cryptlib  3.4.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros
trees.c
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2009 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #if defined( INC_ALL )
38  #include "deflate.h"
39 #else
40  #include "zlib/deflate.h"
41 #endif /* Compiler-specific includes */
42 #if defined( _MSC_VER )
43  #pragma warning( disable: 4267 ) /* Warning about data size cast - pcg */
44 #endif /* VC++ */ /* See also comment on line 225 - pcg */
45 
46 #ifdef DEBUG
47 # include <ctype.h>
48 #endif
49 
50 /* ===========================================================================
51  * Constants
52  */
53 
54 #define MAX_BL_BITS 7
55 /* Bit length codes must not exceed MAX_BL_BITS bits */
56 
57 #define END_BLOCK 256
58 /* end of block literal code */
59 
60 #define REP_3_6 16
61 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
62 
63 #define REPZ_3_10 17
64 /* repeat a zero length 3-10 times (3 bits of repeat count) */
65 
66 #define REPZ_11_138 18
67 /* repeat a zero length 11-138 times (7 bits of repeat count) */
68 
69 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
70  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
71 
72 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
73  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
74 
75 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
76  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
77 
79  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
80 /* The lengths of the bit length codes are sent in order of decreasing
81  * probability, to avoid transmitting the lengths for unused bit length codes.
82  */
83 
84 #define Buf_size (8 * 2*sizeof(char))
85 /* Number of bits used within bi_buf. (bi_buf might be implemented on
86  * more than 16 bits on some systems.)
87  */
88 
89 /* ===========================================================================
90  * Local data. These are initialized only once.
91  */
92 
93 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
94 
95 #if defined(GEN_TREES_H) || !defined(STDC)
96 /* non ANSI compilers may not accept trees.h */
97 
99 /* The static literal tree. Since the bit lengths are imposed, there is no
100  * need for the L_CODES extra codes used during heap construction. However
101  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
102  * below).
103  */
104 
106 /* The static distance tree. (Actually a trivial tree since all codes use
107  * 5 bits.)
108  */
109 
111 /* Distance codes. The first 256 values correspond to the distances
112  * 3 .. 258, the last 256 values correspond to the top 8 bits of
113  * the 15 bit distances.
114  */
115 
117 /* length code for each normalized match length (0 == MIN_MATCH) */
118 
120 /* First normalized length for each code (0 = MIN_MATCH) */
121 
123 /* First normalized distance for each code (0 = distance of 1) */
124 
125 #else
126 # include "trees.h"
127 #endif /* GEN_TREES_H */
128 
129 struct static_tree_desc_s {
130  const ct_data *static_tree; /* static tree or NULL */
131  const intf *extra_bits; /* extra bits for each code or NULL */
132  int extra_base; /* base index for extra_bits */
133  int elems; /* max number of elements in the tree */
134  int max_length; /* max bit length for the codes */
135 };
136 
139 
142 
144 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
145 
146 /* ===========================================================================
147  * Local (static) routines in this file.
148  */
149 
150 local void tr_static_init OF((void));
152 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
153 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
154 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
155 local void build_tree OF((deflate_state *s, tree_desc *desc));
156 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
157 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
159 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
160  int blcodes));
161 local void compress_block OF((deflate_state *s, ct_data *ltree,
162  ct_data *dtree));
164 local unsigned bi_reverse OF((unsigned value, int length));
165 local void bi_windup OF((deflate_state *s));
166 local void bi_flush OF((deflate_state *s));
167 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
168  int header));
169 
170 #ifdef GEN_TREES_H
171 local void gen_trees_header OF((void));
172 #endif
173 
174 #ifndef DEBUG
175 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
176  /* Send a code of the given tree. c and tree must not have side effects */
177 
178 #else /* DEBUG */
179 # define send_code(s, c, tree) \
180  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
181  send_bits(s, tree[c].Code, tree[c].Len); }
182 #endif
183 
184 /* ===========================================================================
185  * Output a short LSB first on the stream.
186  * IN assertion: there is enough room in pendingBuf.
187  */
188 #define put_short(s, w) { \
189  put_byte(s, (uch)((w) & 0xff)); \
190  put_byte(s, (uch)((ush)(w) >> 8)); \
191 }
192 
193 /* ===========================================================================
194  * Send a value on a given number of bits.
195  * IN assertion: length <= 16 and value fits in length bits.
196  */
197 #ifdef DEBUG
198 local void send_bits OF((deflate_state *s, int value, int length));
199 
200 local void send_bits(s, value, length)
201  deflate_state *s;
202  int value; /* value to send */
203  int length; /* number of bits */
204 {
205  Tracevv((stderr," l %2d v %4x ", length, value));
206  Assert(length > 0 && length <= 15, "invalid length");
207  s->bits_sent += (ulg)length;
208 
209  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
210  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
211  * unused bits in value.
