Deep Learning
(hopefully faster)

Adam Coates

_ .0 0.
Baid Research

Silicon Valley Al Lab

Scope

* Al and Deep Learning depend heavily on
systems for training and deployment.

— Many many tools to solve systems problems.

Scope

* Focus on making models train faster.
— Huge topic! Best to see a ton of ideas over time.
* This talk: conceptual tools to help DL

practitioner strategize and decide what to do
next.

Overview

* Basic motivations & approach
* Single node: 1 GPU or 1 CPU.
 Multiple nodes.

Cycle time argument

DL/ ML research involves guided exploration.

— We want shorter overall experiment time (wall time)
so that we can make faster research progress!

Weeks or months.

Performance

Scaling argument

Past Present Future

Deep Learning

/

Which models lend themselves to this trend?
- Which models get better rapidly with time? < methods

—

>
Data & Compute

BTN

Approach

e Several ways to try to make system faster.
— Change the software.
— Change the hardware.

— Change the model / algorithm.
* Hard to chase systems+accuracy at once.

— We'll talk about performance modeling: Basic idea
applicable to all of these decision processes.

 We’'ll work some examples.

Workload

e Most DL workloads built on common
operations:

I 3
O 5
\\ / 3
A 48
; 128
@‘, 5 27
S- =)
224 o
N 27
N\ s
220\l rig ax
Jo oolin
3 8

Convolution with small filters: r = conv(filters, data)
Point-wise nonlinearities: r = max(0, z)

Dense linear/affine operations: r=A*z+b
Reductions: Z = sum(p)

Workload

* Given fixed problem size, we will work on maximizing
throughput.

— Rate at which operations are completed.

Throughput = (#operations) / (running time)

If #operations is a constant = Same as minimizing running time.

Caveat

* Throughput doesn’t consider convergence
time.

— Convergence depends on hyperparameters, etc.,
not systems.

e |f you're trying to make changes to model or
hyperparameters, beware:
— Throughput is gameable.
— E.g., Minibatching:
* Bigger minibatch = higher throughput!

* But not always best wall time for whole experiment.

SINGLE NODE PRINCIPLES

Setting goals

* While thinking through speed and systems
issues, best question to keep asking:

— How much could be gained? (Is it worth it?)

* To answer: need to be able to assess
potential gain.
— Go for biggest, cheapest gains.

— Keep going until you hit diminishing returns.

The speed of light

» Your baseline is not how slow your current

code runs.
* 10x speedup over slow code would be great.

 How do you know if you can get 10x?
* How do you know if there’s more to do?

The speed of light

» Baseline is the fastest your code can ever run.
— l.e., maximum potential throughput.

— This is “the speed of light” for your system.
e 0.5cis pretty good. Potential ~2x speedup left.
* 0.8cis very good. Only ~1.25x speedup left.

— Usually costs more effort to go faster if already
close to speed of light.

e Also: could be time to buy more GPUs.

The speed of light

» Your baseline is not how slow your current
code runs.

— Your “baseline” is the fastest it can ever run.
* This is “the speed of light” for your system.

Goal: for single node, quickly estimate
speed of light for DL operations.

Performance modeling

* Given a fixed computation to perform, how do
we estimate maximum potential throughput?

— Hard to do in general. Modern processors are
complicated!

 We'll use a simple scheme that is quick and
will give you intuition.

Model of a compute node

* Represent computation and memory only.

— Only represents two key hardware limitations:
* Total computation system can perform.
* Total bandwidth available to memory.

Memory

Computing core

Model of a compute node

 Example: GPU circa 2015
— Computing limit: ~6 TFLOP/S

— Memory bandwidth: ~300 GB/s

— Key assumption: we can always stream memory
simultaneously with computation.

Memory

300 GB/s

—
—

6 TFLOP/S

Computing core

Model of a compute node

* |f we run a sequence of operations, timeline
might look like:

Opl Compute Op2 Compute

Op1l Load/Store Op2 Load Store

Time

Example: Matrix-vector multiply

Compute: Av for single-precision operands.

N

How much data do we need to load from memory? 4 bytes x (MN + N)
How much data do we need to store to memory? 4 bytes x M

How many FLOPs? M(2N-1) = 2MN

Example: Matrix-vector multiply

For M=1024 and N=512, what is the best possible throughput
(in operations per second)?

Memory: 4 bytes x (1024x512 + 512+ 1024) = 2.1e6 bytes

FLOPs: 2x1024x512 = 1e6 FLOPs

Running time =max{ 2.1e6 bytes/s),
1e6 FLOPs / (6e12 TFLOP/s) }
\ Even substantial change in
= max{ 7US this number is irrelevant.

