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+ Learning to compare examples
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deep learning
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Overview: this talk

Learning to compare examples
it’s a big field!

- we will focus on methods inspired by
deep learning
and representation learning

» Applications: finding similar documents,
pose-sensitive retrieval, zero-shot learning
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Learning similarity

- Pixel distance #
perceptual similarity

- Computing distances in
pixel space is also
computationally
expensive

- Learning parametric
embeddings that are
Invariant to certain input
variability
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The setup

. Perceptually similar observations are mapped
to nearby points on a manifold

+ Key question: where does similarity come from?
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The setup

. Perceptually similar observations are mapped
to nearby points on a manifold

+ Key question: where does similarity come from?
input code
(x/6)

input code
f(x]|6
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One motivation: nearest neighbour
methods

- Surprisingly effective
(Boiman et al. 2008,
McCann and Lowe, 2012)

Fast, especially when
combined with

Approximate Nearest
Neighbour or Hashing

+ Generalize to new classes KLipg\p) 1751 KLipg|py)-18.20  KLipg)py)=14.56
at near-zero cost (Mensink
et al. 2013)
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Image: Boiman et al. (2008)
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Outline



‘Unsupervised
LSA, Semantic Hashing, Multi-index Hashing

emantically
Similar




‘Unsupervised
LSA, Semantic Hashing, Multi-index Hashing

‘Supervised
ENCA, Nonlinear NCA, DrLIM, Triplet Embedding
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‘Unsupervised
LSA, Semantic Hashing, Multi-index Hashing

‘Supervised
ENCA, Nonlinear NCA, DrLIM, Triplet Embedding

‘Weakly supervised
gAppIiCations to pose-sensitive retrieval, zero-shot learning
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- compute distances between top-level representations
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- fastinference is important for information retrieval



Unsupervised approach

. Learn (possibly deep) representations completely unsupervised
- compute distances between top-level representations
- representations are usually low-dimensional
+ Classical methods: Latent Semantic Analysis (based on SVD), pLSA, LDA
- But directed models don’t seem like a natural fit
- fastinference is important for information retrieval
. Use undirected models in which exact inference is fast
- Single layer approach by generalizing RBMs: Welling et al. 2005

- Multi-layer approach: Salakhutdinov and Hinton 2007 “Semantic Hashing”



Constrained Poisson model

- Visible layer represents word-count
vector of a document

special RBM:
“Constrained Poisson Model”

- Learn Constrained Poisson > Binary
first layer

- This allows you to represent each
document with a binary representation

. Forms the first layer of a deep model

Restricted Boltzmann Machine
(RBM)

\" Q Q Q Constrained
Poisson

Latent Topic Features

(O

OO OO

Observed Distribution Reconstructed Distribution
over Words over Words

(Figures from R. Salakhutdinov and G. Hinton)



Deep auto-encoders




Deep auto-encoders

input
>
X




Deep auto-encoders

input
>
Xz

 Learn one or more binary RBMs in a “greedy” fashion



Deep auto-encoders

CP-B
RBM

 Learn one or more binary RBMs in a “greedy” fashion



Deep auto-encoders

CP-B B-B
RBM  RBM1

 Learn one or more binary RBMs in a “greedy” fashion



Deep auto-encoders

/ | \
CP-B B-B B-B
RBM  RBM1 RBM2

 Learn one or more binary RBMs in a “greedy” fashion



Deep auto-encoders

encoder

/ | \
CP-B B-B B-B
RBM  RBM1 RBM2

 Learn one or more binary RBMs in a “greedy” fashion



Deep auto-encoders

encoder
input code
x f(z)
A
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Deep auto-encoders
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Deep auto-encoders

encoder decoder

input code reconstruction
z f(z) r(z) = g(f(x))

 Learn one or more binary RBMs in a “greedy” fashion
 Unroll to a deep autoencoder and “fine-tune” w/ backprop

- During fine-tuning add Gaussian noise to code layer
- This forces the codes to be close to binary



Extremely fast retrieval

- Documents are mapped to 20-D binary codes

. Can retrieve similar documents stored at nearby
addresses with no search

- Binary LSA significantly reduces performance

- Not surprising: it has not been optimized to
make binary codes perform well

- One weakness: documents with similar
addresses have similar content but the converse
is not necessarily true