212  */
213  if (s->bi_valid > (int)Buf_size - length) {
214  s->bi_buf |= (ush)value << s->bi_valid;
215  put_short(s, s->bi_buf);
216  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
217  s->bi_valid += length - Buf_size;
218  } else {
219  s->bi_buf |= (ush)value << s->bi_valid;
220  s->bi_valid += length;
221  }
222 }
223 #else /* !DEBUG */
224 
225 #define send_bits(s, value, length) \
226 { int len = length;\
227  if (s->bi_valid > (int)Buf_size - len) {\
228  int val = value;\
229  s->bi_buf |= (ush)val << s->bi_valid;\
230  put_short(s, s->bi_buf);\
231  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
232  s->bi_valid += len - Buf_size;\
233  } else {\
234  s->bi_buf |= (ush)(value) << s->bi_valid;\
235  s->bi_valid += len;\
236  }\
237 }
238 #endif /* DEBUG */
239 
240 
241 /* the arguments must not have side effects */
242 
243 /* ===========================================================================
244  * Initialize the various 'constant' tables.
245  */
247 {
248 #if defined(GEN_TREES_H) || !defined(STDC)
249  static int static_init_done = 0;
250  int n; /* iterates over tree elements */
251  int bits; /* bit counter */
252  int length; /* length value */
253  int code; /* code value */
254  int dist; /* distance index */
255  ush bl_count[MAX_BITS+1];
256  /* number of codes at each bit length for an optimal tree */
257 
258  if (static_init_done) return;
259 
260  /* For some embedded targets, global variables are not initialized: */
261 #ifdef NO_INIT_GLOBAL_POINTERS
267 #endif
268 
269  /* Initialize the mapping length (0..255) -> length code (0..28) */
270  length = 0;
271  for (code = 0; code < LENGTH_CODES-1; code++) {
272  base_length[code] = length;
273  for (n = 0; n < (1<<extra_lbits[code]); n++) {
274  _length_code[length++] = (uch)code;
275  }
276  }
277  Assert (length == 256, "tr_static_init: length != 256");
278  /* Note that the length 255 (match length 258) can be represented
279  * in two different ways: code 284 + 5 bits or code 285, so we
280  * overwrite length_code[255] to use the best encoding:
281  */
282  _length_code[length-1] = (uch)code;
283 
284  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
285  dist = 0;
286  for (code = 0 ; code < 16; code++) {
287  base_dist[code] = dist;
288  for (n = 0; n < (1<<extra_dbits[code]); n++) {
289  _dist_code[dist++] = (uch)code;
290  }
291  }
292  Assert (dist == 256, "tr_static_init: dist != 256");
293  dist >>= 7; /* from now on, all distances are divided by 128 */
294  for ( ; code < D_CODES; code++) {
295  base_dist[code] = dist << 7;
296  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
297  _dist_code[256 + dist++] = (uch)code;
298  }
299  }
300  Assert (dist == 256, "tr_static_init: 256+dist != 512");
301 
302  /* Construct the codes of the static literal tree */
303  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
304  n = 0;
305  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
306  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
307  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
308  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
309  /* Codes 286 and 287 do not exist, but we must include them in the
310  * tree construction to get a canonical Huffman tree (longest code
311  * all ones)
312  */
313  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
314 
315  /* The static distance tree is trivial: */
316  for (n = 0; n < D_CODES; n++) {
317  static_dtree[n].Len = 5;
318  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
319  }
320  static_init_done = 1;
321 
322 # ifdef GEN_TREES_H
323  gen_trees_header();
324 # endif
325 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
326 }
327 
328 /* ===========================================================================
329  * Genererate the file trees.h describing the static trees.
330  */
331 #ifdef GEN_TREES_H
332 # ifndef DEBUG
333 # include <stdio.h>
334 # endif
335 
336 # define SEPARATOR(i, last, width) \
337  ((i) == (last)? "\n};\n\n" : \
338  ((i) % (width) == (width)-1 ? ",\n" : ", "))
339 
340 void gen_trees_header()
341 {
342  FILE *header = fopen("trees.h", "w");
343  int i;
344 
345  Assert (header != NULL, "Can't open trees.h");
346  fprintf(header,
347  "/* header created automatically with -DGEN_TREES_H */\n\n");
348 
349  fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
350  for (i = 0; i < L_CODES+2; i++) {
351  fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
352  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
353  }
354 
355  fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
356  for (i = 0; i < D_CODES; i++) {
357  fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
358  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
359  }
360 
361  fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
362  for (i = 0; i < DIST_CODE_LEN; i++) {
363  fprintf(header, "%2u%s", _dist_code[i],
364  SEPARATOR(i, DIST_CODE_LEN-1, 20));
365  }
366 
367  fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
368  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
369  fprintf(header, "%2u%s", _length_code[i],
370  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
371  }
372 
373  fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
374  for (i = 0; i < LENGTH_CODES; i++) {
375  fprintf(header, "%1u%s", base_length[i],
376  SEPARATOR(i, LENGTH_CODES-1, 20));
377  }
378 
379  fprintf(header, "local const int base_dist[D_CODES] = {\n");
380  for (i = 0; i < D_CODES; i++) {
381  fprintf(header, "%5u%s", base_dist[i],
382  SEPARATOR(i, D_CODES-1, 10));
383  }
384 
385  fclose(header);
386 }
387 #endif /* GEN_TREES_H */
388 
389 /* ===========================================================================
390  * Initialize the tree data structures for a new zlib stream.
