leakage with box window
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Leakage with box window
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Leakage with Gaussian window
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Leakage with Gaussian window
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Leakage with small Gaussian window
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Leakage with small Gaussian window
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Windowing and Short Time Fourier Transform

An application of window functions is the Short-Time Fourier
Transform (STFT).
Fourier-transform the signal locally, then view the resulting set of
spectra as a function of time or space.
In 1d, the result (sometimes just amplitudes) is called
spectrogram.
An STFT using a Gaussian window is also called Gabor
transform.
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Gabor feature

Wave:

figures by Javier Movellan
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Gabor feature

Window:

figures by Javier Movellan
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Gabor feature

gaborfeature(K , σ, x0, y0, γ,u, v ,P) =

K exp
(
− 1
σ2 ((x − x0)2 + γ2(y − y0)2)

)
· exp

(
i2π(ux + vy) + P

)
figures by Javier Movellan
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The uncertainty principle

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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In 2d: orientation uncertainty

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Frequency channels

In many applications, local Gabor features are used as filters, ie.
they are scanned across the image.
This naturally raises the question:
What is the amplitude response of a Gabor filter?

It is a localized blob in the frequency domain, because the
Fourier transform of a phasor times a Gaussian will be a
delta-peak convolved with a Gaussian.
So Gabor filters are oriented bandpass filters.
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Frequency channels

In many applications, local Gabor features are used as filters, ie.
they are scanned across the image.
This naturally raises the question:
What is the amplitude response of a Gabor filter?
It is a localized blob in the frequency domain, because the
Fourier transform of a phasor times a Gaussian will be a
delta-peak convolved with a Gaussian.
So Gabor filters are oriented bandpass filters.
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A spectrogram (top) of an utterance

(from Bishop, 2006)
The visual analog of the spectrogram is the feature map (a
3-dimensional object).
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Biological complex cells

also (Hubel and Wiesel, 1959)
A Fourier feature pair with 90 deg phase difference is known as
quadrature pair.
Conv nets do not typically use these. Instead they pool (after
rectifying), which has a similar effect.
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Why PCA yields Fouriers (part II)

Assume that the data density is invariant wrt. to orthogonal
transformations T , then

log p(x) = log p(T x)

⇐⇒ xTΣ−1xT = xTTTΣ−1T x ∀x
⇐⇒ Σ−1 = TTΣ−1T
⇐⇒ T Σ−1 = Σ−1T

Since Σ−1 commutes with T , it has to have the same eigenvectors
(which for translations are Fourier components).
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Why feature learning yields Fouriers
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Circulants

A circulant matrix
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Orthogonal transformations

UTTU =

R1
. . .

Rk

 Ri =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]

x t−1

UT

U
x t =Tx t−1
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Higher layers?

A permutation matrix
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