- Can we use external information (e.g. labels)
to pull together codes of similar documents?
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Address Space

o '1 Semantically
‘/\ Similar
Documents
Semantic
Hashing
Function

Document

O
European Community O@Cbg%%% Qo
Monetary/Economic o °%. &
y oog@goo%%@%%%@?ﬁﬁ%gfg% ]
° 0@ CD%O 5.V o5 Disasters and
% 7. Accidents

A\
Government
Borrowing

Accounts/Earnings

Figures from R. Salakhutdinov and G. Hinton



Hashing longer codes

O

- If code lengths are > 32 bits, use
codes as direct indices (addresses)
into a hash table

o

A 32 bits

""""""" 7~ |==64 bits |
| | | =128 bits

|—256 bits

0 2 4 6 8 10

(O8)

- dramatic increase in search speed
compared to exhaustive linear

# Hash Buckets (Iogm)

SCan Hamming Radius
D
+ Code lengths are often much longer 2 o0,
in order to achieve good =7
performance = 19
T 10}
- but number of hash buckets to S |
. € gt [ —— —
examine grows near- c 2 [ — 64 bits
. . . s [ — 128 bits
exponentially with search radius o . | .
1 10 100 1000

# Near neighbors



Multi-index hashing

(Norouzi et al. 2012, 2014)

When hash codes are > 32 bits, use Multi-index hashing

+  Provably sub-linear search complexity for uniformly distributed
codes

- Binary codes are indexed m times into m different hash tables,
based on m disjoint substrings

- Given a query code, entries that fall close to the query in at least
one such substring are considered neighbour candidates

- Candidates then checked for validity using entire binary code

- Guaranteed that all true neighbours will be found

https:

. J J1I0011C 3 3] LLORD RS G LR
16 1 C‘ "01 011010 0001111110 01 l‘ l Q0 1000\ AL\ RRRR
&611160. 1111601101 0001110111 0101110100 L1\ O\R ARRRNNY


https://github.com/norouzi/mih
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Learning embeddings with a
Siamese network

®
/ | | \ | |dentical

T pathways




Learning embeddings with a
Siamese network




Not a new idea!

(Bromley, Guyon, LeCun, Sackinger, and Shah 1994)

+ Architecture proposed for signature
verification

- didn’t really get the distance function right

learning unstable o o e
- small (by today’s standards) training set
1D convolution (TDNN) foarrue | ) '
LT ime
g e i 428

Developed independently elsewhere:

Baldi and Chauvin, 1992: fingerprint
verification

Becker and Hinton, 1992 - discovering depth
in random-dot stereograms

TARGET

DISTANCE
MEASURE

|

PREPROCESSING

]

PREPROCESSING

T fron ST Brom



Convnets: single stage

Convolutional
Layer

Filter Bank

Image credit: Koray Kavukcuoglu
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Rectification +
Contrast
Normalization

Normalization

Rectification
+
Contrast

Credit: Marc’Aurelio Ranzato



Convnets: typical architecture

Single stage

: . Rectification + :
: Convolutional . :
—> —>] Contrast — Pooling —>
: Layer . :
Normalization
Whole system
Input_________ MM Class
image | R/ R/ R/ labels
— SN P S N TR S N T -+
15t 2nd 3" Fully-
stage stage stage connected

Layers



Embedding with a Siamese
convnet

Input: Layer 1: Layer 2: Layer 3: Layer 4: Output:
128x128 16x120x%120 16%x24x24 32x16%16 32x4%x4 32x1x1

N 3
_{%

Average Convolutions,
oolin

Distance in low-
dimensional space

What’s the objective function?
-needs to pull together semantically similar pairs
-needs to push apart semantically dissimilar pairs



Training Slamese nets

(Bromley, Guyon, LeCun, Sackinger, and Shah 1994)

+  Siamese nets can be trained by error backpropagation,
just need to define an objective function:

- Neighbourhood Component Analysis (Goldberger et
al. 2004)

- Dimensionality Reduction by Learning an Invariant
Mapping (Hadsell et al. 2006)

- Triplet-based Criterion (Chechik et al. 2010)

- Quadruplet-based Criterion (Law et al. 2013)



Neighbourhood components
analysis (NCA) (Goldberger et a. 2004
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Neighbourhood components
analysis (NCA) (Goldberger et a. 2004

