
How to Hack Your Mini Cooper: Reverse Engineering CAN

Messages on Passenger Automobiles

Jason Staggs

University of Tulsa

Institute for Information Security

Crash Reconstruction Research Consortium

jason-staggs@utulsa.edu

ABSTRACT

With the advent of modern vehicular technology, the

computerized components of passenger vehicles have become

increasingly interconnected to facilitate automotive efficiency,

driving experience, and emissions control. Controller Area

Networks (CANs) are well suited for intercommunications among

these components, called electronic control units (ECUs). ECUs

are used to communicate with critical control systems on

automobiles including transmissions, braking, body control, and

even vehicle infotainment systems. CAN networks are designed

for high speed, reliable communications between ECU

components operating in harsh environments. Unfortunately, the

security of the underlying protocol is dubious at best. The Bosch

CAN standard does not include inherent security mechanisms for

authentication and validation of messages sent to various ECUs

over a CAN network. Currently the only data security methods for

CAN networks on passenger vehicles are the use of proprietary

CAN message IDs and a physical boundary between the CAN bus

and the outside world. This presents a serious security issue,

because anyone with physical access to the vehicle's data bus

could generate spoofed CAN traffic destined for various ECUs,

some of which could be responsible for critical vehicle operations

such as the braking system or engine control unit. To prevent this,

manufactures of passenger vehicles do not publish the proprietary

CAN message IDs for various components on the vehicle

network. However, proprietary message IDs can be identified

through a reverse engineering process. This paper identifies

techniques for reverse engineering CAN messages on passenger

vehicles, demonstrating the ease with which an attacker could

manipulate CAN-enabled components of an automobile. The

reverse engineering methodology is demonstrated by the

transformation of the speedometer and tachometer (instrument

cluster) of a 2003 Mini Cooper into a functional clock controlled

via spoofed CAN messages sent by an Arduino microcontroller.

1. INTRODUCTION

1.1 Background
As automobile components become increasingly computerized,

inter-device communication is imperative for overall vehicle

efficiency, emissions control, and diagnostic maintenance. In

1986, Bosch introduced the Controller Area Network (CAN)

standard for automobile manufactures, in order to facilitate

communication between microcontrollers on automobiles [1]. The

CAN standard was designed as a multi-master broadcast serial

bus, used to interconnect electronic control units (ECUs). At the

physical layer, frame bits are encoded in a non-return to zero

(NRZ) format over the wire, and facilitates the use of automatic

collision detection with arbitration. Essentially, any message sent

out by any node on a CAN network will be seen by all other

nodes [4]. European manufactured automobiles were early

adopters of CAN networks. However, since 2008, all cars sold in

the U.S have been required to implement the CAN standard for

EPA mandated diagnostic purposes. Newer cars manufactured

today have an average of at least 70 ECUs for various subsystems.

Instead of wiring individual computerized components together to

form a complex mesh-style network topology, CAN allows for a

more streamlined bus-style topology. This drastically reduces the

amount of required wiring and allows for devices to communicate

with one another more efficiently.

ECUs in vehicles are inherently engineered for vehicle safety as

the number one priority. Unfortunately, most of these components

have not been designed with the consideration of an adversary

with malicious intentions, whom has physical access to the

vehicle. Although others may have dismissed the likelihood of the

threat of physical access, it is still an important attack vector to

consider. Current research in the areas of automotive computer

security shows that these systems are not designed with any form

of access control, allowing anyone with access to the data bus to

wreak havoc on any of the connected systems. In 2010,

researchers from The University of Washington and The

University of California, San Diego demonstrated such attacks by

interfacing with the on-board diagnostics (OBDII) port of a

vehicle [2][3]. The researchers were successfully able to take

complete control of critical components of the vehicle at rest and

in motion by using simple replay attacks and fuzzing techniques

over the CAN bus network.

The lack of access controls on automobile networks creates an

inherent security flaw, allowing for rogue, malicious CAN devices

to be attached to the network. These devices could be leveraged in

a way that could cause harm to other critical components on the

automobile.

The structure of a CAN frame is best described by an

understanding of the notion of framing, also known as a

delineated sequence of bits. The most notable fields in a standard

format CAN frame include; Start of Frame (SOF), Identifier, Data

Length Code (DLC), Data Field (0-7 bytes), CRC, and End of

Frame (EOF). The Bosch CAN standard specifies that standard

messages have 11-bit identifiers, which are unique for

communicating with the proper CAN component. This field is

also used for arbitration purposes such as message priority. Thus,

a lower message ID corresponds to a higher message priority.

