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ABSTRACT 

With the advent of modern vehicular technology, the 

computerized components of passenger vehicles have become 

increasingly interconnected to facilitate automotive efficiency, 

driving experience, and emissions control. Controller Area 

Networks (CANs) are well suited for intercommunications among 

these components, called electronic control units (ECUs). ECUs 

are used to communicate with critical control systems on 

automobiles including transmissions, braking, body control, and 

even vehicle infotainment systems. CAN networks are designed 

for high speed, reliable communications between ECU 

components operating in harsh environments. Unfortunately, the 

security of the underlying protocol is dubious at best. The Bosch 

CAN standard does not include inherent security mechanisms for 

authentication and validation of messages sent to various ECUs 

over a CAN network. Currently the only data security methods for 

CAN networks on passenger vehicles are the use of proprietary 

CAN message IDs and a physical boundary between the CAN bus 

and the outside world. This presents a serious security issue, 

because anyone with physical access to the vehicle's data bus 

could generate spoofed CAN traffic destined for various ECUs, 

some of which could be  responsible for critical vehicle operations 

such as the braking system or engine control unit. To prevent this, 

manufactures of passenger vehicles do not publish the proprietary 

CAN message IDs for various components on the vehicle 

network. However, proprietary message IDs can be identified 

through a reverse engineering process. This paper identifies 

techniques for reverse engineering CAN messages on passenger 

vehicles, demonstrating the ease with which an attacker could 

manipulate CAN-enabled components of an automobile. The 

reverse engineering methodology is demonstrated by the 

transformation of the speedometer and tachometer (instrument 

cluster) of a 2003 Mini Cooper into a functional clock controlled 

via spoofed CAN messages sent by an Arduino microcontroller. 

1. INTRODUCTION 

1.1 Background 
As automobile components become increasingly computerized, 

inter-device communication is imperative for overall vehicle 

efficiency, emissions control, and diagnostic maintenance. In 

1986, Bosch introduced the Controller Area Network (CAN) 

standard for automobile manufactures, in order to facilitate 

communication between microcontrollers on automobiles [1]. The 

CAN standard was designed as a multi-master broadcast serial 

bus, used to interconnect electronic control units (ECUs). At the 

physical layer, frame bits are encoded in a non-return to zero 

(NRZ) format over the wire, and facilitates the use of automatic 

collision detection with arbitration. Essentially, any message sent 

out by any node on a CAN network will be seen by all other 

nodes [4]. European manufactured automobiles were early 

adopters of CAN networks. However, since 2008, all cars sold in 

the U.S have been required to implement the CAN standard for 

EPA mandated diagnostic purposes. Newer cars manufactured 

today have an average of at least 70 ECUs for various subsystems. 

Instead of wiring individual computerized components together to 

form a complex mesh-style network topology, CAN allows for a 

more streamlined bus-style topology. This drastically reduces the 

amount of required wiring and allows for devices to communicate 

with one another more efficiently. 

ECUs in vehicles are inherently engineered for vehicle safety as 

the number one priority. Unfortunately, most of these components 

have not been designed with the consideration of an adversary 

with malicious intentions, whom has physical access to the 

vehicle. Although others may have dismissed the likelihood of the 

threat of physical access, it is still an important attack vector to 

consider. Current research in the areas of automotive computer 

security shows that these systems are not designed with any form 

of access control, allowing anyone with access to the data bus to 

wreak havoc on any of the connected systems. In 2010, 

researchers from The University of Washington and The 

University of California, San Diego demonstrated such attacks by 

interfacing with the on-board diagnostics (OBDII) port of a 

vehicle [2][3]. The researchers were successfully able to take 

complete control of critical components of the vehicle at rest and 

in motion by using simple replay attacks and fuzzing techniques 

over the CAN bus network. 