Learn a metric which minimizes KNN

classification error o
O ®
° ®
. Two problems: ® " 9
O.... X.O O
Erroris a highly discontinuous ® o o
function of the distance metric ¢ -
O

- We still need to choose K

Look for a smoother (or at least
continuous) cost function
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Stochastic nearest neighbour

- Instead picking from a fixed set of K nearest neighbours,
select a single neighbour stochastically




Stochastic nearest neighbour

- Instead picking from a fixed set of K nearest neighbours,
select a single neighbour stochastically

+ Let each point i select other points j as its neighbour with
probability »ri; based on the softmax of the distance d;; :

GXP(_d?j)
Dij =
g Zk;ﬁi eXP(_d?k) A . o Xk

where:

dij = ||zi — zj]|2

Z; = f(Xi|9)




NCA: loss

.+ Maximize the expected number of points
correctly classified under this scheme

N
- This is much smoother than the actual Lo = — E § Dij

leave-one-out cross-validation error! , ,
1=1 5:y; =y,

- Infact, itis differentiable w.r.t.

parameters of mapping /

- can use SGD or other gradient-based
optimizer

Minimize loss w.r.t. @

- And thereis no explicit parameter K

- See (Tarlow et al. 2013) for K > 1
objective



Linear NCA: embeddings

X|60 =
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X

Concentric rings
(D=3)

Wine
(D=13)

Faces
(D=560)

USPS Digits
(D=256)

PCA

Linear
Discriminant
Analysis (LDA)
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Figures: Goldberger et al.




MNIST

NCA
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Nonlinear NCA

- The original NCA paper (Goldberger et al. 2004) points
out that f(x;|6) need not be a linear mapping

+ Salakhutdinov and Hinton (2007) pre-train with an RBM,
then fine-tune with the NCA objective

- Can combine the NCA objective with an Autoencoder
objective to regularize:

C'=Alnca + (1 —AN)Lag

- Can take advantage of unlabeled data!



Learning nonlinear NCA

Pre-training Mixed-objective fine-tuning

30
W

I 1 Top
2000 RBM
2000

L w,
500 RBM
500

L w,
500 RBM

RBM
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Figure: Salakhutdinov and Hinton



Limitations of NCA

. Despite very nice embeddings (see right) NCA Noninear NCA (MNIST)

has a quadratic normalization term (must
consider all pairs)

- mini-batch training (approximate)

- objectives that don’t require normalization

Linear NCA (MNIST)
- What about continuous labels?

- (Goldberger et al. 2004) describe a “soft” form
of NCA that can use continuous labels

(Figures from R. Salakhutdinov and G. Hinton)



Class-conditional metric learning

(Im and Taylor - In submission)

Q Daniel Im (here at DLSS!)
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Class-conditional metric learning

(Im and Taylor - In submission)

. Optimize Image-to-Class
distance (Boiman et al. 2008)

Q Daniel Im (here at DLSS!)
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Class-conditional metric learning

(Im and Taylor - In submission)

. Optimize Image-to-Class
distance (Boiman et al. 2008)

- Stochastic neighbour
selection rule:

k
L e (=220l — NNG ()]

Pi = | —k o ,
Y orexp (—4 Sz llze — NNS(2,)?)

)

Q Daniel Im (here at DLSS!)

M.,’A‘L 72 "A:.\_




Class-conditional metric learning

(Im and Taylor - In submission)

Optimize Image-to-Class

distance (Boiman et al. 2008) oL
Stochastic neighbour 415 ‘3% iy,
. 5 ?fz% ﬁ}f{} %253320
selection rule: L4y iy 5
> "
k C ﬁ%ﬁ?%@ K%
e (< llm - NN () )
C oo (A e NN @) |
cr €XP k 2aj=1 I1%i j \Zi 'S %%’%%
? Daniel Im (here at DLSS!)
&5 B




DrLIM (Dimensionality reduction
by learning an invariant mapping)

/_\ S45 is a binary indicator
L = s;;Ls(xi,%;5) + (1 — s45) Lp(Xi, X;) 35 | | | |

3, ///,

2.5

Dissimilarity loss

Similarity loss

1
Ls(xi,x;) = 5(dij)”
| /// ]
LD (X Xg) = 5 [maX(O, o — dij)]z - / Margin a¢ -
‘ 2 25

1.5
mn
dij

- The similarity loss “pushes together” similar points
. The dissimilarity loss “pulls apart” dissimilar points

- but only if their distance is within some margin, &



Spring analogy

Solid dots are points that are similar
to the pointin the centre

Hollow dots are points that are
dissimilar to the point in the centre

Forces acting on the points are
shown in blue

- The length of the arrow represents
the strength of the force

Radius represents the margin, &




Figures from Hadsell et al.



