cryptlib  3.4.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros
ec_mult.c
Go to the documentation of this file.
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in
17  * the documentation and/or other materials provided with the
18  * distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  * software must display the following acknowledgment:
22  * "This product includes software developed by the OpenSSL Project
23  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  * endorse or promote products derived from this software without
27  * prior written permission. For written permission, please contact
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  * nor may "OpenSSL" appear in their names without prior written
32  * permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  * acknowledgment:
36  * "This product includes software developed by the OpenSSL Project
37  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * ([email protected]). This product includes software written by Tim
55  * Hudson ([email protected]).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63 
64 #if defined( INC_ALL )
65  #include "ec_lcl.h"
66 #else
67  #include "bn/ec_lcl.h"
68 #endif /* Compiler-specific includes */
69 
70 #ifdef _MSC_VER /* For sizeof <-> int conversion - pcg */
71  #pragma warning( disable: 4267 )
72 #endif /* _MSC_VER */
73 
74 #if defined( USE_ECDH ) || defined( USE_ECDSA )
75 
76 /*
77  * This file implements the wNAF-based interleaving multi-exponentation method
78  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
79  * for multiplication with precomputation, we use wNAF splitting
80  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
81  */
82 
83 
84 
85 
86 /* structure for precomputed multiples of the generator */
87 typedef struct ec_pre_comp_st {
88  const EC_GROUP *group; /* parent EC_GROUP object */
89  size_t blocksize; /* block size for wNAF splitting */
90  size_t numblocks; /* max. number of blocks for which we have precomputation */
91  size_t w; /* window size */
92  EC_POINT **points; /* array with pre-calculated multiples of generator:
93  * 'num' pointers to EC_POINT objects followed by a NULL */
94  size_t num; /* numblocks * 2^(w-1) */
95  int references;
96 } EC_PRE_COMP;
97 
98 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
99 static void *ec_pre_comp_dup(void *);
100 static void ec_pre_comp_free(void *);
101 static void ec_pre_comp_clear_free(void *);
102 
103 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
104  {
105  EC_PRE_COMP *ret = NULL;
106 
107  if (!group)
108  return NULL;
109 
110  ret = (EC_PRE_COMP *)clBnAlloc( "ec_pre_comp_new", sizeof(EC_PRE_COMP));
111  if (!ret)
112  {
113  ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
114  return ret;
115  }
116  ret->group = group;
117  ret->blocksize = 8; /* default */
118  ret->numblocks = 0;
119  ret->w = 4; /* default */
120  ret->points = NULL;
121  ret->num = 0;
122  ret->references = 1;
123  return ret;
124  }
125 
126 static void *ec_pre_comp_dup(void *src_)
127  {
128  /* no need to actually copy, these objects never change! */
129 
130  CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
131 
132  return src_;
133  }
134 
135 static void ec_pre_comp_free(void *pre_)
136  {
137  int i;
138  EC_PRE_COMP *pre = pre_;
139 
140  if (!pre)
141  return;
142 
143  i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
144  if (i > 0)
145  return;
146 
147  if (pre->points)
148  {
149  EC_POINT **p;
150 
151  for (p = pre->points; *p != NULL; p++)
152  EC_POINT_free(*p);
153  OPENSSL_free(pre->points);
154  }
155  OPENSSL_free(pre);
156  }
157 
158 static void ec_pre_comp_clear_free(void *pre_)
159  {
160  int i;
161  EC_PRE_COMP *pre = pre_;
162 
163  if (!pre)
164  return;
165 
166  i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
167  if (i > 0)
168  return;
169 
170  if (pre->points)
171  {
172  EC_POINT **p;
173 
174  for (p = pre->points; *p != NULL; p++)
176  OPENSSL_cleanse(pre->points, sizeof pre->points);
177  OPENSSL_free(pre->points);
178  }
179  OPENSSL_cleanse(pre, sizeof pre);
180  OPENSSL_free(pre);
181  }
182 
183 
184 
185 
186 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
187  * This is an array r[] of values that are either zero or odd with an
188  * absolute value less than 2^w satisfying
189  * scalar = \sum_j r[j]*2^j
190  * where at most one of any w+1 consecutive digits is non-zero
191  * with the exception that the most significant digit may be only
192  * w-1 zeros away from that next non-zero digit.