The lack of access controls on automobile networks creates an 

inherent security flaw, allowing for rogue, malicious CAN devices 

to be attached to the network. These devices could be leveraged in 

a way that could cause harm to other critical components on the 

automobile. 

The structure of a CAN frame is best described by an 

understanding of the notion of framing, also known as a 

delineated sequence of bits. The most notable fields in a standard 

format CAN frame include; Start of Frame (SOF), Identifier, Data 

Length Code (DLC), Data Field (0-7 bytes), CRC, and End of 

Frame (EOF). The Bosch CAN standard specifies that standard 

messages have 11-bit identifiers, which are unique for 

communicating with the proper CAN component. This field is 

also used for arbitration purposes such as  message priority. Thus, 

a lower message ID corresponds to a higher message priority. 



This work analyzes the CAN bus of a 2003 Mini Cooper S which 

interconnects the instrument cluster, engine control unit, anti-lock 

braking system, steering angle sensors, and other systems (Figure 

1-1). Since the message identifiers for the Mini Cooper are 

manufacture proprietary information, a methodology for reverse 

engineering CAN message identifiers is presented.  Potential 

attack strategies are demonstrated, to show how an attacker could 

manipulate the interconnected components on the CAN bus. The 

reverse engineering method is used to build a CAN clock from 

scratch, using the instrument cluster of a 2003 Mini Cooper S that 

was involved in a staged auto collision with a GMC Envoy 

(Figure 1-2). This paper concludes with a discussion of the future 

of communication security for passenger vehicles and the security 

engineering mechanisms that should be considered early on in the 

development life cycle of ECUs and associated vehicle networks. 

 

 

Figure 1-1: Mini Cooper Data Network 

 

 

 

 

 

Figure 1-2: Wrecked 2003 Mini Cooper and Instrument 

Cluster Unit 

 

2. PROCEDURE 
This section describes a methodology for reverse engineering 

proprietary CAN message IDs on passenger vehicles. We provide 

an example by using the CAN data log captured from a 2003 Mini 

Cooper that was involved in a staged vehicle collision. Next we 

demonstrate a proof of concept using the reverse engineered CAN 

IDs to manipulating the car's instrument cluster to generate 

artificial vehicle and engine speed CAN traffic to the instrument 

cluster (speedometer and tachometer). 



2.1 Reverse Engineering Proprietary CAN 

Message IDs 

Unlike commercialized standards that run on top of CAN and 

leverages the CAN extended format that have well documented 

information regarding their component IDs such as SAE J1939,  

the Bosch CAN standard format only specifies how the protocol 

should work, but remains mute on what values should be used for 

particular CAN devices. 

 The CAN standard format 11 bit message identifier is of interest 

to us here because it is the common passenger vehicle application. 

The ID is often used to determine how ECUs know what message 

to listen to. The CAN standard format does not define which 

message IDs are associated with what components, thus leaving 

the vehicle manufacture to define their own CAN message IDs to 

control various ECUs. Theoretically the standard format can have 

up to 2048 unique message IDs present on a CAN network as the 

standard format allows for 11 bit message IDs. Most actual 

message IDs used by manufactures of passenger vehicles such as 

GM, BMW, Ford, Honda, etc. are proprietary and this information 

is not made publicly available by automobile manufactures. Thus, 

a process is needed to reverse engineer these IDs to tie them to 

their actual components. 

 

During the staged crash of the Mini Cooper, a CAN data logging 

device was used to passively capture all CAN messages traversing 

across the network. Information that was captured included a 

timestamp, DLC, ID, and the data fields for each CAN messages 

(8 bytes) (Figure 2-1). 

 

 

Figure 2-1: CAN data log 

 

This data capture ran for 90 seconds during the staged head on 

collision involving the Mini Cooper. During that 90 seconds, 

about 107,000 CAN messages were recorded off of the CAN bus. 

This data was saved as a CSV file which allowed for parsing the 

data in several different ways. 