Triplet-based embedding

(Chechik et al. 2010)

Given a similarity score S(xi,x;) for inputs i
We want to learn an embedding (x) such that

D(f(xi),f (%)) <D(f(xi),[f (%))

Vx;,x.; ,x; such that S(XZ',X;_) > S(xi,%; )

D(f(xi),f(x5)) s a distance measure, commonly

“triplet”

D (f(xi),f(x5)) = [If (%) = f(x5)]]7



Learning fine-grained image
similarity with deep ranking
(Wang et al. 2014)
Objective:
miﬂ25i+>\|\9|\2

s.tomax (0,9 + D (f (x:), f(xF)) =D (f (%), f(x;))) <&

\V/XZ',X;_,X; S.t. S(XZ’,X;_) > S(x;,%x; )

Z o
o
ConvNet 3
D
D f lt
> c% ~ (/ pena y
- 8 - §
4:1 x 8: 4x x 3: 2Xx :%_n % i»
g B
5 2 g 5 g 5 g gap (hyperparameter)
Q 0 S g <}
D Q = o >S5
3 = = ¥
j=i o =1
o) S @ g 0 . .
N " - 3 weights in network
£
o 5 3 larization
i g = strength (hyperparameter)
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How to: triplet sampling

Ranking Layer

- # of possible triplets increases cubically with # of images f(x;) T f(xi*) r f(xi) T

- e.g.12M images, 1.728 x 10721 triplets!
- Optimization converges in ~24M triplet samples

- Uniformly sampling triplets is sub-optimal

Triplet Sampling Layer

looso. od

Images



How to: triplet sampling

Ranking Layer

- # of possible triplets increases cubically with # of images f(x;) T f(x;*) r f(x;") T

- e.g.12M images, 1.728 x 10721 triplets!

- Optimization converges in ~24M triplet samples < i "
Uniformly sampling triplets is sub-optimal
Propose an online triplet sampling algorithm (more X T Xt T X T
details in paper):

Triplet Sampling Layer

- Sample an image according to its “relevance” to a g g
category ©O O0O0O0. O
Images
- Sample a positive image with high relevance
. Triplets
- Sample “out-of-class” negatives uniformly Buffers for queries .
Find buffer i
- “in- ” relevant n W nsur of the quer
Sample class el.e. ant negat e§ but ensure a query >@ Positive
margin between positive and negative examples Image sampl

>O Negative
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Finding similarity data

- NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph



Finding similarity data

-+ NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph

- Defining pairwise similarity is difficult and inconsistent across observers;
Google used “Golden Feature” - weighted linear combination of 27 features
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Finding similarity data

NCA, DrLIM: binary notion of similarity typically defined by class membership or
explicitly constructed neighbourhood graph

Defining pairwise similarity is difficult and inconsistent across observers;
Google used “Golden Feature” - weighted linear combination of 27 features

Despite crowd-sourcing platforms (e.g. Amazon Mechanical Turk) gathering
semantically similar pairs of images is expensive

06 Aug 2015/ 36
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Hands by hand

+ Onesolutionisto turnto

synthetic data (e.g.
Shakhnarovich et al. 2003,
Jain et al. 2008)

Difficult to generalize to real
(e.g. “YouTube” settings)

- Another solution: ask people

06 Aug 2015/ 37

to label heads and hands
(Spiro et al. 2010) or
superimpose articulated
skeletons (Bourdev et al. 2009)
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+ Onesolutionisto turnto
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Shakhnarovich et al. 2003,
Jain et al. 2008)

Difficult to generalize to real
(e.g. “YouTube” settings)

- Another solution: ask people
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Pose-sensitive embeddings

(Taylor et al. 2010)

Database




Pose-sensitive embeddings

(Taylor et al. 2010)

Database




Pose-sensitive embeddings

(Taylor et al. 2010)

. If we have a database of Database
iImages labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation
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Pose-sensitive embeddings

(Taylor et al. 2010)

Database

. |f we have a database of

06 Aug 2015/ 38

iImages labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation
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Query