The effective throughput is (1e6 FLOPs / 7us) = 142 GFLOPs

Arithmetic intensity

* A key quantity related to throughput is the
arithmetic “intensity”:

Intensity = (# arithmetic ops) / (# bytes to load or store)

 E.g, for previous scenario, intensity is:

Intensity = (1e6 FLOPs) / (2.1e6 bytes) 5 0.5 FLOPs/byte

» Low intensity = bottlenecked on memory.

The “Roofline” model

 Williams, Waterson, Patterson 2009:

— Visualize maximum throughput of our 2-part
system as a function of intensity.

Two constraints are easy to draw:

R e o e
Throughput ’ Compute limit: 6 TFLOP/s

(FLOP/s) ’

’ >
/’l
e Intensity (FLOPs / byte)

The “Roofline” model

 Williams, Waterson, Patterson 2009:

— Visualize maximum throughput of system as a
function of intensity.

Two constraints are easy to draw:

- - e -
Throughput R
(FLOP/s) P

’ : >
/’l
e Intensity (FLOPs / byte)

III

The “Roofline mode

* Easy to see relationship between memory-
bound and compute-bound work.

I”

— Based on “theoretical” numbers: need intensity
> 20 FLOPs/byte to be compute bound.

 Why is this useful to know?
— Below 20 FLOPs/byte, compute is not constraining.

Example: matrix-matrix multiply

e Compute: C=C+ A B for single precision matrices.
K N

M A |x B ' C

Memory to load + store: 4 bytes x (MK + KN + 2MN)
FLOPs to compute: ~ 2 X MKN

For M=K=N=512:
Intensity = 64 FLOPs / byte (Should be compute-bound)

Example: matrix-matrix multiply

* Notice: we analyzed two operations as one.
K N

M A |x B ' C

C' = A x B Compute C'+C

C’ = A x B Load/Store C’ + C Load/Store

>

Time

Example: matrix-matrix multiply

* Implicitly assuming we can overlap load/store
of C to save time.
K N

M A |x B ' C

C’ = A x B Compute

C’=A x B+ C Load/Store

Time

The “Roofline” model

* Roofline is the upper speed limit.
— In practice, your code probably doesn’t reach it.

— Pick the piece of code that:

(i) is responsible for most of running time.
(ii) has some headroom for improvement.

L BB N N N N N N N N _§N | -A------------------f ----------

Throughput JRe _ :
(FLOP/s) Re Room for improvement —:

’ @ Matrix-matrix

‘K/Iatrix-Vector

< >
, .
JRe | Intensity (FLOPs / byte)

Roofline in practice

* Theoretical limit is hard to reach with fully
generic code.

— E.g., CuBLAS sgemm can achieve peak with large

matrices, but tends to do badly for small matrices
(bandwidth-bound).

— Might need to sanity-check boundaries with small
benchmarks.

* E.g., Many Kepler GPUs could not achieve > 50%
floating point peak using CUDA code.

Roofline in practice
e Often decent:

Performance [Flops/Cycle]

Peak Ttpar. (48.0 Flops/Cycle) 2800
dgemm
10 Peak 1tseq. (8.0 Flops/Cycle)
| 2440000
dgemv
0.1 I 10 [Ofenbeck et al., 2014]

Operational Intensity [Flops/Byte]

Summary

 Want to find maximum potential throughput
(“speed of light”) to know best performance we
can ever get.
— Benchmark against this.
— Factor speedup is nice; but not actionable.

* Use operational intensity and roofline model to

quickly spec out what performance you might be
able to achieve.

SINGLE NODE ISSUES

Minibatch size

e Common to process “minibatch” of examples.

— Historically, minibatch size=1 has led to faster
convergence. But this does not imply fastest
experiment.

e What size should we use then?

Minibatch size

For DNN with N X N weights, minibatch size M:
— Ops = 2N? M, Memory = 4(N? + 2NM)
— Consider intensity for M=1...1024:

70

=

& =4=N=4096

= ~8=N=1024
N=256

0 20 40 60 80 100 120 140
Minibatch size (M)

Minibatch size

* Below = M=64, operations are memory-bound.
— Increasing M leads to sub-linear increase in compute time.

 Beyond 64, DNN operations will be compute-bound.
— Increasing M further leads to linear increase in time.
* Effect: experiment time falls, then rises again with M.