 With the data log capture in hand, we needed a method to isolate 

the CAN message IDs that were of interest to us. Since we were 

interested in identifying which message IDs correspond with 

displaying vehicle and engine speed to the instrument cluster, we 

attempted to identify the IDs responsible for controlling the 

speedometer and tachometer. Initial observations of the raw data 

revealed that some IDs were present more often than others. That 

is, some message IDs are transmitted more frequently across the 

CAN bus over the duration of the capture. Initially, we hypnotized 

that the message IDs responsible for updating the vehicle and 

engine speed display gauges would be updated more frequently 

than other devices, thus having a lower message ID compared to 

other messages.  Running a simple Bash script we parsed the data 

to identify only the unique message IDs and how often they were 

transmitted over the CAN network (Figure 2-2). 

 

Figure 2-2: Top 7 most frequently occurring messages on the 

CAN data bus 

 

Surprisingly, there were only 15 unique message IDs present on 

the CAN bus. Since there were only 15 message IDs on the bus 

we inferred that one of these messages was responsible for 

controlling the display gauges on the instrument cluster. The 

question now became a matter of which message ID, and which 

byte, or bit will need to be manipulated in order to achieve our 

desired effect? Now that we had an idea of the possible suspect 

message IDs, we needed to figure out which byte offsets are used 

that contain the vehicle and engine speeds. 

Each byte holds a value of up to 0xFF or 255 in decimal. The 

trick is to find which byte, bit, or combination of bytes are 

responsible for controlling the gauges. To do this we use a method 

for visually correlating physical system interactions with 

identifiable patterns.  Essentially, we visualize the data values in 

each byte against the corresponding time stamp of the message 

throughout the duration of the data capture (90 seconds). 

Considering humans are inherently good at recognizing patterns, 

plotting each byte against the timestamp helps us identify a 

change in speed with the help of a scatter plot line graph. Using 

this method we graphed all bytes, individually, to identify 

recognizable patterns corresponding to a steady increase in data 

values over time, which was indicative of the vehicle speed for 

this staged automobile collision. 



 Leveraging Microsoft Excel’s data plotting functionality, we 

filtered the data set to explicitly show data related to message ID 

0x153 and then plotted each byte separately (Figure 2-3). Figure 

2-4 show byte offset 2 from message ID 0x153 going from 0 to 

about 30 MPH starting at 75 seconds and then stopping at 90 

seconds. (When collision occurred). Additionally, we also have 

prior knowledge from other external instruments attached to the 

car during the staged crash, that the top speed before impact was 

around 30 MPH so we know that message 0x153 byte offset 2 has 

to be associated with vehicle speed. 

 

 

Figure 2-3: Plotting data log ID and data fields with Excel 

 

 

Figure 2-4: Wheel speed vs. time 

 

Now that we have identified the message ID and byte offset for 

vehicle speed, we need to isolate the ID and data fields for engine 

speed. Because the Mini Cooper was propelled with a pulley 

system in the staged crash in which the data log was recorded, the 

actual engine speed was at a constant idle speed throughout the 

capture. Because of the engine speed being idle during the 

experiment, our previous method of visually identifying message 

IDs based on data value against timestamps will be ineffective for 

this ID.  

For the purposes of identifying the engine speed message ID, a 

series of fuzzing techniques were performed in which case all of 

the 15 unique ID's 8 byte data fields were fuzzed with arbitrary 

data. This brute force process was used until we witnessed the 

needle on the tachometer spinning arbitrarily. Using this iterative 

process, we find that message ID 0x316, byte offset 3, controls the 

tachometer display of engine speed. Table 2-1 shows the CAN 

message IDs that we were able to isolate to a device on the 

instrument cluster from the Mini Cooper CAN bus. 

