Deep Learning (hopefully faster)

Adam Coates

Silicon Valley Al Lab

Scope

- Al and Deep Learning depend heavily on systems for training and deployment.
 - Many many tools to solve systems problems.

Scope

- Focus on making models train faster.
 - Huge topic! Best to see a ton of ideas over time.
- This talk: conceptual tools to help DL practitioner strategize and decide what to do next.

Overview

- Basic motivations & approach
- Single node: 1 GPU or 1 CPU.
- Multiple nodes.

Cycle time argument

- DL / ML research involves guided exploration.
 - We want shorter overall experiment time (wall time)
 so that we can make faster research progress!

Scaling argument

Approach

- Several ways to try to make system faster.
 - Change the software.
 - Change the hardware.
 - Change the model / algorithm.
 - Hard to chase systems+accuracy at once.
 - We'll talk about performance modeling: Basic idea applicable to all of these decision processes.
 - We'll work some examples.

Workload

Most DL workloads built on common operations:

Convolution with small filters: r = conv(filters, data)

Point-wise nonlinearities: r = max(0, z)

Dense linear/affine operations: r = A*z + b

Reductions: Z = sum(p)

• • •

Workload

- Given fixed problem size, we will work on maximizing throughput.
 - Rate at which operations are completed.

Throughput = (#operations) / (running time)

If #operations is a constant \rightarrow Same as minimizing running time.

Caveat

- Throughput doesn't consider convergence time.
 - Convergence depends on hyperparameters, etc., not systems.
- If you're trying to make changes to model or hyperparameters, beware:
 - Throughput is gameable.
 - E.g., Minibatching:
 - Bigger minibatch = higher throughput!
 - But not always best wall time for whole experiment.

SINGLE NODE PRINCIPLES

Setting goals

- While thinking through speed and systems issues, best question to keep asking:
 - How much could be gained? (Is it worth it?)

- To answer: need to be able to assess potential gain.
 - Go for biggest, cheapest gains.
 - Keep going until you hit diminishing returns.

The speed of light

- ➤ Your baseline is not how slow your current code runs.
 - 10x speedup over slow code would be great.
 - How do you know if you can get 10x?
 - How do you know if there's more to do?

The speed of light

- > Baseline is the fastest your code can ever run.
 - I.e., maximum potential throughput.
 - This is "the speed of light" for your system.
 - 0.5c is pretty good. Potential ~2x speedup left.
 - 0.8c is very good. Only ~1.25x speedup left.
 - Usually costs more effort to go faster if already close to speed of light.
 - Also: could be time to buy more GPUs.

The speed of light

- ➤ Your baseline is not how slow your current code runs.
 - Your "baseline" is the fastest it can ever run.
 - This is "the speed of light" for your system.

Goal: for single node, quickly estimate speed of light for DL operations.

Performance modeling

- Given a fixed computation to perform, how do we estimate maximum potential throughput?
 - Hard to do in general. Modern processors are complicated!
- We'll use a simple scheme that is quick and will give you intuition.

Model of a compute node

- Represent computation and memory only.
 - Only represents two key hardware limitations:
 - Total computation system can perform.
 - Total bandwidth available to memory.

Model of a compute node

- Example: GPU circa 2015
 - Computing limit: ~6 TFLOP/S
 - Memory bandwidth: ~300 GB/s
 - Key assumption: we can always stream memory simultaneously with computation.

Model of a compute node

• If we run a sequence of operations, timeline might look like:

Example: Matrix-vector multiply

Compute: A v for single-precision operands.

How much data do we need to load from memory? How much data do we need to store to memory? How many FLOPs? 4 bytes \times (MN + N) 4 bytes \times M M (2N - 1) \approx 2MN

Example: Matrix-vector multiply

For M=1024 and N=512, what is the best possible throughput (in operations per second)?

Memory: 4 bytes \times (1024 \times 512 + 512 + 1024) = 2.1e6 bytes

FLOPs: $2\times1024\times512 = 1e6$ FLOPs

Running time = max{ 2.1e6 bytes / (300e9 bytes/s), 1e6 FLOPs / (6e12 TFLOP/s) }

= max{ 7us, 0.16us }

Even substantial change in this number is irrelevant.

The effective throughput is (1e6 FLOPs / 7us) = **142 GFLOPs**

Arithmetic intensity

 A key quantity related to throughput is the arithmetic "intensity":

Intensity = (# arithmetic ops) / (# bytes to load or store)

• E.g, for previous scenario, intensity is:

Intensity = (1e6 FLOPs) / (2.1e6 bytes) = 0.5 FLOPs/byte

> Low intensity = bottlenecked on memory.

