LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
subroutine dsyevr_2stage ( character  JOBZ,
character  RANGE,
character  UPLO,
integer  N,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision  VL,
double precision  VU,
integer  IL,
integer  IU,
double precision  ABSTOL,
integer  M,
double precision, dimension( * )  W,
double precision, dimension( ldz, * )  Z,
integer  LDZ,
integer, dimension( * )  ISUPPZ,
double precision, dimension( * )  WORK,
integer  LWORK,
integer, dimension( * )  IWORK,
integer  LIWORK,
integer  INFO 
)

DSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices

Download DSYEVR_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric matrix A using the 2stage technique for
 the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
 selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.

 DSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
 to DSYTRD.  Then, whenever possible, DSYEVR_2STAGE calls DSTEMR to compute
 the eigenspectrum using Relatively Robust Representations.  DSTEMR
 computes eigenvalues by the dqds algorithm, while orthogonal
 eigenvectors are computed from various "good" L D L^T representations
 (also known as Relatively Robust Representations). Gram-Schmidt
 orthogonalization is avoided as far as possible. More specifically,
 the various steps of the algorithm are as follows.

 For each unreduced block (submatrix) of T,
    (a) Compute T - sigma I  = L D L^T, so that L and D
        define all the wanted eigenvalues to high relative accuracy.
        This means that small relative changes in the entries of D and L
        cause only small relative changes in the eigenvalues and
        eigenvectors. The standard (unfactored) representation of the
        tridiagonal matrix T does not have this property in general.
    (b) Compute the eigenvalues to suitable accuracy.
        If the eigenvectors are desired, the algorithm attains full
        accuracy of the computed eigenvalues only right before
        the corresponding vectors have to be computed, see steps c) and d).
    (c) For each cluster of close eigenvalues, select a new
        shift close to the cluster, find a new factorization, and refine
        the shifted eigenvalues to suitable accuracy.
    (d) For each eigenvalue with a large enough relative separation compute
        the corresponding eigenvector by forming a rank revealing twisted
        factorization. Go back to (c) for any clusters that remain.

 The desired accuracy of the output can be specified by the input
 parameter ABSTOL.

 For more details, see DSTEMR's documentation and:
 - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
 - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   2004.  Also LAPACK Working Note 154.
 - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   tridiagonal eigenvalue/eigenvector problem",
   Computer Science Division Technical Report No. UCB/CSD-97-971,
   UC Berkeley, May 1997.


 Note 1 : DSYEVR_2STAGE calls DSTEMR when the full spectrum is requested
 on machines which conform to the ieee-754 floating point standard.
 DSYEVR_2STAGE calls DSTEBZ and SSTEIN on non-ieee machines and
 when partial spectrum requests are made.

 Normal execution of DSTEMR may create NaNs and infinities and
 hence may abort due to a floating point exception in environments
 which do not handle NaNs and infinities in the ieee standard default
 manner.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
                  Not available in this release.
[in]RANGE
          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found.
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found.
          = 'I': the IL-th through IU-th eigenvalues will be found.
          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
          DSTEIN are called
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA, N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
          On exit, the lower triangle (if UPLO='L') or the upper
          triangle (if UPLO='U') of A, including the diagonal, is
          destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]VL
          VL is DOUBLE PRECISION
          If RANGE='V', the lower bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]VU
          VU is DOUBLE PRECISION
          If RANGE='V', the upper bound of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.
[in]IL
          IL is INTEGER
          If RANGE='I', the index of the
          smallest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]IU
          IU is INTEGER
          If RANGE='I', the index of the
          largest eigenvalue to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.
[in]ABSTOL
          ABSTOL is DOUBLE PRECISION
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing A to tridiagonal form.

          See "Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy," by Demmel and
          Kahan, LAPACK Working Note #3.