193  */
194 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
195  {
196  int window_val;
197  int ok = 0;
198  signed char *r = NULL;
199  int sign = 1;
200  int bit, next_bit, mask;
201  size_t len = 0, j;
202 
203  if (BN_is_zero(scalar))
204  {
205  r = clBnAlloc( "compute_wNAF", 1);
206  if (!r)
207  {
208  ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
209  goto err;
210  }
211  r[0] = 0;
212  *ret_len = 1;
213  return r;
214  }
215 
216  if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
217  {
218  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
219  goto err;
220  }
221  bit = 1 << w; /* at most 128 */
222  next_bit = bit << 1; /* at most 256 */
223  mask = next_bit - 1; /* at most 255 */
224 
225  if (BN_is_negative(scalar))
226  {
227  sign = -1;
228  }
229 
230  len = BN_num_bits(scalar);
231  r = clBnAlloc( "compute_wNAF",
232  len + 1); /* modified wNAF may be one digit longer than binary representation
233  * (*ret_len will be set to the actual length, i.e. at most
234  * BN_num_bits(scalar) + 1) */
235  if (r == NULL)
236  {
237  ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
238  goto err;
239  }
240 
241  if (scalar->d == NULL || scalar->top == 0)
242  {
243  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
244  goto err;
245  }
246  window_val = scalar->d[0] & mask;
247  j = 0;
248  while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
249  {
250  int digit = 0;
251 
252  /* 0 <= window_val <= 2^(w+1) */
253 
254  if (window_val & 1)
255  {
256  /* 0 < window_val < 2^(w+1) */
257 
258  if (window_val & bit)
259  {
260  digit = window_val - next_bit; /* -2^w < digit < 0 */
261 
262 #if 1 /* modified wNAF */
263  if (j + w + 1 >= len)
264  {
265  /* special case for generating modified wNAFs:
266  * no new bits will be added into window_val,
267  * so using a positive digit here will decrease
268  * the total length of the representation */
269 
270  digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
271  }
272 #endif
273  }
274  else
275  {
276  digit = window_val; /* 0 < digit < 2^w */
277  }
278 
279  if (digit <= -bit || digit >= bit || !(digit & 1))
280  {
281  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
282  goto err;
283  }
284 
285  window_val -= digit;
286 
287  /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
288  * for modified window NAFs, it may also be 2^w
289  */
290  if (window_val != 0 && window_val != next_bit && window_val != bit)
291  {
292  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
293  goto err;
294  }
295  }
296 
297  r[j++] = sign * digit;
298 
299  window_val >>= 1;
300  window_val += bit * BN_is_bit_set(scalar, j + w);
301 
302  if (window_val > next_bit)
303  {
304  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
305  goto err;
306  }
307  }
308 
309  if (j > len + 1)
310  {
311  ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
312  goto err;
313  }
314  len = j;
315  ok = 1;
316 
317  err:
318  if (!ok)
319  {
320  OPENSSL_free(r);
321  r = NULL;
322  }
323  if (ok)
324  *ret_len = len;
325  return r;
326  }
327 
328 
329 /* TODO: table should be optimised for the wNAF-based implementation,
330  * sometimes smaller windows will give better performance
331  * (thus the boundaries should be increased)
332  */
333 #define EC_window_bits_for_scalar_size(b) \
334  ((size_t) \
335  ((b) >= 2000 ? 6 : \
336  (b) >= 800 ? 5 : \
337  (b) >= 300 ? 4 : \
338  (b) >= 70 ? 3 : \
339  (b) >= 20 ? 2 : \
340  1))
341 
342 /* Compute
343  * \sum scalars[i]*points[i],
344  * also including
345  * scalar*generator
346  * in the addition if scalar != NULL
347  */
348 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
349  size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