The "Roofline" model

- Williams, Waterson, Patterson 2009:
 - Visualize maximum throughput of our 2-part system as a function of intensity.

The "Roofline" model

- Williams, Waterson, Patterson 2009:
 - Visualize maximum throughput of system as a function of intensity.

The "Roofline model"

- Easy to see relationship between memorybound and compute-bound work.
 - Based on "theoretical" numbers: need intensity
 - > 20 FLOPs/byte to be compute bound.
- Why is this useful to know?
 - Below 20 FLOPs/byte, compute is not constraining.

Example: matrix-matrix multiply

• Compute: C = C + A B for single precision matrices.

Memory to load + store: 4 bytes \times (MK + KN + 2MN)

FLOPs to compute: $\approx 2 \times MKN$

For M=K=N=512:

Intensity = 64 FLOPs / byte (Should be compute-bound)

Example: matrix-matrix multiply

Notice: we analyzed two operations as one.

Example: matrix-matrix multiply

 Implicitly assuming we can overlap load/store of C to save time.

$$C' = A \times B$$
 Compute

$$C' = A \times B + C Load/Store$$

The "Roofline" model

- Roofline is the upper speed limit.
 - In practice, your code probably doesn't reach it.
 - Pick the piece of code that:
 - (i) is responsible for most of running time.
 - (ii) has some headroom for improvement.

Roofline in practice

- Theoretical limit is hard to reach with fully generic code.
 - E.g., CuBLAS sgemm can achieve peak with large matrices, but tends to do badly for small matrices (bandwidth-bound).
 - Might need to sanity-check boundaries with small benchmarks.
 - E.g., Many Kepler GPUs could not achieve > 50% floating point peak using CUDA code.

Roofline in practice

• Often decent:

Performance [Flops/Cycle]

Summary

- Want to find maximum potential throughput ("speed of light") to know best performance we can ever get.
 - Benchmark against this.
 - Factor speedup is nice; but not actionable.
- Use operational intensity and roofline model to quickly spec out what performance you might be able to achieve.

SINGLE NODE ISSUES

Minibatch size

- Common to process "minibatch" of examples.
 - Historically, minibatch size=1 has led to faster convergence. But this does not imply fastest experiment.
- What size should we use then?

Minibatch size

- For DNN with N \times N weights, minibatch size M:
 - $\text{Ops} = 2N^2 \text{ M}, \text{ Memory} = 4(N^2 + 2NM)$
 - Consider intensity for M=1...1024:

Minibatch size

- Below \approx M=64, operations are memory-bound.
 - Increasing M leads to sub-linear increase in compute time.
- Beyond 64, DNN operations will be compute-bound.
 - Increasing M further leads to linear increase in time.
- Effect: experiment time falls, then rises again with M.

Moral of story

- For minibatch size:
 - Not much harm in raising until you are computelimited; not much to gain beyond this point.
- In general, if you're not compute limited, there could be a free lunch in your future.
 - Bigger model = fit more data.
 - Bigger minibatch = faster convergence.

Optimizing software

- OK your model is supposed to be compute limited now. But you're not achieving throughput you expect.
 - How do you make it fast?
 - Roofline model suggests some tactics over others.

Things to try

- Low intensity workloads:
 - Try to increase intensity by accessing memory less.

(Try this first if you're in the "middle ground"!)

- Look for data-reuse that will help you avoid redundant loading.
- Focus on improving memory performance.
 - Sequential accesses on CPU / coalesced access on GPU.
 - Prefetch by hand.
- High intensity workloads:
 - Focus on improving compute performance.
 - Specialized instructions (SIMD, FMA = fused multiply add).
 - Adjust instruction mix.
 - Loop unrolling.

Note on code complexity...

- Very hard to write kernels that employ many optimizations at once.
 - And best optimization depends on problem parameters!
- Usually: dispatch problems into separate pieces of code optimized for different scenarios.

MULTINODE

Training with clusters

- To go very fast, we want to use many CPUs,
 GPUs, or many machines at once.
 - Relatively fewer tools and libraries to help.
 - It's not that easy to automate.
- Re-use some of analysis tools to guide your decisions on how to parallelize work.

What can we hope to achieve?

 Ideal case: starting from single-node job, achieve higher throughput using more nodes for same job.

What can we hope to achieve?

 Starting from single-node job, achieve higher throughput using more nodes for same job. (Ideally, 2x throughput.)

This is "strong scaling": run same job in half the time.

What can we hope to achieve?

 Alternatively, we could parallelize and make workload larger (bigger model, bigger minibatch)

This is "weak scaling": run larger job without slowing.

Example: weak scaling

Small network doesn't get faster with more GPUs. But giant networks run about same speed.