          If high relative accuracy is important, set ABSTOL to
          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
          eigenvalues are computed to high relative accuracy when
          possible in future releases.  The current code does not
          make any guarantees about high relative accuracy, but
          future releases will. See J. Barlow and J. Demmel,
          "Computing Accurate Eigensystems of Scaled Diagonally
          Dominant Matrices", LAPACK Working Note #7, for a discussion
          of which matrices define their eigenvalues to high relative
          accuracy.
[out]M
          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
[out]W
          W is DOUBLE PRECISION array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.
[out]Z
          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.
          Supplying N columns is always safe.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
[out]ISUPPZ
          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
          The support of the eigenvectors in Z, i.e., the indices
          indicating the nonzero elements in Z. The i-th eigenvector
          is nonzero only in elements ISUPPZ( 2*i-1 ) through
          ISUPPZ( 2*i ). This is an output of DSTEMR (tridiagonal
          matrix). The support of the eigenvectors of A is typically 
          1:N because of the orthogonal transformations applied by DORMTR.
          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  
          If JOBZ = 'N' and N > 1, LWORK must be queried.
                                   LWORK = MAX(1, 26*N, dimension) where
                                   dimension = max(stage1,stage2) + (KD+1)*N + 5*N
                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                                               + max(2*KD*KD, KD*NTHREADS) 
                                               + (KD+1)*N + 5*N
                                   where KD is the blocking size of the reduction,
                                   FACTOPTNB is the blocking used by the QR or LQ
                                   algorithm, usually FACTOPTNB=128 is a good choice
                                   NTHREADS is the number of threads used when
                                   openMP compilation is enabled, otherwise =1.
          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.  LIWORK >= max(1,10*N).

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the IWORK array,
          returns this value as the first entry of the IWORK array, and
          no error message related to LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  Internal error
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
June 2016
Contributors:
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Ken Stanley, Computer Science Division, University of California at Berkeley, USA
Jason Riedy, Computer Science Division, University of California at Berkeley, USA
Further Details:
  All details about the 2stage techniques are available in:

  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  Parallel reduction to condensed forms for symmetric eigenvalue problems
  using aggregated fine-grained and memory-aware kernels. In Proceedings
  of 2011 International Conference for High Performance Computing,
  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  Article 8 , 11 pages.
  http://doi.acm.org/10.1145/2063384.2063394

  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  An improved parallel singular value algorithm and its implementation 
  for multicore hardware, In Proceedings of 2013 International Conference
  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  Denver, Colorado, USA, 2013.
  Article 90, 12 pages.
  http://doi.acm.org/10.1145/2503210.2503292

  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  calculations based on fine-grained memory aware tasks.
  International Journal of High Performance Computing Applications.
  Volume 28 Issue 2, Pages 196-209, May 2014.
  http://hpc.sagepub.com/content/28/2/196 

Definition at line 383 of file dsyevr_2stage.f.