12000

10000 %
8000
6000 &

4000 .
L 2

Experiment time

2000 *

0
0 50 100 150 200 250 300

Minibatch size

Moral of story

e For minibatch size:

— Not much harm in raising until you are compute-
limited; not much to gain beyond this point.

* |n general, if you're not compute limited,
there could be a free lunch in your future.
— Bigger model = fit more data.
— Bigger minibatch = faster convergence.

Optimizing software

e OK-—vyour model is supposed to be compute limited
now. But you’re not achieving throughput you expect.

— How do you make it fast?
— Roofline model suggests some tactics over others.

L BB N N N N N N N N _§N | -A------------------+ ----------

Throughput /7 o :
(FLOP/s) Re No bandwidth issues! —>:

’ Q Matrix-matrix

/ : 5>
’l . :
JRe Intensity (FLOPs / byte)

Things to try

* Low intensity workloads:
— Try to increase intensity by accessing memory less.

(Try this first if you’re in the “middle ground”!)
* Look for data-reuse that will help you avoid redundant loading.

— Focus on improving memory performance.

* Sequential accesses on CPU / coalesced access on GPU.
* Prefetch by hand.

* High intensity workloads:

— Focus on improving compute performance.
* Specialized instructions (SIMD, FMA = fused multiply add).
e Adjust instruction mix.
* Loop unrolling.

Note on code complexity...

Very hard to write kernels that employ many optimizations
at once.

— And best optimization depends on problem parameters!

Usually: dispatch problems into separate pieces of code
optimized for different scenarios.

- - o ——— T———— ===
Throughput JRe
(FLOP/s) P

Case 2: medium matrix

N\

Case 3: big matrix

Case 1: little matrix
|

y; }
7 | Intensity (FLOPs / byte)

—>

MULTINODE

Training with clusters

* To go very fast, we want to use many CPUs,
GPUs, or many machines at once.

— Relatively fewer tools and libraries to help.
* |t's not that easy to automate.

* Re-use some of analysis tools to guide your
decisions on how to parallelize work.

What can we hope to achieve?

* |deal case: starting from single-node job,
achieve higher throughput using more nodes

DNN Training
: Work

What can we hope to achieve?

e Starting from single-node job, achieve higher
throughput using more nodes for same job.
(Ideally, 2x throughput.)

DNN Training DNN Training
: Work Work :

This is “strong scaling”: run same job in half the time.

What can we hope to achieve?

e Alternatively, we could parallelize and make
workload larger (bigger model, bigger minibatch)

DNN Training DNN Training
: Work Work :

This is “weak scaling”: run larger job without slowing.

Example: weak scaling

Small network doesn’t get faster with more GPUs.
But giant networks run about same speed.

1
§ 0.9 , 11.2B
_g 0.8 \\\\\\\
'8 0.7 | —-6.9B
X 06
< 05 -<3.0B
£ 04
'; 0.3 1.9B
2 02
® 01 —— % -=-630M
2 0

1 4 9 16 36 64 —-135M

GPUs

[Coates et al., 2013]

Weak vs. strong

* If you can use a bigger model, or if a 2x increase in
minibatch would help:

— Job is a good candidate to scale up.
— Recommend doing this first.

* |In practice:
— Sometimes don’t want a big net (e.g., data)
— Minibatch size has already hit diminishing returns.
— Want faster cycle time so we can learn quickly.

 What makes strong scaling difficult?

Performance modeling

* To understand this, need to analyze
performance of multi-node system.

* First: let’s partition work and just start by
assuming infinite network bandwidth.

Example: Data Parallelism

e Common practice: partition training job by
splitting minibatch (X) in half.

— Keep model (W) synchronized over network.

) A

Node (|, Node Node J Node

M= W X+ X2 |7 1 A

* What happens to workload on Node 1°?

Example: Data Parallelism

Before: 2 MKN 4(MK+KN+MN) MKN/(2(MK+KN+MN))
After: MKN 4MK + 2KN + 2MN MKN/(2N+MN))

(N

A

Node (|, Node Node J Node

M= W X+ X2 |7 1 A

* Node 1 operational intensity falls!

Local throughput

* This may or may not cause a problem
depending on size of model.

— Intensity = MKN/(2(2MK+KN+MN))
A

- “~
/’ @< ®
,2) Medium-sized MKN Large MKN
Throughput ’

(FLOP/S) /’

< >
, .
JRe | Intensity (FLOPs / byte)

We'll assume that Node 1 can still run at max throughput.
Otherwise, need to prorate Node 1’s throughput limit for any other analysis.

