cryptlib  3.4.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros
bn_lcl.h
Go to the documentation of this file.
1 /* crypto/bn/bn_lcl.h */
2 /* Copyright (C) 1995-1998 Eric Young ([email protected])
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young ([email protected]).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to. The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson ([email protected]).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  * notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  * notice, this list of conditions and the following disclaimer in the
30  * documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  * must display the following acknowledgement:
33  * "This product includes cryptographic software written by
34  * Eric Young ([email protected])"
35  * The word 'cryptographic' can be left out if the rouines from the library
36  * being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  * the apps directory (application code) you must include an acknowledgement:
39  * "This product includes software written by Tim Hudson ([email protected])"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed. i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  * notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  * notice, this list of conditions and the following disclaimer in
70  * the documentation and/or other materials provided with the
71  * distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  * software must display the following acknowledgment:
75  * "This product includes software developed by the OpenSSL Project
76  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  * endorse or promote products derived from this software without
80  * prior written permission. For written permission, please contact
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  * nor may "OpenSSL" appear in their names without prior written
85  * permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  * acknowledgment:
89  * "This product includes software developed by the OpenSSL Project
90  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * ([email protected]). This product includes software written by Tim
108  * Hudson ([email protected]).
109  *
110  */
111 
112 #ifndef HEADER_BN_LCL_H
113 #define HEADER_BN_LCL_H
114 
115 #if defined( INC_ALL )
116  #include "osconfig.h"
117  #include "bn.h"
118 #else
119  #include "crypt/osconfig.h"
120  #include "bn/bn.h"
121 #endif /* Compiler-specific includes */
122 
123 #ifdef __cplusplus
124 extern "C" {
125 #endif
126 
127 
128 /*
129  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
130  *
131  *
132  * For window size 'w' (w >= 2) and a random 'b' bits exponent,
133  * the number of multiplications is a constant plus on average
134  *
135  * 2^(w-1) + (b-w)/(w+1);
136  *
137  * here 2^(w-1) is for precomputing the table (we actually need
138  * entries only for windows that have the lowest bit set), and
139  * (b-w)/(w+1) is an approximation for the expected number of
140  * w-bit windows, not counting the first one.
141  *
142  * Thus we should use
143  *
144  * w >= 6 if b > 671
145  * w = 5 if 671 > b > 239
146  * w = 4 if 239 > b > 79
147  * w = 3 if 79 > b > 23
148  * w <= 2 if 23 > b
149  *
150  * (with draws in between). Very small exponents are often selected
151  * with low Hamming weight, so we use w = 1 for b <= 23.
152  */
153 #if 1
154 #define BN_window_bits_for_exponent_size(b) \
155  ((b) > 671 ? 6 : \
156  (b) > 239 ? 5 : \
157  (b) > 79 ? 4 : \
158  (b) > 23 ? 3 : 1)
159 #else
160 /* Old SSLeay/OpenSSL table.
161  * Maximum window size was 5, so this table differs for b==1024;
162  * but it coincides for other interesting values (b==160, b==512).
163  */
164 #define BN_window_bits_for_exponent_size(b) \
165  ((b) > 255 ? 5 : \
166  (b) > 127 ? 4 : \
167  (b) > 17 ? 3 : 1)
168 #endif
169 
170 
171 
172 /* BN_mod_exp_mont_conttime is based on the assumption that the
173  * L1 data cache line width of the target processor is at least
174  * the following value.
175  */
176 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
177 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
178 
179 /* Window sizes optimized for fixed window size modular exponentiation
180  * algorithm (BN_mod_exp_mont_consttime).
181  *
182  * To achieve the security goals of BN_mode_exp_mont_consttime, the
183  * maximum size of the window must not exceed
184  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
185  *
186  * Window size thresholds are defined for cache line sizes of 32 and 64,
187  * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
188  * window size of 7 should only be used on processors that have a 128
189  * byte or greater cache line size.