383 *
384  IMPLICIT NONE
385 *
386 * -- LAPACK driver routine (version 3.7.0) --
387 * -- LAPACK is a software package provided by Univ. of Tennessee, --
388 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
389 * June 2016
390 *
391 * .. Scalar Arguments ..
392  CHARACTER jobz, range, uplo
393  INTEGER il, info, iu, lda, ldz, liwork, lwork, m, n
394  DOUBLE PRECISION abstol, vl, vu
395 * ..
396 * .. Array Arguments ..
397  INTEGER isuppz( * ), iwork( * )
398  DOUBLE PRECISION a( lda, * ), w( * ), work( * ), z( ldz, * )
399 * ..
400 *
401 * =====================================================================
402 *
403 * .. Parameters ..
404  DOUBLE PRECISION zero, one, two
405  parameter ( zero = 0.0d+0, one = 1.0d+0, two = 2.0d+0 )
406 * ..
407 * .. Local Scalars ..
408  LOGICAL alleig, indeig, lower, lquery, valeig, wantz,
409  $ tryrac
410  CHARACTER order
411  INTEGER i, ieeeok, iinfo, imax, indd, inddd, inde,
412  $ indee, indibl, indifl, indisp, indiwo, indtau,
413  $ indwk, indwkn, iscale, j, jj, liwmin,
414  $ llwork, llwrkn, lwmin, nsplit,
415  $ lhtrd, lwtrd, kd, ib, indhous
416  DOUBLE PRECISION abstll, anrm, bignum, eps, rmax, rmin, safmin,
417  $ sigma, smlnum, tmp1, vll, vuu
418 * ..
419 * .. External Functions ..
420  LOGICAL lsame
421  INTEGER ilaenv
422  DOUBLE PRECISION dlamch, dlansy
423  EXTERNAL lsame, ilaenv, dlamch, dlansy
424 * ..
425 * .. External Subroutines ..
426  EXTERNAL dcopy, dormtr, dscal, dstebz, dstemr, dstein,
428 * ..
429 * .. Intrinsic Functions ..
430  INTRINSIC max, min, sqrt
431 * ..
432 * .. Executable Statements ..
433 *
434 * Test the input parameters.
435 *
436  ieeeok = ilaenv( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
437 *
438  lower = lsame( uplo, 'L' )
439  wantz = lsame( jobz, 'V' )
440  alleig = lsame( range, 'A' )
441  valeig = lsame( range, 'V' )
442  indeig = lsame( range, 'I' )
443 *
444  lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
445 *
446  kd = ilaenv( 17, 'DSYTRD_2STAGE', jobz, n, -1, -1, -1 )
447  ib = ilaenv( 18, 'DSYTRD_2STAGE', jobz, n, kd, -1, -1 )
448  lhtrd = ilaenv( 19, 'DSYTRD_2STAGE', jobz, n, kd, ib, -1 )
449  lwtrd = ilaenv( 20, 'DSYTRD_2STAGE', jobz, n, kd, ib, -1 )
450  lwmin = max( 26*n, 5*n + lhtrd + lwtrd )
451  liwmin = max( 1, 10*n )
452 *
453  info = 0
454  IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
455  info = -1
456  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
457  info = -2
458  ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
459  info = -3
460  ELSE IF( n.LT.0 ) THEN
461  info = -4
462  ELSE IF( lda.LT.max( 1, n ) ) THEN
463  info = -6
464  ELSE
465  IF( valeig ) THEN
466  IF( n.GT.0 .AND. vu.LE.vl )
467  $ info = -8
468  ELSE IF( indeig ) THEN
469  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
470  info = -9
471  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
472  info = -10
473  END IF
474  END IF
475  END IF
476  IF( info.EQ.0 ) THEN
477  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
478  info = -15
479  ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
480  info = -18
481  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
482  info = -20
483  END IF
484  END IF
485 *
486  IF( info.EQ.0 ) THEN
487 * NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
488 * NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
489 * LWKOPT = MAX( ( NB+1 )*N, LWMIN )
490  work( 1 ) = lwmin
491  iwork( 1 ) = liwmin
492  END IF
493 *
494  IF( info.NE.0 ) THEN
495  CALL xerbla( 'DSYEVR_2STAGE', -info )
496  RETURN
497  ELSE IF( lquery ) THEN
498  RETURN
499  END IF
500 *
501 * Quick return if possible
502 *
503  m = 0
504  IF( n.EQ.0 ) THEN
505  work( 1 ) = 1
506  RETURN
507  END IF
508 *