This work analyzes the CAN bus of a 2003 Mini Cooper S which

interconnects the instrument cluster, engine control unit, anti-lock

braking system, steering angle sensors, and other systems (Figure

1-1). Since the message identifiers for the Mini Cooper are

manufacture proprietary information, a methodology for reverse

engineering CAN message identifiers is presented. Potential

attack strategies are demonstrated, to show how an attacker could

manipulate the interconnected components on the CAN bus. The

reverse engineering method is used to build a CAN clock from

scratch, using the instrument cluster of a 2003 Mini Cooper S that

was involved in a staged auto collision with a GMC Envoy

(Figure 1-2). This paper concludes with a discussion of the future

of communication security for passenger vehicles and the security

engineering mechanisms that should be considered early on in the

development life cycle of ECUs and associated vehicle networks.

Figure 1-1: Mini Cooper Data Network

Figure 1-2: Wrecked 2003 Mini Cooper and Instrument

Cluster Unit

2. PROCEDURE
This section describes a methodology for reverse engineering

proprietary CAN message IDs on passenger vehicles. We provide

an example by using the CAN data log captured from a 2003 Mini

Cooper that was involved in a staged vehicle collision. Next we

demonstrate a proof of concept using the reverse engineered CAN

IDs to manipulating the car's instrument cluster to generate

artificial vehicle and engine speed CAN traffic to the instrument

cluster (speedometer and tachometer).

2.1 Reverse Engineering Proprietary CAN

Message IDs

Unlike commercialized standards that run on top of CAN and

leverages the CAN extended format that have well documented

information regarding their component IDs such as SAE J1939,

the Bosch CAN standard format only specifies how the protocol

should work, but remains mute on what values should be used for

particular CAN devices.

 The CAN standard format 11 bit message identifier is of interest

to us here because it is the common passenger vehicle application.

The ID is often used to determine how ECUs know what message

to listen to. The CAN standard format does not define which

message IDs are associated with what components, thus leaving

the vehicle manufacture to define their own CAN message IDs to

control various ECUs. Theoretically the standard format can have

up to 2048 unique message IDs present on a CAN network as the

standard format allows for 11 bit message IDs. Most actual

message IDs used by manufactures of passenger vehicles such as

GM, BMW, Ford, Honda, etc. are proprietary and this information

is not made publicly available by automobile manufactures. Thus,

a process is needed to reverse engineer these IDs to tie them to

their actual components.

During the staged crash of the Mini Cooper, a CAN data logging

device was used to passively capture all CAN messages traversing

across the network. Information that was captured included a

timestamp, DLC, ID, and the data fields for each CAN messages

(8 bytes) (Figure 2-1).

Figure 2-1: CAN data log

This data capture ran for 90 seconds during the staged head on

collision involving the Mini Cooper. During that 90 seconds,

about 107,000 CAN messages were recorded off of the CAN bus.

This data was saved as a CSV file which allowed for parsing the

data in several different ways.

 With the data log capture in hand, we needed a method to isolate

the CAN message IDs that were of interest to us. Since we were

interested in identifying which message IDs correspond with

displaying vehicle and engine speed to the instrument cluster, we

attempted to identify the IDs responsible for controlling the

speedometer and tachometer. Initial observations of the raw data

revealed that some IDs were present more often than others. That

is, some message IDs are transmitted more frequently across the

CAN bus over the duration of the capture. Initially, we hypnotized

that the message IDs responsible for updating the vehicle and

engine speed display gauges would be updated more frequently

than other devices, thus having a lower message ID compared to

other messages. Running a simple Bash script we parsed the data

to identify only the unique message IDs and how often they were

transmitted over the CAN network (Figure 2-2).

Figure 2-2: Top 7 most frequently occurring messages on the

CAN data bus

Surprisingly, there were only 15 unique message IDs present on

the CAN bus. Since there were only 15 message IDs on the bus

we inferred that one of these messages was responsible for

controlling the display gauges on the instrument cluster. The

question now became a matter of which message ID, and which

byte, or bit will need to be manipulated in order to achieve our

desired effect? Now that we had an idea of the possible suspect

message IDs, we needed to figure out which byte offsets are used

that contain the vehicle and engine speeds.

Each byte holds a value of up to 0xFF or 255 in decimal. The

trick is to find which byte, bit, or combination of bytes are

responsible for controlling the gauges. To do this we use a method

for visually correlating physical system interactions with

identifiable patterns. Essentially, we visualize the data values in

each byte against the corresponding time stamp of the message

throughout the duration of the data capture (90 seconds).