350  {
351  BN_CTX *new_ctx = NULL;
352  const EC_POINT *generator = NULL;
353  EC_POINT *tmp = NULL;
354  size_t totalnum;
355  size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
356  size_t pre_points_per_block = 0;
357  size_t i, j;
358  int k;
359  int r_is_inverted = 0;
360  int r_is_at_infinity = 1;
361  size_t *wsize = NULL; /* individual window sizes */
362  signed char **wNAF = NULL; /* individual wNAFs */
363  size_t *wNAF_len = NULL;
364  size_t max_len = 0;
365  size_t num_val;
366  EC_POINT **val = NULL; /* precomputation */
367  EC_POINT **v;
368  EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
369  const EC_PRE_COMP *pre_comp = NULL;
370  int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
371  * i.e. precomputation is not available */
372  int ret = 0;
373 
374  if (group->meth != r->meth)
375  {
377  return 0;
378  }
379 
380  if ((scalar == NULL) && (num == 0))
381  {
382  return EC_POINT_set_to_infinity(group, r);
383  }
384 
385  for (i = 0; i < num; i++)
386  {
387  if (group->meth != points[i]->meth)
388  {
390  return 0;
391  }
392  }
393 
394  if (ctx == NULL)
395  {
396  ctx = new_ctx = BN_CTX_new();
397  if (ctx == NULL)
398  goto err;
399  }
400 
401  if (scalar != NULL)
402  {
403  generator = EC_GROUP_get0_generator(group);
404  if (generator == NULL)
405  {
407  goto err;
408  }
409 
410  /* look if we can use precomputed multiples of generator */
411 
412  pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
413 
414  if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
415  {
416  blocksize = pre_comp->blocksize;
417 
418  /* determine maximum number of blocks that wNAF splitting may yield
419  * (NB: maximum wNAF length is bit length plus one) */
420  numblocks = (BN_num_bits(scalar) / blocksize) + 1;
421 
422  /* we cannot use more blocks than we have precomputation for */
423  if (numblocks > pre_comp->numblocks)
424  numblocks = pre_comp->numblocks;
425 
426  pre_points_per_block = 1u << (pre_comp->w - 1);
427 
428  /* check that pre_comp looks sane */
429  if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
430  {
431  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
432  goto err;
433  }
434  }
435  else
436  {
437  /* can't use precomputation */
438  pre_comp = NULL;
439  numblocks = 1;
440  num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
441  }
442  }
443 
444  totalnum = num + numblocks;
445 
446  wsize = clBnAlloc( "ec_wNAF_mul", totalnum * sizeof wsize[0]);
447  wNAF_len = clBnAlloc( "ec_wNAF_mul", totalnum * sizeof wNAF_len[0]);
448  wNAF = clBnAlloc( "ec_wNAF_mul", (totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
449  val_sub = clBnAlloc( "ec_wNAF_mul", totalnum * sizeof val_sub[0]);
450 
451  if (!wsize || !wNAF_len || !wNAF || !val_sub)
452  {
453  ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
454  goto err;
455  }
456 
457  wNAF[0] = NULL; /* preliminary pivot */
458 
459  /* num_val will be the total number of temporarily precomputed points */
460  num_val = 0;
461 
462  for (i = 0; i < num + num_scalar; i++)
463  {
464  size_t bits;
465 
466  bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
467  wsize[i] = EC_window_bits_for_scalar_size(bits);
468  num_val += 1u << (wsize[i] - 1);
469  wNAF[i + 1] = NULL; /* make sure we always have a pivot */
470  wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
471  if (wNAF[i] == NULL)
472  goto err;
473  if (wNAF_len[i] > max_len)
474  max_len = wNAF_len[i];
475  }
476 
477  if (numblocks)
478  {
479  /* we go here iff scalar != NULL */
480 
481  if (pre_comp == NULL)
482  {
483  if (num_scalar != 1)
484  {
485  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
486  goto err;