Performance Modeling

 Even with infinite network bandwidth, we
might not be able to scale.

— Have to be mindful of how distributing affects
local node’s efficiency.

* Next:

— Assume local throughput is nice: 6 TFLOP/s
— How do we analyze communication?

Performance modeling

* Approach we used to analyze operations for single
node also useful for thinking about multiple nodes.

— But make distinction between local and remote

memaory.
Node 1 Node 2
Compute Compute
Node 1 Node 2
Memory Memory

“Roofline” model

* Analyze performance of nodes in terms of their
local throughput + bandwidth to remote data.

Node 1
Compute

“Roofline” model

* Analyze performance of nodes in terms of their
local throughput + bandwidth to remote data.

A
,O
L/ Local throughput = 6 TFLOP/s
- ""“""';. """""""""
o
7
Throughput /éq,\‘" : Intensity = (local throughput) / (net bandwidth)
(FLOP/s) ”’ 0 : =
i :
/’ S° i
I
7 I >
’ R
JRe | Intensity (FLOPs / byte)

Note much higher intensity: need to do 1000 FLOPs locally (at 6 TFLOP/s throughput) for
every 1 byte of network traffic.

Example: Data Parallelism

 What about gradient updates / communication?
* Analyze distributed operation for Node 1.
W=W+eDX'
Send(W, Node 2)

K
|

N N
A A
= ,—=

NodedNode Node, |,Node

M~ W K71 1 > | M| 1 2

Example: Data Parallelism

* Node 1 needs to perform computation on local
portion of D, X and local copy of W.

 Send updated W to Node 2.

K N M
A A A

St Node 1
v | W | tel <X

e ——

FLOPs MNK + 2MK
Remote Memory [Ea\14
Overall Intensity (MNK + 2MK)/ 4MK = N/4+1/2

RoPs
Remote Memory _
*

Number of FLOPs we can carry out on Node 1 per byte of network traffic.

Overall throughput

* How big does N need to be to achieve high
overall throughput?

— Overall intensity ~ N/4

04

’
»’ Local throughput = 6 TFLOP/s

Throughput ’

(FLOP/s) ’ Need N >= 4000 to be compute bound!
’

\
-———————————-r

< >
4 1
JRe | Intensity (FLOPs / byte)

Assumptions

e ...wait. We violated a modeling assumption:

Key assumption: we can always stream memory
simultaneously with computation.

* But we introduced a dependency:
W=W+eDX'
Send(W, Node 2)

* We can deal with this a few ways:

— More analysis to overlap Send() with other ops.
— Actually stream W while it’s being computed.

Don’t forget overlap assumption.
Optimize code to make it true.

Putting everything together

* Seen how partitioning affects our ability to
scale.

— Changes size/shape and intensity of local work.
— Distribution introduces network bandwidth limit.
— Use roofline to get a sense for both issues!

Putting everything together

e Suggested design process:

1.

Scale up weakly if you can. (Strong scaling is hard.)

l.e., Make your model + minibatch as large as practical before
parallelizing.

Choose a partition of the work and data over nodes.

Estimate local node max throughput (via roofline or
benchmarking)

Use local throughput and cluster network bandwidth to
create multi-node roofline model.

Estimate overall max throughput of work on each node.
Are you happy?

No: Go to next slide, or try new partition.
Yes: Go back to deep learning.

Optimization strategy

Like single-node: find operations that use bulk
of time.

Hunt for partitioning scheme that has a lot of
potential (i.e., high “speed of light”)

Search for opportunities to increase
communication+compute overlap.
Judiciously apply hardware.

— Compute limited: more GPUs / CPUs.

— Bandwidth limited: faster network.
e E.g., dual-rail connection, or 100G networks.

CONCLUSION

Key ideas

 Measure against the “speed of light”: the
fastest your code could ever run.

e Use simple performance models to
understand tradeoffs; identify approaches
with high potential.

* Challenging part of multinode training is
partitioning and communication.

— Build intuition for good/bad schemes by trying out
different choices and calculating max throughput.

Thank you!

Thanks: Greg Diamos & Bryan Catanzaro

References:
Coates, Huval, Wang, Wu, Ng, Catanzaro. “Deep Learning with COTS HPC.” ICML 2013.

Samuel Williams, Andrew Waterman, David Patterson. “Roofline: An Insightful Visual
Performance Model for Multicore Architectures.”
http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf

I. o IH

Ofenbeck, Steinmann, Caparros, Spampinato, Plischel. “Applying the Roofline Model” to
appear in Proc. International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2014.