509  IF( n.EQ.1 ) THEN
510  work( 1 ) = 7
511  IF( alleig .OR. indeig ) THEN
512  m = 1
513  w( 1 ) = a( 1, 1 )
514  ELSE
515  IF( vl.LT.a( 1, 1 ) .AND. vu.GE.a( 1, 1 ) ) THEN
516  m = 1
517  w( 1 ) = a( 1, 1 )
518  END IF
519  END IF
520  IF( wantz ) THEN
521  z( 1, 1 ) = one
522  isuppz( 1 ) = 1
523  isuppz( 2 ) = 1
524  END IF
525  RETURN
526  END IF
527 *
528 * Get machine constants.
529 *
530  safmin = dlamch( 'Safe minimum' )
531  eps = dlamch( 'Precision' )
532  smlnum = safmin / eps
533  bignum = one / smlnum
534  rmin = sqrt( smlnum )
535  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
536 *
537 * Scale matrix to allowable range, if necessary.
538 *
539  iscale = 0
540  abstll = abstol
541  IF (valeig) THEN
542  vll = vl
543  vuu = vu
544  END IF
545  anrm = dlansy( 'M', uplo, n, a, lda, work )
546  IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
547  iscale = 1
548  sigma = rmin / anrm
549  ELSE IF( anrm.GT.rmax ) THEN
550  iscale = 1
551  sigma = rmax / anrm
552  END IF
553  IF( iscale.EQ.1 ) THEN
554  IF( lower ) THEN
555  DO 10 j = 1, n
556  CALL dscal( n-j+1, sigma, a( j, j ), 1 )
557  10 CONTINUE
558  ELSE
559  DO 20 j = 1, n
560  CALL dscal( j, sigma, a( 1, j ), 1 )
561  20 CONTINUE
562  END IF
563  IF( abstol.GT.0 )
564  $ abstll = abstol*sigma
565  IF( valeig ) THEN
566  vll = vl*sigma
567  vuu = vu*sigma
568  END IF
569  END IF
570 
571 * Initialize indices into workspaces. Note: The IWORK indices are
572 * used only if DSTERF or DSTEMR fail.
573 
574 * WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
575 * elementary reflectors used in DSYTRD.
576  indtau = 1
577 * WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
578  indd = indtau + n
579 * WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
580 * tridiagonal matrix from DSYTRD.
581  inde = indd + n
582 * WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
583 * -written by DSTEMR (the DSTERF path copies the diagonal to W).
584  inddd = inde + n
585 * WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
586 * -written while computing the eigenvalues in DSTERF and DSTEMR.
587  indee = inddd + n
588 * INDHOUS is the starting offset Householder storage of stage 2
589  indhous = indee + n
590 * INDWK is the starting offset of the left-over workspace, and
591 * LLWORK is the remaining workspace size.
592  indwk = indhous + lhtrd
593  llwork = lwork - indwk + 1
594 
595 
596 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
597 * stores the block indices of each of the M<=N eigenvalues.
598  indibl = 1
599 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
600 * stores the starting and finishing indices of each block.
601  indisp = indibl + n
602 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
603 * that corresponding to eigenvectors that fail to converge in
604 * DSTEIN. This information is discarded; if any fail, the driver
605 * returns INFO > 0.
606  indifl = indisp + n
607 * INDIWO is the offset of the remaining integer workspace.
608  indiwo = indifl + n
609 
610 *
611 * Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
612 *
613 *
614  CALL dsytrd_2stage( jobz, uplo, n, a, lda, work( indd ),
615  $ work( inde ), work( indtau ), work( indhous ),
616  $ lhtrd, work( indwk ), llwork, iinfo )
617 *
618 * If all eigenvalues are desired
619 * then call DSTERF or DSTEMR and DORMTR.
620 *
621  IF( ( alleig .OR. ( indeig .AND. il.EQ.1 .AND. iu.EQ.n ) ) .AND.
622  $ ieeeok.EQ.1 ) THEN
623  IF( .NOT.wantz ) THEN
624  CALL dcopy( n, work( indd ), 1, w, 1 )
625  CALL dcopy( n-1, work( inde ), 1, work( indee ), 1 )
626  CALL dsterf( n, w, work( indee ), info )
627  ELSE
628  CALL dcopy( n-1, work( inde ), 1, work( indee ), 1 )