487  }
488  /* we have already generated a wNAF for 'scalar' */
489  }
490  else
491  {
492  signed char *tmp_wNAF = NULL;
493  size_t tmp_len = 0;
494 
495  if (num_scalar != 0)
496  {
497  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
498  goto err;
499  }
500 
501  /* use the window size for which we have precomputation */
502  wsize[num] = pre_comp->w;
503  tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
504  if (!tmp_wNAF)
505  goto err;
506 
507  if (tmp_len <= max_len)
508  {
509  /* One of the other wNAFs is at least as long
510  * as the wNAF belonging to the generator,
511  * so wNAF splitting will not buy us anything. */
512 
513  numblocks = 1;
514  totalnum = num + 1; /* don't use wNAF splitting */
515  wNAF[num] = tmp_wNAF;
516  wNAF[num + 1] = NULL;
517  wNAF_len[num] = tmp_len;
518  if (tmp_len > max_len)
519  max_len = tmp_len;
520  /* pre_comp->points starts with the points that we need here: */
521  val_sub[num] = pre_comp->points;
522  }
523  else
524  {
525  /* don't include tmp_wNAF directly into wNAF array
526  * - use wNAF splitting and include the blocks */
527 
528  signed char *pp;
529  EC_POINT **tmp_points;
530 
531  if (tmp_len < numblocks * blocksize)
532  {
533  /* possibly we can do with fewer blocks than estimated */
534  numblocks = (tmp_len + blocksize - 1) / blocksize;
535  if (numblocks > pre_comp->numblocks)
536  {
537  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
538  goto err;
539  }
540  totalnum = num + numblocks;
541  }
542 
543  /* split wNAF in 'numblocks' parts */
544  pp = tmp_wNAF;
545  tmp_points = pre_comp->points;
546 
547  for (i = num; i < totalnum; i++)
548  {
549  if (i < totalnum - 1)
550  {
551  wNAF_len[i] = blocksize;
552  if (tmp_len < blocksize)
553  {
554  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
555  goto err;
556  }
557  tmp_len -= blocksize;
558  }
559  else
560  /* last block gets whatever is left
561  * (this could be more or less than 'blocksize'!) */
562  wNAF_len[i] = tmp_len;
563 
564  wNAF[i + 1] = NULL;
565  wNAF[i] = clBnAlloc( "ec_wNAF_mul", wNAF_len[i]);
566  if (wNAF[i] == NULL)
567  {
568  ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
569  OPENSSL_free(tmp_wNAF);
570  goto err;
571  }
572  memcpy(wNAF[i], pp, wNAF_len[i]);
573  if (wNAF_len[i] > max_len)
574  max_len = wNAF_len[i];
575 
576  if (*tmp_points == NULL)
577  {
578  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
579  OPENSSL_free(tmp_wNAF);
580  goto err;
581  }
582  val_sub[i] = tmp_points;
583  tmp_points += pre_points_per_block;
584  pp += blocksize;
585  }
586  OPENSSL_free(tmp_wNAF);
587  }
588  }
589  }
590 
591  /* All points we precompute now go into a single array 'val'.
592  * 'val_sub[i]' is a pointer to the subarray for the i-th point,
593  * or to a subarray of 'pre_comp->points' if we already have precomputation. */
594  val = clBnAlloc( "ec_wNAF_mul", (num_val + 1) * sizeof val[0]);
595  if (val == NULL)
596  {
597  ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
598  goto err;
599  }
600  val[num_val] = NULL; /* pivot element */
601 
602  /* allocate points for precomputation */
603  v = val;
604  for (i = 0; i < num + num_scalar; i++)
605  {
606  val_sub[i] = v;
607  for (j = 0; j < (1u << (wsize[i] - 1)); j++)
608  {
609  *v = EC_POINT_new(group);
610  if (*v == NULL) goto err;
611  v++;
612  }
613  }
614  if (!(v == val + num_val))
615  {
616  ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
617  goto err;
618  }
619 
620  if ((tmp = EC_POINT_new(group)) == 0 )
621  goto err;
622 
623  /* prepare precomputed values:
624  * val_sub[i][0] := points[i]
625  * val_sub[i][1] := 3 * points[i]
626  * val_sub[i][2] := 5 * points[i]
627  * ...