190  */
191 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
192 
193 # define BN_window_bits_for_ctime_exponent_size(b) \
194  ((b) > 937 ? 6 : \
195  (b) > 306 ? 5 : \
196  (b) > 89 ? 4 : \
197  (b) > 22 ? 3 : 1)
198 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
199 
200 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
201 
202 # define BN_window_bits_for_ctime_exponent_size(b) \
203  ((b) > 306 ? 5 : \
204  (b) > 89 ? 4 : \
205  (b) > 22 ? 3 : 1)
206 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
207 
208 #endif
209 
210 
211 /* Pentium pro 16,16,16,32,64 */
212 /* Alpha 16,16,16,16.64 */
213 #define BN_MULL_SIZE_NORMAL (16) /* 32 */
214 #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */
215 #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */
216 #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */
217 #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */
218 
219 #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
220 /*
221  * BN_UMULT_HIGH section.
222  *
223  * No, I'm not trying to overwhelm you when stating that the
224  * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
225  * you to be impressed when I say that if the compiler doesn't
226  * support 2*N integer type, then you have to replace every N*N
227  * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
228  * and additions which unavoidably results in severe performance
229  * penalties. Of course provided that the hardware is capable of
230  * producing 2*N result... That's when you normally start
231  * considering assembler implementation. However! It should be
232  * pointed out that some CPUs (most notably Alpha, PowerPC and
233  * upcoming IA-64 family:-) provide *separate* instruction
234  * calculating the upper half of the product placing the result
235  * into a general purpose register. Now *if* the compiler supports
236  * inline assembler, then it's not impossible to implement the
237  * "bignum" routines (and have the compiler optimize 'em)
238  * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
239  * macro is about:-)
240  *
242  */
243 # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
244 # if defined(__DECC)
245 # include <c_asm.h>
246 # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
247 # elif defined(__GNUC__)
248 # define BN_UMULT_HIGH(a,b) ({ \
249  register BN_ULONG ret; \
250  asm ("umulh %1,%2,%0" \
251  : "=r"(ret) \
252  : "r"(a), "r"(b)); \
253  ret; })
254 # endif /* compiler */
255 # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
256 # if defined(__GNUC__)
257 # define BN_UMULT_HIGH(a,b) ({ \
258  register BN_ULONG ret; \
259  asm ("mulhdu %0,%1,%2" \
260  : "=r"(ret) \
261  : "r"(a), "r"(b)); \
262  ret; })
263 # endif /* compiler */
264 # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
265 # if defined(__GNUC__)
266 # define BN_UMULT_HIGH(a,b) ({ \
267  register BN_ULONG ret,discard; \
268  asm ("mulq %3" \
269  : "=a"(discard),"=d"(ret) \
270  : "a"(a), "g"(b) \
271  : "cc"); \
272  ret; })
273 # define BN_UMULT_LOHI(low,high,a,b) \
274  asm ("mulq %3" \
275  : "=a"(low),"=d"(high) \
276  : "a"(a),"g"(b) \
277  : "cc");
278 # endif
279 # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
280 # if defined(_MSC_VER) && _MSC_VER>=1400
281  unsigned __int64 __umulh (unsigned __int64 a,unsigned __int64 b);
282  unsigned __int64 _umul128 (unsigned __int64 a,unsigned __int64 b,
283  unsigned __int64 *h);
284 # pragma intrinsic(__umulh,_umul128)
285 # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
286 # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
287 # endif
288 # endif /* cpu */
289 #endif /* OPENSSL_NO_ASM */
290 
291 /*************************************************************
292  * Using the long long type
293  */
294 #define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
295 #define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
296 
297 #ifdef BN_DEBUG_RAND
298 #define bn_clear_top2max(a) \
299  { \
300  int ind = (a)->dmax - (a)->top; \
301  BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
302  for (; ind != 0; ind--) \
303  *(++ftl) = 0x0; \