Find
nearest
neighbor
Copy
pose




Pose-sensitive embeddings

(Taylor et al. 2010)

Database
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If we have a database of
iImages labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

Nearest neighbor lookup
must be quick (e.g. performed
in a low-dimensional space)
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Pose-sensitive embeddings

(Taylor et al. 2010)

Database
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If we have a database of
iImages labeled with 2D or 3D
pose information - we can do
non-parametric pose
estimation

Nearest neighbor lookup
must be quick (e.g. performed
in a low-dimensional space)

It also must be informative of
pose and invariant to
clothing, lighting, scale, and
other appearance changes
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Find
nearest
neighbor
Copy
pose




NCA regression

N

Lncar = Z sz’jHYi — YjH%

i=1 3

-

Minimize loss w.r.t.

Pay a high cost for “neighbours” in
feature space that are far away in
pose space
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Snowbird dataset

- We digitally recorded all contributing and
invited speakers at the 2010 Snowbird
workshop

+ After each session of talks, blocks of 150 frames
were distributed as Human Intelligence Tasks
(HITs) on Amazon Mechanical Turk
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Comparison of Approaches

Pixel distance

Not practical

GIST

Global representation of image
«Still not practical

Linear NCA regression (NCAR)

«Applied to pre-computed GIST
Fit by conjugate gradient

Convolutional NCAR (C-NCAR)

«Convolutions applied to pixels
Tanh(),Abs(),Average downsampling

DrLIM Regression (DrLIMR)

Similar to NCAR but adds an explicit
contrastive loss

Convolutional DrLIMR (C-DrLIMR)

Similar to C-NCAR but adds an explicit
contrastive loss




Comparison of Approaches

Pixel distance

R —»\—\—»'\
GIST gl |
8-\ \
Al
Linear NCA regression (NCAR) X

/Frvyivwmuu. 5| OUTCTTIC
«Convolutions applied to pixels

Convolutional NCAR (C-NCAR) Tanh(),Abs(),Average downsampling

Similar to NCAR but adds an explicit

DrLIM Regression (DrLIMR) contrastive loss

Similar to C-NCAR but adds an explicit

Convolutional DrLIMR (C-DrLIMR) contrastive loss
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Not practical

GIST

Global representation of image
«Still not practical

Linear NCA regression (NCAR)

«Applied to pre-computed GIST
Fit by conjugate gradient

Convolutional NCAR (C-NCAR)

«Convolutions applied to pixels
Tanh(),Abs(),Average downsampling

DrLIM Regression (DrLIMR)

Similar to NCAR but adds an explicit
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Convolutional DrLIMR (C-DrLIMR)

Similar to C-NCAR but adds an explicit
contrastive loss




Results
(qualitative)

- Both Pixel-based
matching and GIST focus
on scene content,
lighting

+ Our method learns
Invariance to
background, focuses on
pose

- Though trained on hands
relative to head, seems
to capture something
more substantial about
body pose
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Results (quantitative

Embedding Input Code size Err-SY Err-RE
None Pixels 16384 32.86 25.12
None GIST 512 47.41 25.3

PCA GIST 128 47.17 24.85
PCA GIST 32 48.99 25.74
NCAR GIST 32 34.21 24.93
NCAR LCN+GIST 32 32.9 23.15
S-DrLIM GIST 32 37.8 25.19
Boost-SSC LCN+GIST 32 34.8 22.65
C-NCAR LCN 32 28.95 16.41
C-DRLIM LCN 32 25.4 19.61
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MPIl Human Pose

Addresses
appearance
variability and
complexity

YouTube as a data
source

Many activities,
indoor and outdoor
scenes, variety of
Imaging conditions

(Andriluka et al. 2014)

Dataset #training #test img. type
Full body pose datasets

Parse [ 1 0] 100 205 diverse
LSP[12] 1,000 1,000 sports (8 types)
PASCAL Person Layout [0] 850 849 everyday
Sport [21] 649 650 sports
UIUC people [21] 346 2477 sports (2 types)
LSP extended [ | 3] 10,000 - sports (3 types)
FashionPose [7] 6,530 775 fashion blogs
J-HMDB [11] 31,838 diverse (21 act.)
Upper body pose datasets

Buffy Stickmen [8] 472 276 TV show (Buffy)
ETHZ PASCAL Stickmen [3] - 549 PASCAL VOC
Human Ob;. Int. (HOI) [23] 180 120 sports (6 types)
We Are Family [5] 350 imgs. 175 1imgs. group photos
Video Pose 2 [ 18] 766 519 TV show (Friends)
FLIC [17] 6,543 1,016 feature movies
Sync. Activities [4] 357 imgs. dance / aerobics
Armlets [Y] 9,593 2,996 PASCAL VOC/Flickr

MPII Human Pose (this paper)

WD

(ﬁverse (491 act.) 2




Pose embeddings

Mori et al. 2015

- Similar to (Taylor et al.