628  */
629  for (i = 0; i < num + num_scalar; i++)
630  {
631  if (i < num)
632  {
633  if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
634  }
635  else
636  {
637  if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
638  }
639 
640  if (wsize[i] > 1)
641  {
642  if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
643  for (j = 1; j < (1u << (wsize[i] - 1)); j++)
644  {
645  if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
646  }
647  }
648  }
649 
650 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
651  if (!EC_POINTs_make_affine(group, num_val, val, ctx))
652  goto err;
653 #endif
654 
655  r_is_at_infinity = 1;
656 
657  for (k = max_len - 1; k >= 0; k--)
658  {
659  if (!r_is_at_infinity)
660  {
661  if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
662  }
663 
664  for (i = 0; i < totalnum; i++)
665  {
666  if (wNAF_len[i] > (size_t)k)
667  {
668  int digit = wNAF[i][k];
669  int is_neg;
670 
671  if (digit)
672  {
673  is_neg = digit < 0;
674 
675  if (is_neg)
676  digit = -digit;
677 
678  if (is_neg != r_is_inverted)
679  {
680  if (!r_is_at_infinity)
681  {
682  if (!EC_POINT_invert(group, r, ctx)) goto err;
683  }
684  r_is_inverted = !r_is_inverted;
685  }
686 
687  /* digit > 0 */
688 
689  if (r_is_at_infinity)
690  {
691  if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
692  r_is_at_infinity = 0;
693  }
694  else
695  {
696  if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
697  }
698  }
699  }
700  }
701  }
702 
703  if (r_is_at_infinity)
704  {
705  if (!EC_POINT_set_to_infinity(group, r)) goto err;
706  }
707  else
708  {
709  if (r_is_inverted)
710  if (!EC_POINT_invert(group, r, ctx)) goto err;
711  }
712 
713  ret = 1;
714 
715  err:
716  if (new_ctx != NULL)
717  BN_CTX_free(new_ctx);
718  if (tmp != NULL)
719  EC_POINT_free(tmp);
720  if (wsize != NULL)
721  OPENSSL_free(wsize);
722  if (wNAF_len != NULL)
723  OPENSSL_free(wNAF_len);
724  if (wNAF != NULL)
725  {
726  signed char **w;
727 
728  for (w = wNAF; *w != NULL; w++)
729  OPENSSL_free(*w);
730 
731  OPENSSL_free(wNAF);
732  }
733  if (val != NULL)
734  {
735  for (v = val; *v != NULL; v++)
737 
738  OPENSSL_free(val);
739  }
740  if (val_sub != NULL)
741  {
742  OPENSSL_free(val_sub);
743  }
744  return ret;
745  }
746 
747 
748 /* ec_wNAF_precompute_mult()
749  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
750  * for use with wNAF splitting as implemented in ec_wNAF_mul().
751  *
752  * 'pre_comp->points' is an array of multiples of the generator
753  * of the following form:
754  * points[0] = generator;
755  * points[1] = 3 * generator;
756  * ...
757  * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
758  * points[2^(w-1)] = 2^blocksize * generator;
759  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
760  * ...
761  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
762  * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
763  * ...
764  * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
765  * points[2^(w-1)*numblocks] = NULL
766  */
767 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
768  {
769  const EC_POINT *generator;
770  EC_POINT *tmp_point = NULL, *base = NULL, **var;
771  BN_CTX *new_ctx = NULL;
772  BIGNUM *order;
773  size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
774  EC_POINT **points = NULL;
775  EC_PRE_COMP *pre_comp;
776  int ret = 0;
777 
778  /* if there is an old EC_PRE_COMP object, throw it away */
779  EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
780 
781  if ((pre_comp = ec_pre_comp_new(group)) == NULL)
782  return 0;
783 
784  generator = EC_GROUP_get0_generator(group);
785  if (generator == NULL)
786  {
788  goto err;
789  }
790 
791  if (ctx == NULL)
792  {
793  ctx = new_ctx = BN_CTX_new();
794  if (ctx == NULL)
795  goto err;
796  }
797 
798  BN_CTX_start(ctx);
799  order = BN_CTX_get(ctx);
800  if (order == NULL) goto err;
801 
802  if (!EC_GROUP_get_order(group, order, ctx)) goto err;
803  if (BN_is_zero(order))
804  {
806  goto err;
807  }
808 
809  bits = BN_num_bits(order);
810  /* The following parameters mean we precompute (approximately)
811  * one point per bit.