304  }
305 #else
306 #define bn_clear_top2max(a)
307 #endif
308 
309 #ifdef BN_LLONG
310 #define mul_add(r,a,w,c) { \
311  BN_ULLONG t; \
312  t=(BN_ULLONG)w * (a) + (r) + (c); \
313  (r)= Lw(t); \
314  (c)= Hw(t); \
315  }
316 
317 #define mul(r,a,w,c) { \
318  BN_ULLONG t; \
319  t=(BN_ULLONG)w * (a) + (c); \
320  (r)= Lw(t); \
321  (c)= Hw(t); \
322  }
323 
324 #define sqr(r0,r1,a) { \
325  BN_ULLONG t; \
326  t=(BN_ULLONG)(a)*(a); \
327  (r0)=Lw(t); \
328  (r1)=Hw(t); \
329  }
330 
331 #elif defined(BN_UMULT_HIGH)
332 #define mul_add(r,a,w,c) { \
333  BN_ULONG high,low,ret,tmp=(a); \
334  ret = (r); \
335  high= BN_UMULT_HIGH(w,tmp); \
336  ret += (c); \
337  low = (w) * tmp; \
338  (c) = (ret<(c))?1:0; \
339  (c) += high; \
340  ret += low; \
341  (c) += (ret<low)?1:0; \
342  (r) = ret; \
343  }
344 
345 #define mul(r,a,w,c) { \
346  BN_ULONG high,low,ret,ta=(a); \
347  low = (w) * ta; \
348  high= BN_UMULT_HIGH(w,ta); \
349  ret = low + (c); \
350  (c) = high; \
351  (c) += (ret<low)?1:0; \
352  (r) = ret; \
353  }
354 
355 #define sqr(r0,r1,a) { \
356  BN_ULONG tmp=(a); \
357  (r0) = tmp * tmp; \
358  (r1) = BN_UMULT_HIGH(tmp,tmp); \
359  }
360 
361 #else
362 /*************************************************************
363  * No long long type
364  */
365 
366 #define LBITS(a) ((a)&BN_MASK2l)
367 #define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
368 #define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
369 
370 #define LLBITS(a) ((a)&BN_MASKl)
371 #define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
372 #define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
373 
374 #define mul64(l,h,bl,bh) \
375  { \
376  BN_ULONG m,m1,lt,ht; \
377  \
378  lt=l; \
379  ht=h; \
380  m =(bh)*(lt); \
381  lt=(bl)*(lt); \
382  m1=(bl)*(ht); \
383  ht =(bh)*(ht); \
384  m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
385  ht+=HBITS(m); \
386  m1=L2HBITS(m); \
387  lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
388  (l)=lt; \
389  (h)=ht; \
390  }
391 
392 #define sqr64(lo,ho,in) \
393  { \
394  BN_ULONG l,h,m; \
395  \
396  h=(in); \
397  l=LBITS(h); \
398  h=HBITS(h); \
399  m =(l)*(h); \
400  l*=l; \
401  h*=h; \
402  h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
403  m =(m&BN_MASK2l)<<(BN_BITS4+1); \
404  l=(l+m)&BN_MASK2; if (l < m) h++; \
405  (lo)=l; \
406  (ho)=h; \
407  }
408 
409 #define mul_add(r,a,bl,bh,c) { \
410  BN_ULONG l,h; \
411  \
412  h= (a); \
413  l=LBITS(h); \
414  h=HBITS(h); \
415  mul64(l,h,(bl),(bh)); \
416  \
417  /* non-multiply part */ \
418  l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
419  (c)=(r); \
420  l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
421  (c)=h&BN_MASK2; \
422  (r)=l; \
423  }
424 
425 #define mul(r,a,bl,bh,c) { \
426  BN_ULONG l,h; \
427  \
428  h= (a); \
429  l=LBITS(h); \
430  h=HBITS(h); \
431  mul64(l,h,(bl),(bh)); \
432  \
433  /* non-multiply part */ \
434  l+=(c); if ((l&BN_MASK2) < (c)) h++; \
435  (c)=h&BN_MASK2; \
436  (r)=l&BN_MASK2; \
437  }
438 #endif /* !BN_LLONG */
439 
440 void bn_mul_normal(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb);
443 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
444 void ASM_EXPORT bn_sqr_comba8(BN_ULONG *r,const BN_ULONG *a);
445 void ASM_EXPORT bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
446 int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
447 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
448  int cl, int dl);
449 void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
450  int dna,int dnb,BN_ULONG *t);
452  int n,int tna,int tnb,BN_ULONG *t);
453 void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
454 void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
455 void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
456  BN_ULONG *t);
457 void bn_mul_high(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2,
458  BN_ULONG *t);
459 BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
460  int cl, int dl);
461 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
462  int cl, int dl);
463 
464 #ifdef __cplusplus
465 }
466 #endif
467 
468 #endif