391  */
392 void _tr_init(deflate_state *s) /* pcg */
393 {
394  tr_static_init();
395 
396  s->l_desc.dyn_tree = s->dyn_ltree;
398 
399  s->d_desc.dyn_tree = s->dyn_dtree;
401 
402  s->bl_desc.dyn_tree = s->bl_tree;
404 
405  s->bi_buf = 0;
406  s->bi_valid = 0;
407  s->last_eob_len = 8; /* enough lookahead for inflate */
408 #ifdef DEBUG
409  s->compressed_len = 0L;
410  s->bits_sent = 0L;
411 #endif
412 
413  /* Initialize the first block of the first file: */
414  init_block(s);
415 }
416 
417 /* ===========================================================================
418  * Initialize a new block.
419  */
420 local void init_block(deflate_state *s) /* pcg */
421 {
422  int n; /* iterates over tree elements */
423 
424  /* Initialize the trees. */
425  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
426  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
427  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
428 
429  s->dyn_ltree[END_BLOCK].Freq = 1;
430  s->opt_len = s->static_len = 0L;
431  s->last_lit = s->matches = 0;
432 }
433 
434 #define SMALLEST 1
435 /* Index within the heap array of least frequent node in the Huffman tree */
436 
437 
438 /* ===========================================================================
439  * Remove the smallest element from the heap and recreate the heap with
440  * one less element. Updates heap and heap_len.
441  */
442 #define pqremove(s, tree, top) \
443 {\
444  top = s->heap[SMALLEST]; \
445  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
446  pqdownheap(s, tree, SMALLEST); \
447 }
448 
449 /* ===========================================================================
450  * Compares to subtrees, using the tree depth as tie breaker when
451  * the subtrees have equal frequency. This minimizes the worst case length.
452  */
453 #define smaller(tree, n, m, depth) \
454  (tree[n].Freq < tree[m].Freq || \
455  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
456 
457 /* ===========================================================================
458  * Restore the heap property by moving down the tree starting at node k,
459  * exchanging a node with the smallest of its two sons if necessary, stopping
460  * when the heap property is re-established (each father smaller than its
461  * two sons).
462  */
463 local void pqdownheap(deflate_state *s, /* pcg */
464  ct_data *tree, /* the tree to restore */
465  int k) /* node to move down */
466 {
467  int v = s->heap[k];
468  int j = k << 1; /* left son of k */
469  while (j <= s->heap_len) {
470  /* Set j to the smallest of the two sons: */
471  if (j < s->heap_len &&
472  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
473  j++;
474  }
475  /* Exit if v is smaller than both sons */
476  if (smaller(tree, v, s->heap[j], s->depth)) break;
477 
478  /* Exchange v with the smallest son */
479  s->heap[k] = s->heap[j]; k = j;
480 
481  /* And continue down the tree, setting j to the left son of k */
482  j <<= 1;
483  }
484  s->heap[k] = v;
485 }
486 
487 /* ===========================================================================
488  * Compute the optimal bit lengths for a tree and update the total bit length
489  * for the current block.
490  * IN assertion: the fields freq and dad are set, heap[heap_max] and
491  * above are the tree nodes sorted by increasing frequency.
492  * OUT assertions: the field len is set to the optimal bit length, the
493  * array bl_count contains the frequencies for each bit length.
494  * The length opt_len is updated; static_len is also updated if stree is
495  * not null.
496  */
497 local void gen_bitlen(deflate_state *s, /* pcg */
498  tree_desc *desc) /* the tree descriptor */
499 {
500  ct_data *tree = desc->dyn_tree;
501  int max_code = desc->max_code;
502  const ct_data *stree = desc->stat_desc->static_tree;
503  const intf *extra = desc->stat_desc->extra_bits;
504  int base = desc->stat_desc->extra_base;
505  int max_length = desc->stat_desc->max_length;
506  int h; /* heap index */
507  int n, m; /* iterate over the tree elements */
508  int bits; /* bit length */
509  int xbits; /* extra bits */
510  ush f; /* frequency */
511  int overflow = 0; /* number of elements with bit length too large */
512 
513  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
514 
515  /* In a first pass, compute the optimal bit lengths (which may
516  * overflow in the case of the bit length tree).