 

Table 2-1: Reverse engineered CAN message IDs 

 

2.2 CAN Clock Proof of Concept 
In this section we describe the steps in creating our proof of 

concept that simulates the effect an attacker could have on a 

vehicle, assuming she has physical access. In this demonstration 

we transform the speedometer and a tachometer from a wrecked 

2003 Mini Cooper S into a literal clock, where the hours will be 

represented by the speedometer (0-120 MPH) and the minutes 

will be represented by the tachometer (0-6000 RPM). We build a 

CAN network with three physical CAN nodes. We generate CAN 

traffic by building a CAN ECU using an Arduino microcontroller, 

MCP1215 CAN controller, and MCP2551 CAN transceiver. 

Hardware Supplies 

 Arduino Uno "REV 3" 

 CAN-BUS Shield 

 Real Time Clock Module 

 2 x 120 ohm resistors 

 18 gauge twisted pair wire "CAN bus backbone" 

 Wire nuts 

 Tie wraps 

 12V DC power source 

 Mini Cooper S Instrument Cluster 

 18” x 14” board 

 2 x 1.5” x 1.625” x 1.25” brackets with bolts 

The first thing we did was mount the hardware onto a self-

contained board. For prototyping purposes we used an 18” x 14” 



wood board to house the platform of our CAN clock. Next we 

needed to mount the Mini Cooper gauges using brackets, screws, 

and bolts (Figure 2-5). 

 

 

Figure 2-5: Mounting Mini Cooper instrument cluster to 

platform board 

Since BMW does not publicly disclose CAN message IDs for 

their various ECU devices on passenger vehicles, we apply our 

reverse engineering methodology described in section 2. Using 

this methodology, we now have a pretty solid idea of what 

message IDs and byte offsets are needed to control the display of 

the speedometer and tachometer on the instrument cluster. The 

next step is building a small CAN network and a CAN node 

capable of introducing messages onto the data bus. The first thing 

we need to do is build the CAN bus infrastructure. In adhering to 

the CAN standard, we used about 18 inches of 18 gauge twisted 

pair wire for the actual CAN bus backbone (Figure 2-6). 

 

Figure 2-6: 18 gauge twisted pair wire being used for the CAN 

bus backbone 

We also terminate both ends of the twisted pair wire by using 120 

Ω terminating resistors at each end to reduce reflection (Figure 2-

7). 

 

Figure 2-7: Wire terminated with 120 ohm resistors on both 

ends 

We now have our CAN bus backbone built and ready to add 

nodes onto it. 

 Next we attach the Mini Cooper instrument cluster (which 

includes both the speedometer and tachometer) onto the network 

via its CAN data lines. When attempting to use or modify 

hardware that is either unfamiliar or unknown, the first thing that 

should be done is referencing the electrical schematics, if they are 

available. In this case we were able to utilize the Mini Cooper 

electrical schematics from Mitchell1 (www.prodemand.com). 

Mitchell1 maintains an enormous repository full of vehicle service 

manuals, diagnostic codes, and wiring schematics for a majority 

of passenger vehicles. Leveraging this information was necessary 

for identifying the wires coming off of the instrument cluster units 

(Figure 2-8). 



 

Figure 2-8: Wires coming off of the Mini Cooper instrument 

cluster 

Looking through the 2003 Mini Cooper S service manual, we 

come across the Instrument Cluster Circuit (IKE). In looking at 

the electrical wiring schematics, we are interested in identifying  

wires responsible for 3 things; power, ground, and CAN data. The 

CAN data wires are obviously distinguishable as being the only 

twisted pair wires within the mesh of wires. 