Considering humans are inherently good at recognizing patterns,

plotting each byte against the timestamp helps us identify a

change in speed with the help of a scatter plot line graph. Using

this method we graphed all bytes, individually, to identify

recognizable patterns corresponding to a steady increase in data

values over time, which was indicative of the vehicle speed for

this staged automobile collision.

 Leveraging Microsoft Excel’s data plotting functionality, we

filtered the data set to explicitly show data related to message ID

0x153 and then plotted each byte separately (Figure 2-3). Figure

2-4 show byte offset 2 from message ID 0x153 going from 0 to

about 30 MPH starting at 75 seconds and then stopping at 90

seconds. (When collision occurred). Additionally, we also have

prior knowledge from other external instruments attached to the

car during the staged crash, that the top speed before impact was

around 30 MPH so we know that message 0x153 byte offset 2 has

to be associated with vehicle speed.

Figure 2-3: Plotting data log ID and data fields with Excel

Figure 2-4: Wheel speed vs. time

Now that we have identified the message ID and byte offset for

vehicle speed, we need to isolate the ID and data fields for engine

speed. Because the Mini Cooper was propelled with a pulley

system in the staged crash in which the data log was recorded, the

actual engine speed was at a constant idle speed throughout the

capture. Because of the engine speed being idle during the

experiment, our previous method of visually identifying message

IDs based on data value against timestamps will be ineffective for

this ID.

For the purposes of identifying the engine speed message ID, a

series of fuzzing techniques were performed in which case all of

the 15 unique ID's 8 byte data fields were fuzzed with arbitrary

data. This brute force process was used until we witnessed the

needle on the tachometer spinning arbitrarily. Using this iterative

process, we find that message ID 0x316, byte offset 3, controls the

tachometer display of engine speed. Table 2-1 shows the CAN

message IDs that we were able to isolate to a device on the

instrument cluster from the Mini Cooper CAN bus.

Table 2-1: Reverse engineered CAN message IDs

2.2 CAN Clock Proof of Concept
In this section we describe the steps in creating our proof of

concept that simulates the effect an attacker could have on a

vehicle, assuming she has physical access. In this demonstration

we transform the speedometer and a tachometer from a wrecked

2003 Mini Cooper S into a literal clock, where the hours will be

represented by the speedometer (0-120 MPH) and the minutes

will be represented by the tachometer (0-6000 RPM). We build a

CAN network with three physical CAN nodes. We generate CAN

traffic by building a CAN ECU using an Arduino microcontroller,

MCP1215 CAN controller, and MCP2551 CAN transceiver.

Hardware Supplies

 Arduino Uno "REV 3"

 CAN-BUS Shield

 Real Time Clock Module

 2 x 120 ohm resistors

 18 gauge twisted pair wire "CAN bus backbone"

 Wire nuts

 Tie wraps

 12V DC power source

 Mini Cooper S Instrument Cluster

 18” x 14” board

 2 x 1.5” x 1.625” x 1.25” brackets with bolts

The first thing we did was mount the hardware onto a self-

contained board. For prototyping purposes we used an 18” x 14”

wood board to house the platform of our CAN clock. Next we

needed to mount the Mini Cooper gauges using brackets, screws,

and bolts (Figure 2-5).

Figure 2-5: Mounting Mini Cooper instrument cluster to

platform board

Since BMW does not publicly disclose CAN message IDs for

their various ECU devices on passenger vehicles, we apply our

reverse engineering methodology described in section 2. Using

this methodology, we now have a pretty solid idea of what

message IDs and byte offsets are needed to control the display of

the speedometer and tachometer on the instrument cluster. The

next step is building a small CAN network and a CAN node

capable of introducing messages onto the data bus. The first thing

we need to do is build the CAN bus infrastructure. In adhering to

the CAN standard, we used about 18 inches of 18 gauge twisted

pair wire for the actual CAN bus backbone (Figure 2-6).

Figure 2-6: 18 gauge twisted pair wire being used for the CAN

bus backbone

We also terminate both ends of the twisted pair wire by using 120

Ω terminating resistors at each end to reduce reflection (Figure 2-

7).

Figure 2-7: Wire terminated with 120 ohm resistors on both

ends

We now have our CAN bus backbone built and ready to add

nodes onto it.

 Next we attach the Mini Cooper instrument cluster (which

includes both the speedometer and tachometer) onto the network

via its CAN data lines. When attempting to use or modify

hardware that is either unfamiliar or unknown, the first thing that

should be done is referencing the electrical schematics, if they are

available. In this case we were able to utilize the Mini Cooper

electrical schematics from Mitchell1 (www.prodemand.com).