517  */
518  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
519 
520  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
521  n = s->heap[h];
522  bits = tree[tree[n].Dad].Len + 1;
523  if (bits > max_length) bits = max_length, overflow++;
524  tree[n].Len = (ush)bits;
525  /* We overwrite tree[n].Dad which is no longer needed */
526 
527  if (n > max_code) continue; /* not a leaf node */
528 
529  s->bl_count[bits]++;
530  xbits = 0;
531  if (n >= base) xbits = extra[n-base];
532  f = tree[n].Freq;
533  s->opt_len += (ulg)f * (bits + xbits);
534  if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
535  }
536  if (overflow == 0) return;
537 
538  Trace((stderr,"\nbit length overflow\n"));
539  /* This happens for example on obj2 and pic of the Calgary corpus */
540 
541  /* Find the first bit length which could increase: */
542  do {
543  bits = max_length-1;
544  while (s->bl_count[bits] == 0) bits--;
545  s->bl_count[bits]--; /* move one leaf down the tree */
546  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
547  s->bl_count[max_length]--;
548  /* The brother of the overflow item also moves one step up,
549  * but this does not affect bl_count[max_length]
550  */
551  overflow -= 2;
552  } while (overflow > 0);
553 
554  /* Now recompute all bit lengths, scanning in increasing frequency.
555  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
556  * lengths instead of fixing only the wrong ones. This idea is taken
557  * from 'ar' written by Haruhiko Okumura.)
558  */
559  for (bits = max_length; bits != 0; bits--) {
560  n = s->bl_count[bits];
561  while (n != 0) {
562  m = s->heap[--h];
563  if (m > max_code) continue;
564  if ((unsigned) tree[m].Len != (unsigned) bits) {
565  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
566  s->opt_len += ((long)bits - (long)tree[m].Len)
567  *(long)tree[m].Freq;
568  tree[m].Len = (ush)bits;
569  }
570  n--;
571  }
572  }
573 }
574 
575 /* ===========================================================================
576  * Generate the codes for a given tree and bit counts (which need not be
577  * optimal).
578  * IN assertion: the array bl_count contains the bit length statistics for
579  * the given tree and the field len is set for all tree elements.
580  * OUT assertion: the field code is set for all tree elements of non
581  * zero code length.
582  */
583 local void gen_codes (ct_data *tree, /* the tree to decorate */ /* pcg */
584  int max_code, /* largest code with non zero frequency */
585  ushf *bl_count) /* number of codes at each bit length */
586 {
587  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
588  ush code = 0; /* running code value */
589  int bits; /* bit index */
590  int n; /* code index */
591 
592  /* The distribution counts are first used to generate the code values
593  * without bit reversal.
594  */
595  for (bits = 1; bits <= MAX_BITS; bits++) {
596  next_code[bits] = code = (code + bl_count[bits-1]) << 1;
597  }
598  /* Check that the bit counts in bl_count are consistent. The last code
599  * must be all ones.
600  */
601  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
602  "inconsistent bit counts");
603  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
604 
605  for (n = 0; n <= max_code; n++) {
606  int len = tree[n].Len;
607  if (len == 0) continue;
608  /* Now reverse the bits */
609  tree[n].Code = bi_reverse(next_code[len]++, len);
610 
611  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
612  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
613  }
614 }
615 
616 /* ===========================================================================
617  * Construct one Huffman tree and assigns the code bit strings and lengths.
618  * Update the total bit length for the current block.
619  * IN assertion: the field freq is set for all tree elements.
620  * OUT assertions: the fields len and code are set to the optimal bit length
621  * and corresponding code. The length opt_len is updated; static_len is
622  * also updated if stree is not null. The field max_code is set.
623  */
624 local void build_tree(deflate_state *s, /* pcg */
625  tree_desc *desc) /* the tree descriptor */
626 {
627  ct_data *tree = desc->dyn_tree;
628  const ct_data *stree = desc->stat_desc->static_tree;
629  int elems = desc->stat_desc->elems;
630  int n, m; /* iterate over heap elements */
631  int max_code = -1; /* largest code with non zero frequency */
632  int node; /* new node being created */
633 
634  /* Construct the initial heap, with least frequent element in
635  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
636  * heap[0] is not used.
637  */
638  s->heap_len = 0, s->heap_max = HEAP_SIZE;
639 
640  for (n = 0; n < elems; n++) {
641  if (tree[n].Freq != 0) {
642  s->heap[++(s->heap_len)] = max_code = n;
643  s->depth[n] = 0;
644  } else {
645  tree[n].Len = 0;
646  }
647  }
648 
649  /* The pkzip format requires that at least one distance code exists,
650  * and that at least one bit should be sent even if there is only one
651  * possible code. So to avoid special checks later on we force at least
652  * two codes of non zero frequency.