812  *
813  * TBD: The combination 8, 4 is perfect for 160 bits; for other
814  * bit lengths, other parameter combinations might provide better
815  * efficiency.
816  */
817  blocksize = 8;
818  w = 4;
819  if (EC_window_bits_for_scalar_size(bits) > w)
820  {
821  /* let's not make the window too small ... */
822  w = EC_window_bits_for_scalar_size(bits);
823  }
824 
825  numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
826 
827  pre_points_per_block = 1u << (w - 1);
828  num = pre_points_per_block * numblocks; /* number of points to compute and store */
829 
830  points = clBnAlloc( "ec_wNAF_precompute_mult", sizeof (EC_POINT*)*(num + 1));
831  if (!points)
832  {
833  ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
834  goto err;
835  }
836 
837  var = points;
838  var[num] = NULL; /* pivot */
839  for (i = 0; i < num; i++)
840  {
841  if ((var[i] = EC_POINT_new(group)) == NULL)
842  {
843  ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
844  goto err;
845  }
846  }
847 
848  if ( (tmp_point = EC_POINT_new(group)) == 0 || (base = EC_POINT_new(group)) == 0 )
849  {
850  ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
851  goto err;
852  }
853 
854  if (!EC_POINT_copy(base, generator))
855  goto err;
856 
857  /* do the precomputation */
858  for (i = 0; i < numblocks; i++)
859  {
860  size_t j;
861 
862  if (!EC_POINT_dbl(group, tmp_point, base, ctx))
863  goto err;
864 
865  if (!EC_POINT_copy(*var++, base))
866  goto err;
867 
868  for (j = 1; j < pre_points_per_block; j++, var++)
869  {
870  /* calculate odd multiples of the current base point */
871  if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
872  goto err;
873  }
874 
875  if (i < numblocks - 1)
876  {
877  /* get the next base (multiply current one by 2^blocksize) */
878  size_t k;
879 
880  if (blocksize <= 2)
881  {
882  ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
883  goto err;
884  }
885 
886  if (!EC_POINT_dbl(group, base, tmp_point, ctx))
887  goto err;
888  for (k = 2; k < blocksize; k++)
889  {
890  if (!EC_POINT_dbl(group,base,base,ctx))
891  goto err;
892  }
893  }
894  }
895 
896  if (!EC_POINTs_make_affine(group, num, points, ctx))
897  goto err;
898 
899  pre_comp->group = group;
900  pre_comp->blocksize = blocksize;
901  pre_comp->numblocks = numblocks;
902  pre_comp->w = w;
903  pre_comp->points = points;
904  points = NULL;
905  pre_comp->num = num;
906 
907  if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
908  ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
909  goto err;
910  pre_comp = NULL;
911 
912  ret = 1;
913  err:
914  if (ctx != NULL)
915  BN_CTX_end(ctx);
916  if (new_ctx != NULL)
917  BN_CTX_free(new_ctx);
918  if (pre_comp)
919  ec_pre_comp_free(pre_comp);
920  if (points)
921  {
922  EC_POINT **p;
923 
924  for (p = points; *p != NULL; p++)
925  EC_POINT_free(*p);
926  OPENSSL_free(points);
927  }
928  if (tmp_point)
929  EC_POINT_free(tmp_point);
930  if (base)
931  EC_POINT_free(base);
932  return ret;
933  }
934 
935 
936 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
937  {
938  if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
939  return 1;
940  else
941  return 0;
942  }
943 
944 #endif /* USE_ECDH || USE_ECDSA */