Weak vs. strong

- If you can use a bigger model, or if a 2x increase in minibatch would help:
 - Job is a good candidate to scale up.
 - Recommend doing this first.
- In practice:
 - Sometimes don't want a big net (e.g., data)
 - Minibatch size has already hit diminishing returns.
 - Want faster cycle time so we can learn quickly.
- What makes strong scaling difficult?

Performance modeling

• To understand this, need to analyze performance of multi-node system.

 First: let's partition work and just start by assuming infinite network bandwidth.

Example: Data Parallelism

- Common practice: partition training job by splitting minibatch (X) in half.
 - Keep model (W) synchronized over network.

What happens to workload on Node 1?

Example: Data Parallelism

	FLOPs	Memory	Intensity
Before:	2 MKN	4(MK+KN+MN)	MKN/(2(MK+KN+MN))
After:	MKN	4MK + 2KN + 2MN	MKN/(2(2MK+KN+MN))

Node 1 operational intensity falls!

Local throughput

 This may or may not cause a problem depending on size of model.

We'll assume that Node 1 can still run at max throughput.
Otherwise, need to prorate Node 1's throughput limit for any other analysis.

Performance Modeling

- Even with infinite network bandwidth, we might not be able to scale.
 - Have to be mindful of how distributing affects local node's efficiency.

Next:

- Assume local throughput is nice: 6 TFLOP/s
- How do we analyze communication?

Performance modeling

- Approach we used to analyze operations for single node also useful for thinking about multiple nodes.
 - But make distinction between *local* and *remote* memory.

"Roofline" model

• Analyze performance of nodes in terms of their *local throughput* + bandwidth to *remote* data.

"Roofline" model

 Analyze performance of nodes in terms of their local throughput + bandwidth to remote data.

Note much higher intensity: need to do 1000 FLOPs locally (at 6 TFLOP/s throughput) for every 1 byte of network traffic.

Example: Data Parallelism

- What about gradient updates / communication?
- Analyze distributed operation for Node 1.

$$W = W + \epsilon D X^{T}$$

Send(W, Node 2)

Example: Data Parallelism

- Node 1 needs to perform computation on local portion of D, X and local copy of W.
- Send updated W to Node 2.

Number of FLOPs we can carry out on Node 1 per byte of network traffic.

Overall throughput

- How big does N need to be to achieve high overall throughput?
 - Overall intensity \approx N/4

Assumptions

...wait. We violated a modeling assumption:

Key assumption: we can always stream memory simultaneously with computation.

But we introduced a dependency:

$$W = W + \epsilon D X^{\top}$$

Send(W, Node 2)

- We can deal with this a few ways:
 - More analysis to overlap Send() with other ops.
 - Actually stream W while it's being computed.

Don't forget overlap assumption.
Optimize code to make it true.

Putting everything together

- Seen how partitioning affects our ability to scale.
 - Changes size/shape and intensity of local work.
 - Distribution introduces network bandwidth limit.
 - Use roofline to get a sense for both issues!

Putting everything together

- Suggested design process:
 - 1. Scale up weakly if you can. (Strong scaling is hard.)
 - I.e., Make your model + minibatch as large as practical before parallelizing.
 - 2. Choose a partition of the work and data over nodes.
 - Estimate local node max throughput (via roofline or benchmarking)
 - 4. Use local throughput and cluster network bandwidth to create multi-node roofline model.
 - 5. Estimate overall max throughput of work on each node.
 - 6. Are you happy?
 - No: Go to next slide, or try new partition.
 - Yes: Go back to deep learning.

Optimization strategy

- Like single-node: find operations that use bulk of time.
- Hunt for partitioning scheme that has a lot of potential (i.e., high "speed of light")
- Search for opportunities to increase communication+compute overlap.
- Judiciously apply hardware.
 - Compute limited: more GPUs / CPUs.
 - Bandwidth limited: faster network.
 - E.g., dual-rail connection, or 100G networks.

CONCLUSION

Key ideas

- Measure against the "speed of light": the fastest your code could ever run.
- Use simple performance models to understand tradeoffs; identify approaches with high potential.
- Challenging part of multinode training is partitioning and communication.
 - Build intuition for good/bad schemes by trying out different choices and calculating max throughput.

Thank you!

Thanks: Greg Diamos & Bryan Catanzaro

References:

Coates, Huval, Wang, Wu, Ng, Catanzaro. "Deep Learning with COTS HPC." ICML 2013.

Samuel Williams, Andrew Waterman, David Patterson. "Roofline: An Insightful Visual Performance Model for Multicore Architectures." http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf

Ofenbeck, Steinmann, Caparros, Spampinato, Püschel. "Applying the Roofline Model" to appear in Proc. International Symposium on Performance Analysis of Systems and Software (ISPASS), 2014.