653  */
654  while (s->heap_len < 2) {
655  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
656  tree[node].Freq = 1;
657  s->depth[node] = 0;
658  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
659  /* node is 0 or 1 so it does not have extra bits */
660  }
661  desc->max_code = max_code;
662 
663  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
664  * establish sub-heaps of increasing lengths:
665  */
666  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
667 
668  /* Construct the Huffman tree by repeatedly combining the least two
669  * frequent nodes.
670  */
671  node = elems; /* next internal node of the tree */
672  do {
673  pqremove(s, tree, n); /* n = node of least frequency */
674  m = s->heap[SMALLEST]; /* m = node of next least frequency */
675 
676  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
677  s->heap[--(s->heap_max)] = m;
678 
679  /* Create a new node father of n and m */
680  tree[node].Freq = tree[n].Freq + tree[m].Freq;
681  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
682  s->depth[n] : s->depth[m]) + 1);
683  tree[n].Dad = tree[m].Dad = (ush)node;
684 #ifdef DUMP_BL_TREE
685  if (tree == s->bl_tree) {
686  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
687  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
688  }
689 #endif
690  /* and insert the new node in the heap */
691  s->heap[SMALLEST] = node++;
692  pqdownheap(s, tree, SMALLEST);
693 
694  } while (s->heap_len >= 2);
695 
696  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
697 
698  /* At this point, the fields freq and dad are set. We can now
699  * generate the bit lengths.
700  */
701  gen_bitlen(s, (tree_desc *)desc);
702 
703  /* The field len is now set, we can generate the bit codes */
704  gen_codes ((ct_data *)tree, max_code, s->bl_count);
705 }
706 
707 /* ===========================================================================
708  * Scan a literal or distance tree to determine the frequencies of the codes
709  * in the bit length tree.
710  */
711 local void scan_tree (deflate_state *s, /* pcg */
712  ct_data *tree, /* the tree to be scanned */
713  int max_code) /* and its largest code of non zero frequency */
714 {
715  int n; /* iterates over all tree elements */
716  int prevlen = -1; /* last emitted length */
717  int curlen; /* length of current code */
718  int nextlen = tree[0].Len; /* length of next code */
719  int count = 0; /* repeat count of the current code */
720  int max_count = 7; /* max repeat count */
721  int min_count = 4; /* min repeat count */
722 
723  if (nextlen == 0) max_count = 138, min_count = 3;
724  tree[max_code+1].Len = (ush)0xffff; /* guard */
725 
726  for (n = 0; n <= max_code; n++) {
727  curlen = nextlen; nextlen = tree[n+1].Len;
728  if (++count < max_count && curlen == nextlen) {
729  continue;
730  } else if (count < min_count) {
731  s->bl_tree[curlen].Freq += count;
732  } else if (curlen != 0) {
733  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
734  s->bl_tree[REP_3_6].Freq++;
735  } else if (count <= 10) {
736  s->bl_tree[REPZ_3_10].Freq++;
737  } else {
738  s->bl_tree[REPZ_11_138].Freq++;
739  }
740  count = 0; prevlen = curlen;
741  if (nextlen == 0) {
742  max_count = 138, min_count = 3;
743  } else if (curlen == nextlen) {
744  max_count = 6, min_count = 3;
745  } else {
746  max_count = 7, min_count = 4;
747  }
748  }
749 }
750 
751 /* ===========================================================================
752  * Send a literal or distance tree in compressed form, using the codes in
753  * bl_tree.
754  */
755 local void send_tree (deflate_state *s, /* pcg */
756  ct_data *tree, /* the tree to be scanned */
757  int max_code) /* and its largest code of non zero frequency */
758 {
759  int n; /* iterates over all tree elements */
760  int prevlen = -1; /* last emitted length */
761  int curlen; /* length of current code */
762  int nextlen = tree[0].Len; /* length of next code */
763  int count = 0; /* repeat count of the current code */
764  int max_count = 7; /* max repeat count */
765  int min_count = 4; /* min repeat count */
766 
767  /* tree[max_code+1].Len = -1; */ /* guard already set */
768  if (nextlen == 0) max_count = 138, min_count = 3;
769 
770  for (n = 0; n <= max_code; n++) {
771  curlen = nextlen; nextlen = tree[n+1].Len;
772  if (++count < max_count && curlen == nextlen) {
773  continue;
774  } else if (count < min_count) {
775  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
776 
777  } else if (curlen != 0) {
778  if (curlen != prevlen) {
779  send_code(s, curlen, s->bl_tree); count--;
780  }
781  Assert(count >= 3 && count <= 6, " 3_6?");
782  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
783 
784  } else if (count <= 10) {
785  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
786 
787  } else {
788  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
789  }
790  count = 0; prevlen = curlen;
791  if (nextlen == 0) {
792  max_count = 138, min_count = 3;
793  } else if (curlen == nextlen) {
794  max_count = 6, min_count = 3;
795  } else {
796  max_count = 7, min_count = 4;
797  }
798  }
799 }
800 
801 /* ===========================================================================
802  * Construct the Huffman tree for the bit lengths and return the index in
803  * bl_order of the last bit length code to send.