2010), but uses:

DepthConcat

Conv Conv
1xL+1(S) 1x1+1(5)

MaxPool
3x3+1(5)

DepthConcat

Conv Conv Conv. Conv
1x1+1(5) il 3x3+1(5) [l sxs+1(5) [l 1x1+1(5)
L] Conv Conv. MaxPool
— 1x1+1(5) [l 1x1+1(5) [l 3x3+1(5)

MaxPool
3x342(5) e
DepthConcat 3

Conv Conv. Conv Conv
3x3+1(5) [l 5x5+1(5) [ll va+1) [l 1a+s)

maxpool [l Averagepool

Conv Conv.
11+1(5) [l 1x1+1(5) [l 33+16) Jl 5x5+3v)

DepthConcat

locations of 16 body

Conv Conv
1x1+1(5) [l 3x3+1(5)

Conv MaxPool
1x1+1(S) 3x3+1(S)
DepthConcat Cootmano )

Conv Conv Conv.
1x1+1(5) [l 3x3+1(5) 1x1+1(5)

Conv.
1x1+1(5)

MaxPool =

Conv
1x141(S) 3x3+1(5)

DepthConcat FC
Conv. Conv
1x1+1(5) [l 1x1+1(5)

Conv Conv. Conv
1x1+1(5) [l 3x3+1(5) [l 5x5+1(5)

® ® Conv. Conv Maxpool [l AveragePool
1x1+1(S) 1x1+1(S) 3x3+1(S) 5x5+3(V)
I e - S e e a I AN
Conv Conv
1x1+1(S) 1x1+1(S)
MaxPool
3x3+1(5)
MaxPool
3x3+2(5)
DepthConcat
. Conv Conv
‘ ‘ 1A1+1(5) 1:+1(5)
MaxPool
[ [r— 333+1(5)
, DepthConcat
Conv Conv
1x1+1(5) 141+1(5)

E C MaxPool
3x3+1(5)
MaxPool
3x3+2(5)
LocalRespNorm
Conv
3x3+1(5)
Conv
1x1+1(V)
LocalRespNorm
MaxPool
3x3+2(5)
Conv
7x7+42(5)
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Can we avoid explicit labeling of body parts”



Weakly-supervised embeddings
(Taylor et al. 2011)



Weakly-supervised embeddings
(Taylor et al. 2011)

- Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded

nearby

seed




Weakly-supervised embeddings
(Taylor et al. 2011)

- Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded

nearby

seed

imitations
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Weakly-supervised embeddings

- Have people imitate frames
from a video:

- imitated frames, though
different in appearance,
should be embedded

nearby

- Use temporal coherence as a
similarity signal:

- |.e. frames which are
close together in time
should be embedded

nearby
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seed

imitations

(Taylor et al. 2011)

y




Ze rO'ShOt lea 'n i ng Nourouzi et al. 2014
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Test Image

Softmax Baseline [7]

DeViSE [6]

ConSE (10)

(alpaca, Lama pacos)

wig

fur coat

Saluki, gazelle hound
Afghan hound, Afghan
stole

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture

crane

peacock

sea lion

plane, carpenter’s plane
cowboy boot

loggerhead, loggerhead turtle
goose

hamster

broccoli
Pomeranian
capuchin, ringtail
weasel

thresher, threshing machine
tractor

harvester, reaper

half track

snowplow, snowplough

Tibetan mastiff

titi, titi monkey

koala, koala bear, kangaroo bear
llama

chow, chow chow

water spaniel

tea gown

bridal gown, wedding gown
spaniel

tights, leotards

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

elephant

turtle

turtleneck, turtle, polo-neck
flip-flop, thong

handcart, pushcart, cart, go-cart

golden hamster, Syrian hamster
rhesus, rhesus monkey

pipe

shaker

American mink, Mustela vison

truck, motortruck

skidder

tank car, tank

automatic rifle, machine rifle
trailer, house trailer

kernel

littoral, litoral, littoral zone, sands
carillon

Cabernet, Cabernet Sauvignon
poodle, poodle dog

business suit

dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ratite, ratite bird, flightless bird
peafowl, bird of Juno