 

 

 

Wires Associated with Power 

 Wire 1 BRN/BLK = Ground 

 Wire 2 VIO/BLK = 12V power source (HOT IN ACCY, 

RUN AND START) 

 Wire 3 BLK/VIO = 12V power source (HOT IN 

START) 

 Wire 15 RED/YEL = 12V power source (HOT AT ALL 

TIMES) 

 Wire 16 GRN/BLU = 12V power source (HOT IN ON 

OR START) 

 

CAN Data Lines 

 Wire 13 YEL/BRN = CAN-L 

 Wire 26 YEL/BLK = CAN-H 

 

 

 

Once these wires were each identified, we striped the wires, 

spliced, and soldered them together accordingly. We striped the 

ends off of the 12V DC power source and tied wires 2, 3, 15, and 

16 of the instrument cluster unit to the positive lead of our power 

source (Figure 2-9). We also tied Wire 1 (ground) to the negative 

lead on our power supply. Next we connect the CAN high and 

low data lines to the network. We splice wires 13 and 26 from our 

instrument cluster into the CAN bus. Notice in Figures 2-9, CAN 

low is the blue wire of the CAN bus and CAN high is the tan. 

After capping our wire leads to both power source and splicing 

CAN node entry points, we can plug in the power source to test 

that the instrument cluster powers on and works properly. If all 

goes correctly a chime can be heard as soon as power is applied. 

 

 

 

 

Figure 2-9: Splicing instrument cluster wires together with 

CAN bus and 12V power source 



Now that the instrument cluster has successfully been connected 

to the CAN bus, we can configure the node that will be 

responsible for transmitting data to the instrument cluster unit. 

This node will be acting as a rogue device that an attacker could 

use to interact with components on the CAN bus in nefarious 

ways. We will be using an Arduino Uno Rev 3 and a CAN-Shield 

to achieve this (Figure 2-10). 

 

 

 

Figure 2-10: Arduino Uno and CAN shield simulating a rogue 

CAN device 

To interface the CAN shield with the data bus, we will be splicing 

the 18 gauge twisted pair wire from the CAN bus and soldering 

CAN-H and CAN-L wires coming into the pins on the CAN 

shield as shown in Figures 2-11. 

 

 

Figure 2-11: CAN shield used to connect to CAN bus 

The Arduino will be powered from the same 12V DC power 

source that powers the instrument cluster. The Arduino Uno 

features a built in voltage regulator at the power port. Considering 

the safety benefit of the voltage regulator, applying 12V of power 

to the Arduino was not an issue as the Arduino Uno specifications 

explicitly state that the microcontroller can handle a 

recommended 7 - 12 volts (Figure 2-12). 

 

 

Figure 2-12: 12V power source and Arduino voltage regulator 

In order for the Arduino to keep track of accurate time, even when 

the power is disrupted, we will use a real time clock module 

(RTC). The RTC chip is powered with a small battery in order to 

retain the current time in the event of power loss. The Arduino 

will poll the time from the RTC in order to transmit the accurate 

time to the instrument cluster gauges. For demonstration 

purposes, we placed the RTC on a bread board separate from the 

Arduino (Figure 2-13). 



 

 

Figure 2-13: RTC used by Arduino to poll accurate time 

 

Everything up to this point should be connected, and all that 

should be left is to program the microcontroller. Other than the 

standard Arduino libraries, we will primarily be using the 

MCP2515 library to communicate with the CAN controller, and 

SPI library to communicate with the CAN shield using the serial 

peripheral interface. The MCP2515 library allows us to construct 

our own CAN Frame objects that can be transmitted over onto the 

CAN bus. (See http://tucrrc.utulsa.edu/canclock/ for complete 

listing of source code) 

 

We will also be using the Wire.h and RTClib.h libraries to 

communicate with the RTC module.  

 

For purposes of demonstration, the microcontroller was 

configured to work in two modes of operation that can easily be 

toggled by using the joystick click button on the CAN-Shield; 

Clock Mode, and Demo Mode (Figure 2-14). Clock mode 

obviously polls the time from the RTC to display the current time 

on the instrument cluster gauges via the CAN bus, and demo 

mode is used to increment the needles on the gauges arbitrarily to 

demonstrate the dynamic manipulation of CAN traffic. The final 

product (CAN Clock) is shown below showing a time of 2:47 

p.m. (Figure 2-15). 