804  */
806 {
807  int max_blindex; /* index of last bit length code of non zero freq */
808 
809  /* Determine the bit length frequencies for literal and distance trees */
810  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
811  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
812 
813  /* Build the bit length tree: */
814  build_tree(s, (tree_desc *)(&(s->bl_desc)));
815  /* opt_len now includes the length of the tree representations, except
816  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
817  */
818 
819  /* Determine the number of bit length codes to send. The pkzip format
820  * requires that at least 4 bit length codes be sent. (appnote.txt says
821  * 3 but the actual value used is 4.)
822  */
823  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
824  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
825  }
826  /* Update opt_len to include the bit length tree and counts */
827  s->opt_len += 3*(max_blindex+1) + 5+5+4;
828  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
829  s->opt_len, s->static_len));
830 
831  return max_blindex;
832 }
833 
834 /* ===========================================================================
835  * Send the header for a block using dynamic Huffman trees: the counts, the
836  * lengths of the bit length codes, the literal tree and the distance tree.
837  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
838  */
840  int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
841 {
842  int rank; /* index in bl_order */
843 
844  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
845  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
846  "too many codes");
847  Tracev((stderr, "\nbl counts: "));
848  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
849  send_bits(s, dcodes-1, 5);
850  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
851  for (rank = 0; rank < blcodes; rank++) {
852  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
853  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
854  }
855  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
856 
857  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
858  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
859 
860  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
861  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
862 }
863 
864 /* ===========================================================================
865  * Send a stored block
866  */
867 void _tr_stored_block(deflate_state *s, /* pcg */
868  charf *buf, /* input block */
869  ulg stored_len, /* length of input block */
870  int last) /* one if this is the last block for a file */
871 {
872  send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
873 #ifdef DEBUG
874  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
875  s->compressed_len += (stored_len + 4) << 3;
876 #endif
877  copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
878 }
879 
880 /* ===========================================================================
881  * Send one empty static block to give enough lookahead for inflate.
882  * This takes 10 bits, of which 7 may remain in the bit buffer.
883  * The current inflate code requires 9 bits of lookahead. If the
884  * last two codes for the previous block (real code plus EOB) were coded
885  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
886  * the last real code. In this case we send two empty static blocks instead
887  * of one. (There are no problems if the previous block is stored or fixed.)
888  * To simplify the code, we assume the worst case of last real code encoded
889  * on one bit only.
890  */
891 void _tr_align(deflate_state *s) /* pcg */
892 {
893  send_bits(s, STATIC_TREES<<1, 3);
895 #ifdef DEBUG
896  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
897 #endif
898  bi_flush(s);
899  /* Of the 10 bits for the empty block, we have already sent
900  * (10 - bi_valid) bits. The lookahead for the last real code (before
901  * the EOB of the previous block) was thus at least one plus the length
902  * of the EOB plus what we have just sent of the empty static block.
903  */
904  if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
905  send_bits(s, STATIC_TREES<<1, 3);
907 #ifdef DEBUG
908  s->compressed_len += 10L;
909 #endif
910  bi_flush(s);
911  }
912  s->last_eob_len = 7;
913 }
914 
915 /* ===========================================================================
916  * Determine the best encoding for the current block: dynamic trees, static
917  * trees or store, and output the encoded block to the zip file.
918  */
919 void _tr_flush_block(deflate_state *s, /* pcg */
920  charf *buf, /* input block, or NULL if too old */
921  ulg stored_len, /* length of input block */
922  int last) /* one if this is the last block for a file */
923 {
924  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
925  int max_blindex = 0; /* index of last bit length code of non zero freq */
926 
927  /* Build the Huffman trees unless a stored block is forced */
928  if (s->level > 0) {
929 
930  /* Check if the file is binary or text */
931  if (s->strm->data_type == Z_UNKNOWN)
932  s->strm->data_type = detect_data_type(s);
933 
934  /* Construct the literal and distance trees */
935  build_tree(s, (tree_desc *)(&(s->l_desc)));
936  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
937  s->static_len));
938 
939  build_tree(s, (tree_desc *)(&(s->d_desc)));
940  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
941  s->static_len));
942  /* At this point, opt_len and static_len are the total bit lengths of
943  * the compressed block data, excluding the tree representations.
944  */
945 
946  /* Build the bit length tree for the above two trees, and get the index
947  * in bl_order of the last bit length code to send.