Mitchell1 maintains an enormous repository full of vehicle service

manuals, diagnostic codes, and wiring schematics for a majority

of passenger vehicles. Leveraging this information was necessary

for identifying the wires coming off of the instrument cluster units

(Figure 2-8).

Figure 2-8: Wires coming off of the Mini Cooper instrument

cluster

Looking through the 2003 Mini Cooper S service manual, we

come across the Instrument Cluster Circuit (IKE). In looking at

the electrical wiring schematics, we are interested in identifying

wires responsible for 3 things; power, ground, and CAN data. The

CAN data wires are obviously distinguishable as being the only

twisted pair wires within the mesh of wires.

Wires Associated with Power

 Wire 1 BRN/BLK = Ground

 Wire 2 VIO/BLK = 12V power source (HOT IN ACCY,

RUN AND START)

 Wire 3 BLK/VIO = 12V power source (HOT IN

START)

 Wire 15 RED/YEL = 12V power source (HOT AT ALL

TIMES)

 Wire 16 GRN/BLU = 12V power source (HOT IN ON

OR START)

CAN Data Lines

 Wire 13 YEL/BRN = CAN-L

 Wire 26 YEL/BLK = CAN-H

Once these wires were each identified, we striped the wires,

spliced, and soldered them together accordingly. We striped the

ends off of the 12V DC power source and tied wires 2, 3, 15, and

16 of the instrument cluster unit to the positive lead of our power

source (Figure 2-9). We also tied Wire 1 (ground) to the negative

lead on our power supply. Next we connect the CAN high and

low data lines to the network. We splice wires 13 and 26 from our

instrument cluster into the CAN bus. Notice in Figures 2-9, CAN

low is the blue wire of the CAN bus and CAN high is the tan.

After capping our wire leads to both power source and splicing

CAN node entry points, we can plug in the power source to test

that the instrument cluster powers on and works properly. If all

goes correctly a chime can be heard as soon as power is applied.

Figure 2-9: Splicing instrument cluster wires together with

CAN bus and 12V power source

Now that the instrument cluster has successfully been connected

to the CAN bus, we can configure the node that will be

responsible for transmitting data to the instrument cluster unit.

This node will be acting as a rogue device that an attacker could

use to interact with components on the CAN bus in nefarious

ways. We will be using an Arduino Uno Rev 3 and a CAN-Shield

to achieve this (Figure 2-10).

Figure 2-10: Arduino Uno and CAN shield simulating a rogue

CAN device

To interface the CAN shield with the data bus, we will be splicing

the 18 gauge twisted pair wire from the CAN bus and soldering

CAN-H and CAN-L wires coming into the pins on the CAN

shield as shown in Figures 2-11.

Figure 2-11: CAN shield used to connect to CAN bus

The Arduino will be powered from the same 12V DC power

source that powers the instrument cluster. The Arduino Uno

features a built in voltage regulator at the power port. Considering

the safety benefit of the voltage regulator, applying 12V of power

to the Arduino was not an issue as the Arduino Uno specifications

explicitly state that the microcontroller can handle a

recommended 7 - 12 volts (Figure 2-12).

Figure 2-12: 12V power source and Arduino voltage regulator

In order for the Arduino to keep track of accurate time, even when

the power is disrupted, we will use a real time clock module

(RTC). The RTC chip is powered with a small battery in order to

retain the current time in the event of power loss. The Arduino

will poll the time from the RTC in order to transmit the accurate

time to the instrument cluster gauges. For demonstration

purposes, we placed the RTC on a bread board separate from the

Arduino (Figure 2-13).

Figure 2-13: RTC used by Arduino to poll accurate time

Everything up to this point should be connected, and all that

should be left is to program the microcontroller. Other than the

standard Arduino libraries, we will primarily be using the

MCP2515 library to communicate with the CAN controller, and

SPI library to communicate with the CAN shield using the serial

peripheral interface. The MCP2515 library allows us to construct

our own CAN Frame objects that can be transmitted over onto the

CAN bus. (See http://tucrrc.utulsa.edu/canclock/ for complete

listing of source code)

We will also be using the Wire.h and RTClib.h libraries to

communicate with the RTC module.

For purposes of demonstration, the microcontroller was

configured to work in two modes of operation that can easily be

toggled by using the joystick click button on the CAN-Shield;

Clock Mode, and Demo Mode (Figure 2-14). Clock mode

obviously polls the time from the RTC to display the current time

on the instrument cluster gauges via the CAN bus, and demo

mode is used to increment the needles on the gauges arbitrarily to

demonstrate the dynamic manipulation of CAN traffic. The final

product (CAN Clock) is shown below showing a time of 2:47

p.m. (Figure 2-15).