common spoonbill

New World vulture, cathartid
Greek partridge, rock partridge

California sea lion
Steller sea lion
Australian sea lion
South American sea lion
eared seal

golden hamster, Syrian hamster
rodent, gnawer

Eurasian hamster

rhesus, rhesus monkey

rabbit, coney, cony

flatcar, flatbed, flat
truck, motortruck
tracked vehicle
bulldozer, dozer
wheeled vehicle

dog, domestic dog

domestic cat, house cat
schnauzer

Belgian sheepdog

domestic llama, Lama peruana




Ze rO'ShOt lea 'n i ng Nourouzi et al. 2014

+ Can you exploit a trained
word embedding model
(Mikolov et al. 2013) and a
trained object recognition
model (Krizhevsky et al.
2012) to label images from
unseen classes?
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Ze rO'Sh Ot lea 'n i N g(Nourouzi et al. 2014)

+ Can you exploit a trained
word embedding model
(Mikolov et al. 2013) and a
trained object recognition
model (Krizhevsky et al.
2012) to label images from
unseen classes?

+ Let softmax output of
recognition model fortop T
classes determine convex
combination of semantic
word embeddings

06 Aug 2015/ 48
DLSS* Learning to Compare/ G Taylor

Softmax Baseline [7]

DeViSE [6]

ConSE (10)

Test Image

wig

fur coat

Saluki, gazelle hound
Afghan hound, Afghan
stole

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture

crane

peacock

sea lion

plane, carpenter’s plane
cowboy boot

loggerhead, loggerhead turtle
goose

hamster

broccoli
Pomeranian
capuchin, ringtail
weasel

thresher, threshing machine
tractor

harvester, reaper

half track

snowplow, snowplough

Tibetan mastiff

titi, titi monkey

koala, koala bear, kangaroo bear
llama

chow, chow chow

(alpaca, Lama pacos)

water spaniel

tea gown

bridal gown, wedding gown
spaniel

tights, leotards

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

elephant

turtle

turtleneck, turtle, polo-neck
flip-flop, thong

handcart, pushcart, cart, go-cart

golden hamster, Syrian hamster
rhesus, rhesus monkey

pipe

shaker

American mink, Mustela vison

truck, motortruck

skidder

tank car, tank

automatic rifle, machine rifle
trailer, house trailer

kernel

littoral, litoral, littoral zone, sands
carillon

Cabernet, Cabernet Sauvignon
poodle, poodle dog

business suit

dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ratite, ratite bird, flightless bird
peafowl, bird of Juno

common spoonbill

New World vulture, cathartid
Greek partridge, rock partridge

California sea lion
Steller sea lion
Australian sea lion
South American sea lion
eared seal

golden hamster, Syrian hamster
rodent, gnawer

Eurasian hamster

rhesus, rhesus monkey

rabbit, coney, cony

flatcar, flatbed, flat
truck, motortruck
tracked vehicle
bulldozer, dozer
wheeled vehicle

dog, domestic dog

domestic cat, house cat
schnauzer

Belgian sheepdog

domestic llama, Lama peruana




‘Unsupervised
Learn similarity structure completely from unlabeled data.
Difficult to ensure that similar examples map to similar codes.

Supervised can

'Use labels or neighbourhood graph to inform map. #4%=

Often, this information is not available! L %

Weakly supervised
'Use of temporal coherence to guide learning.
Application to zero-shot learning.
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Where to go from here?

+Architectural improvements, (e.g.
going deeper, more efficient use of
parameters, multi-scale pathways,
etc.), will continue to make impact

Databases will only continue to
grow, so efficiency of search (e.g.
Hashing) will be important

. Approaches will roll out to domains

beyond images, audio and text

audio stream ‘ i

U
(ight hand: j ’ l left hand:
video stream | -’ video stream
\ gt ~- .
right hand: y left hand:

depth stream 0o, depth stream

articulated pose

Multi-modal learning (next talk)
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