948  */
949  max_blindex = build_bl_tree(s);
950 
951  /* Determine the best encoding. Compute the block lengths in bytes. */
952  opt_lenb = (s->opt_len+3+7)>>3;
953  static_lenb = (s->static_len+3+7)>>3;
954 
955  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
956  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
957  s->last_lit));
958 
959  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
960 
961  } else {
962  Assert(buf != (char*)0, "lost buf");
963  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
964  }
965 
966 #ifdef FORCE_STORED
967  if (buf != (char*)0) { /* force stored block */
968 #else
969  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
970  /* 4: two words for the lengths */
971 #endif
972  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
973  * Otherwise we can't have processed more than WSIZE input bytes since
974  * the last block flush, because compression would have been
975  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
976  * transform a block into a stored block.
977  */
978  _tr_stored_block(s, buf, stored_len, last);
979 
980 #ifdef FORCE_STATIC
981  } else if (static_lenb >= 0) { /* force static trees */
982 #else
983  } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
984 #endif
985  send_bits(s, (STATIC_TREES<<1)+last, 3);
987 #ifdef DEBUG
988  s->compressed_len += 3 + s->static_len;
989 #endif
990  } else {
991  send_bits(s, (DYN_TREES<<1)+last, 3);
993  max_blindex+1);
995 #ifdef DEBUG
996  s->compressed_len += 3 + s->opt_len;
997 #endif
998  }
999  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1000  /* The above check is made mod 2^32, for files larger than 512 MB
1001  * and uLong implemented on 32 bits.
1002  */
1003  init_block(s);
1004 
1005  if (last) {
1006  bi_windup(s);
1007 #ifdef DEBUG
1008  s->compressed_len += 7; /* align on byte boundary */
1009 #endif
1010  }
1011  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1012  s->compressed_len-7*last));
1013 }
1014 
1015 /* ===========================================================================
1016  * Save the match info and tally the frequency counts. Return true if
1017  * the current block must be flushed.
1018  */
1019 int _tr_tally (deflate_state *s, /* pcg */
1020  unsigned dist, /* distance of matched string */
1021  unsigned lc) /* match length-MIN_MATCH or unmatched char (if dist==0) */
1022 {
1023  s->d_buf[s->last_lit] = (ush)dist;
1024  s->l_buf[s->last_lit++] = (uch)lc;
1025  if (dist == 0) {
1026  /* lc is the unmatched char */
1027  s->dyn_ltree[lc].Freq++;
1028  } else {
1029  s->matches++;
1030  /* Here, lc is the match length - MIN_MATCH */
1031  dist--; /* dist = match distance - 1 */
1032  Assert((ush)dist < (ush)MAX_DIST(s) &&
1033  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1034  (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1035 
1036  s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1037  s->dyn_dtree[d_code(dist)].Freq++;
1038  }
1039 
1040 #ifdef TRUNCATE_BLOCK
1041  /* Try to guess if it is profitable to stop the current block here */
1042  if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1043  /* Compute an upper bound for the compressed length */
1044  ulg out_length = (ulg)s->last_lit*8L;
1045  ulg in_length = (ulg)((long)s->strstart - s->block_start);
1046  int dcode;
1047  for (dcode = 0; dcode < D_CODES; dcode++) {
1048  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1049  (5L+extra_dbits[dcode]);
1050  }
1051  out_length >>= 3;
1052  Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1053  s->last_lit, in_length, out_length,
1054  100L - out_length*100L/in_length));
1055  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1056  }
1057 #endif
1058  return (s->last_lit == s->lit_bufsize-1);
1059  /* We avoid equality with lit_bufsize because of wraparound at 64K
1060  * on 16 bit machines and because stored blocks are restricted to
1061  * 64K-1 bytes.
1062  */
1063 }
1064 
1065 /* ===========================================================================
1066  * Send the block data compressed using the given Huffman trees
1067  */
1069  ct_data *ltree, /* literal tree */
1070  ct_data *dtree) /* distance tree */
1071 {
1072  unsigned dist; /* distance of matched string */
1073  int lc; /* match length or unmatched char (if dist == 0) */
1074  unsigned lx = 0; /* running index in l_buf */
1075  unsigned code; /* the code to send */
1076  int extra; /* number of extra bits to send */
1077 
1078  if (s->last_lit != 0) do {
1079  dist = s->d_buf[lx];
1080  lc = s->l_buf[lx++];
1081  if (dist == 0) {
1082  send_code(s, lc, ltree); /* send a literal byte */
1083  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1084  } else {
1085  /* Here, lc is the match length - MIN_MATCH */
1086  code = _length_code[lc];
1087  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1088  extra = extra_lbits[code];
1089  if (extra != 0) {
1090  lc -= base_length[code];
1091  send_bits(s, lc, extra); /* send the extra length bits */
1092  }
1093  dist--; /* dist is now the match distance - 1 */
1094  code = d_code(dist);
1095  Assert (code < D_CODES, "bad d_code");
1096 
1097  send_code(s, code, dtree); /* send the distance code */
1098  extra = extra_dbits[code];
1099  if (extra != 0) {
1100  dist -= base_dist[code];
1101  send_bits(s, dist, extra); /* send the extra distance bits */
1102  }
1103  } /* literal or match pair ? */
1104 
1105  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1106  Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1107  "pendingBuf overflow");
1108 
1109  } while (lx < s->last_lit);
1110 
1111  send_code(s, END_BLOCK, ltree);
1112  s->last_eob_len = ltree[END_BLOCK].Len;
1113 }
1114 
1115 /* ===========================================================================
1116  * Check if the data type is TEXT or BINARY, using the following algorithm:
1117  * - TEXT if the two conditions below are satisfied:
1118  * a) There are no non-portable control characters belonging to the
1119  * "black list" (0..6, 14..25, 28..31).