Figure 2-14: Joystick button used to toggle between clock

mode and demo mode

Figure 2-15: Mini Cooper CAN clock final product

3. DISCUSSION
The CAN clock proof of concept demonstrates how easy it could

be for an attacker to manipulate ECM components on passenger

vehicles. As newer vehicles begin to add more functionality and

interconnection options, the attack surface will continue to grow

as well. Other research has demonstrated attacks effecting the

availability of ECMs on the CAN network. In 2010, researchers at

The University of Washington and The University of California,

San Diego effectively flooded the CAN network with traffic

causing a denial of service (DoS) against all connected

components, which rendered much of the car, including the

braking system useless [2].

Methods for mitigating spoofed message attacks, and attacks that

affect availability of the CAN bus need to be considered when

designing and engineering ECUs. To counter the possibility of

such attacks, conventional network security concepts, techniques,

and devices such as firewalls, and intrusion detection/prevention

systems should be considered being applied to CAN. Perhaps

some form of a CAN based firewall or anomaly based network

intrusion prevention system could be implemented on vehicles

that mitigate such attacks from occurring. Although one of the

advantages of CAN is for all nodes on the same bus to receive a

message, regardless of what device it is intended for, some CAN

components should never be allowed to communicate with other

CAN components, or at least send certain messages between one

another (e.g. infotainment systems to brake controller unit). The

notion of a firewall from conventional network security could be

applied by using access control lists between various networks, or

even ECUs on vehicles.

Although it may seem that solving these problems with anomaly

based intrusion detection systems could be a trivial method of

using existing methods from TCP/IP based anomaly IDSs, it

actually would not be as straight forward. Conventional, anomaly

based intrusion detection systems are developed and used within a

network to detect statistical deviations from prior baselines.

However, with the dynamic nature of vehicle networks, there

could be numerous instances when otherwise normal activities

would violate this baseline due to unexpected physical events,

including vehicle collisions, sudden acceleration/deceleration, etc.

CAN devices such as ECUs need to have security mechanisms

built in that are similarly modeled after modern day computer

network security systems such as access control devices, and

intrusion detection systems, but not to the extent that they intrude

on the reliability of CAN. Finding a compromise between

security, reliability, and efficiency of CAN systems are all factors

that need to be considered for future research into vehicle network

systems.

It is well understood that if someone has physical access to a

device, all bets are off with regards to security. As such, these

vehicle data lines of communication should be considered

untrusted and treated as such. Methods of encrypting channels of

communication on CAN could be considered, but that would

ultimately hinder the speed and reliability advantages provided by

CAN. For the time being, automobile consumers have no choice

but to rely on physical security of automobiles, and security

through obscurity provided by the manufacture proprietary CAN

message IDs.

4. CONCLUSION
This work described a methodology for reverse engineering

proprietary CAN message IDs on passenger vehicles. This

methodology is modular enough to be applied to other passenger

vehicles with CAN networks. We have demonstrated how to

identify message IDs of interest by analyzing CAN data provided

by a data log of a 2003 Mini Cooper. We also developed a proof

of concept in which we built a CAN network from scratch, and

manipulated the Mini Cooper's instrument cluster speedometer

and tachometer, turning them into a functional clock.

Although we are only manipulating the instrument cluster gauges,

there is no reason to believe these methods couldn't be applied to

other ECMs on the vehicle, including critical devices such as the

ABS braking system, accelerator, lighting system, wireless locks,

etc. We have thoroughly demonstrated that security through

obscurity fails when the attacker has physical access to the

vehicle. Future work will look into the areas of monitoring CANs

including possibly introducing the use of customized CAN

firewalls and intrusion prevention systems.

4. REFERENCES
[1] Bosch, C. A. N. (1991). Specification version 2.0. Published

by Robert Bosch GmbH (September 1991).

[2] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T.,

Checkoway, S., ... & Savage, S. (2010, May). Experimental

security analysis of a modern automobile. In Security and

Privacy (SP), 2010 IEEE Symposium on (pp. 447-462).

IEEE.

[3] Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,

Shacham, H., Savage, S., ... & Kohno, T. (2011, August).

Comprehensive experimental analyses of automotive attack

surfaces. In Proceedings of the 20th USENIX conference on

Security (pp. 6-6). USENIX Association.

[4] Davis, R. I., Burns, A., Bril, R. J., & Lukkien, J. J. (2007).

Controller Area Network (CAN) schedulability analysis:

Refuted, revisited and revised. Real-Time Systems, 35(3),

239-272.