 

 

Figure 2-14: Joystick button used to toggle between clock 

mode and demo mode 

 

 

 

Figure 2-15: Mini Cooper CAN clock final product 



3. DISCUSSION 
The CAN clock proof of concept demonstrates how easy it could 

be for an attacker to manipulate ECM components on passenger 

vehicles. As newer vehicles begin to add more functionality and 

interconnection options, the attack surface will continue to grow 

as well. Other research has demonstrated attacks effecting the 

availability of ECMs on the CAN network. In 2010, researchers at 

The University of Washington and The University of California, 

San Diego effectively flooded the CAN network with traffic 

causing a denial of service (DoS) against all connected 

components, which rendered much of the car, including the 

braking system useless [2]. 

Methods for mitigating spoofed message attacks, and attacks that 

affect availability of the CAN bus need to be considered when 

designing and engineering ECUs. To counter the possibility of 

such attacks, conventional network security concepts, techniques, 

and devices such as firewalls, and intrusion detection/prevention 

systems should be considered being applied to CAN. Perhaps 

some form of a CAN based firewall or anomaly based network 

intrusion prevention system could be implemented on vehicles 

that mitigate such attacks from occurring. Although one of the 

advantages of CAN is for all nodes on the same bus to receive a 

message, regardless of what device it is intended for, some CAN 

components should never be allowed to communicate with other 

CAN components, or at least send certain messages between one 

another (e.g. infotainment systems to brake controller unit). The 

notion of a firewall from conventional network security could be 

applied by using access control lists between various networks, or 

even ECUs on vehicles. 

Although it may seem that solving these problems with anomaly 

based intrusion detection systems could be a trivial method of 

using existing methods from TCP/IP based anomaly IDSs, it 

actually would not be as straight forward. Conventional, anomaly 

based intrusion detection systems are developed and used within a 

network to detect statistical deviations from prior baselines. 

However, with the dynamic nature of vehicle networks, there 

could be numerous instances when otherwise normal activities 

would violate this baseline due to unexpected physical events, 

including vehicle collisions, sudden acceleration/deceleration, etc.  

CAN devices such as ECUs need to have security mechanisms 

built in that are similarly modeled after modern day computer 

network security systems such as access control devices, and 

intrusion detection systems, but not to the extent that they intrude 

on the reliability of CAN. Finding a compromise between 

security, reliability, and efficiency of CAN systems are all factors 

that need to be considered for future research into vehicle network 

systems. 

It is well understood that if someone has physical access to a 

device, all bets are off with regards to security. As such, these 

vehicle data lines of communication should be considered 

untrusted and treated as such. Methods of encrypting channels of 

communication on CAN could be considered, but that would 

ultimately hinder the speed and reliability advantages provided by 

CAN. For the time being, automobile consumers have no choice 

but to rely on physical security of automobiles, and security 

through obscurity provided by the manufacture proprietary CAN 

message IDs. 

4.  CONCLUSION 
This work described a methodology for reverse engineering 

proprietary CAN message IDs on passenger vehicles. This 

methodology is modular enough to be applied to other passenger 

vehicles with CAN networks. We have demonstrated how to 

identify message IDs of interest by analyzing CAN data provided 

by a data log of a 2003 Mini Cooper. We also developed a proof 

of concept in which we built a CAN network from scratch, and 

manipulated the Mini Cooper's instrument cluster speedometer 

and tachometer, turning them into a functional clock. 

Although we are only manipulating the instrument cluster gauges, 

there is no reason to believe these methods couldn't be applied to 

other ECMs on the vehicle, including critical devices such as the 

ABS braking system, accelerator, lighting system, wireless locks, 

etc. We have thoroughly demonstrated that security through 

obscurity fails when the attacker has physical access to the 

vehicle. Future work will look into the areas of monitoring CANs 

including possibly introducing the use of customized CAN 

firewalls and intrusion prevention systems. 
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