1120  * b) There is at least one printable character belonging to the
1121  * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1122  * - BINARY otherwise.
1123  * - The following partially-portable control characters form a
1124  * "gray list" that is ignored in this detection algorithm:
1125  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1126  * IN assertion: the fields Freq of dyn_ltree are set.
1127  */
1129 {
1130  /* black_mask is the bit mask of black-listed bytes
1131  * set bits 0..6, 14..25, and 28..31
1132  * 0xf3ffc07f = binary 11110011111111111100000001111111
1133  */
1134  unsigned long black_mask = 0xf3ffc07fUL;
1135  int n;
1136 
1137  /* Check for non-textual ("black-listed") bytes. */
1138  for (n = 0; n <= 31; n++, black_mask >>= 1)
1139  if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1140  return Z_BINARY;
1141 
1142  /* Check for textual ("white-listed") bytes. */
1143  if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1144  || s->dyn_ltree[13].Freq != 0)
1145  return Z_TEXT;
1146  for (n = 32; n < LITERALS; n++)
1147  if (s->dyn_ltree[n].Freq != 0)
1148  return Z_TEXT;
1149 
1150  /* There are no "black-listed" or "white-listed" bytes:
1151  * this stream either is empty or has tolerated ("gray-listed") bytes only.
1152  */
1153  return Z_BINARY;
1154 }
1155 
1156 /* ===========================================================================
1157  * Reverse the first len bits of a code, using straightforward code (a faster
1158  * method would use a table)
1159  * IN assertion: 1 <= len <= 15
1160  */
1161 local unsigned bi_reverse(unsigned code, /* the value to invert */ /* pcg */
1162  int len) /* its bit length */
1163 {
1164  register unsigned res = 0;
1165  do {
1166  res |= code & 1;
1167  code >>= 1, res <<= 1;
1168  } while (--len > 0);
1169  return res >> 1;
1170 }
1171 
1172 /* ===========================================================================
1173  * Flush the bit buffer, keeping at most 7 bits in it.
1174  */
1175 local void bi_flush(deflate_state *s) /* pcg */
1176 {
1177  if (s->bi_valid == 16) {
1178  put_short(s, s->bi_buf);
1179  s->bi_buf = 0;
1180  s->bi_valid = 0;
1181  } else if (s->bi_valid >= 8) {
1182  put_byte(s, (Byte)s->bi_buf);
1183  s->bi_buf >>= 8;
1184  s->bi_valid -= 8;
1185  }
1186 }
1187 
1188 /* ===========================================================================
1189  * Flush the bit buffer and align the output on a byte boundary
1190  */
1191 local void bi_windup(deflate_state *s) /* pcg */
1192 {
1193  if (s->bi_valid > 8) {
1194  put_short(s, s->bi_buf);
1195  } else if (s->bi_valid > 0) {
1196  put_byte(s, (Byte)s->bi_buf);
1197  }
1198  s->bi_buf = 0;
1199  s->bi_valid = 0;
1200 #ifdef DEBUG
1201  s->bits_sent = (s->bits_sent+7) & ~7;
1202 #endif
1203 }
1204 
1205 /* ===========================================================================
1206  * Copy a stored block, storing first the length and its
1207  * one's complement if requested.
1208  */
1209 local void copy_block(deflate_state *s, /* pcg */
1210  charf *buf, /* the input data */
1211  unsigned len, /* its length */
1212  int header) /* true if block header must be written */
1213 {
1214  bi_windup(s); /* align on byte boundary */
1215  s->last_eob_len = 8; /* enough lookahead for inflate */
1216 
1217  if (header) {
1218  put_short(s, (ush)len);
1219  put_short(s, (ush)~len);
1220 #ifdef DEBUG
1221  s->bits_sent += 2*16;
1222 #endif
1223  }
1224 #ifdef DEBUG
1225  s->bits_sent += (ulg)len<<3;
1226 #endif
1227  while (len--) {
1228  put_byte(s, *buf++);
1229  }
1230 }