629  CALL dcopy( n, work( indd ), 1, work( inddd ), 1 )
630 *
631  IF (abstol .LE. two*n*eps) THEN
632  tryrac = .true.
633  ELSE
634  tryrac = .false.
635  END IF
636  CALL dstemr( jobz, 'A', n, work( inddd ), work( indee ),
637  $ vl, vu, il, iu, m, w, z, ldz, n, isuppz,
638  $ tryrac, work( indwk ), lwork, iwork, liwork,
639  $ info )
640 *
641 *
642 *
643 * Apply orthogonal matrix used in reduction to tridiagonal
644 * form to eigenvectors returned by DSTEMR.
645 *
646  IF( wantz .AND. info.EQ.0 ) THEN
647  indwkn = inde
648  llwrkn = lwork - indwkn + 1
649  CALL dormtr( 'L', uplo, 'N', n, m, a, lda,
650  $ work( indtau ), z, ldz, work( indwkn ),
651  $ llwrkn, iinfo )
652  END IF
653  END IF
654 *
655 *
656  IF( info.EQ.0 ) THEN
657 * Everything worked. Skip DSTEBZ/DSTEIN. IWORK(:) are
658 * undefined.
659  m = n
660  GO TO 30
661  END IF
662  info = 0
663  END IF
664 *
665 * Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
666 * Also call DSTEBZ and DSTEIN if DSTEMR fails.
667 *
668  IF( wantz ) THEN
669  order = 'B'
670  ELSE
671  order = 'E'
672  END IF
673 
674  CALL dstebz( range, order, n, vll, vuu, il, iu, abstll,
675  $ work( indd ), work( inde ), m, nsplit, w,
676  $ iwork( indibl ), iwork( indisp ), work( indwk ),
677  $ iwork( indiwo ), info )
678 *
679  IF( wantz ) THEN
680  CALL dstein( n, work( indd ), work( inde ), m, w,
681  $ iwork( indibl ), iwork( indisp ), z, ldz,
682  $ work( indwk ), iwork( indiwo ), iwork( indifl ),
683  $ info )
684 *
685 * Apply orthogonal matrix used in reduction to tridiagonal
686 * form to eigenvectors returned by DSTEIN.
687 *
688  indwkn = inde
689  llwrkn = lwork - indwkn + 1
690  CALL dormtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ), z,
691  $ ldz, work( indwkn ), llwrkn, iinfo )
692  END IF
693 *
694 * If matrix was scaled, then rescale eigenvalues appropriately.
695 *
696 * Jump here if DSTEMR/DSTEIN succeeded.
697  30 CONTINUE
698  IF( iscale.EQ.1 ) THEN
699  IF( info.EQ.0 ) THEN
700  imax = m
701  ELSE
702  imax = info - 1
703  END IF
704  CALL dscal( imax, one / sigma, w, 1 )
705  END IF
706 *
707 * If eigenvalues are not in order, then sort them, along with
708 * eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
709 * It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
710 * not return this detailed information to the user.
711 *
712  IF( wantz ) THEN
713  DO 50 j = 1, m - 1
714  i = 0
715  tmp1 = w( j )
716  DO 40 jj = j + 1, m
717  IF( w( jj ).LT.tmp1 ) THEN
718  i = jj
719  tmp1 = w( jj )
720  END IF
721  40 CONTINUE
722 *
723  IF( i.NE.0 ) THEN
724  w( i ) = w( j )
725  w( j ) = tmp1
726  CALL dswap( n, z( 1, i ), 1, z( 1, j ), 1 )
727  END IF
728  50 CONTINUE
729  END IF
730 *
731 * Set WORK(1) to optimal workspace size.
732 *
733  work( 1 ) = lwmin
734  iwork( 1 ) = liwmin
735 *
736  RETURN
737 *
738 * End of DSYEVR_2STAGE
739 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
double precision function dlansy(NORM, UPLO, N, A, LDA, WORK)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: dlansy.f:124
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
subroutine dstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
DSTEIN
Definition: dstein.f:176
subroutine dsterf(N, D, E, INFO)
DSTERF
Definition: dsterf.f:88
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: tstiee.f:83
subroutine dswap(N, DX, INCX, DY, INCY)
DSWAP
Definition: dswap.f:53
subroutine dstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
DSTEBZ
Definition: dstebz.f:275
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine dscal(N, DA, DX, INCX)
DSCAL
Definition: dscal.f:55
subroutine dstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
DSTEMR
Definition: dstemr.f:323
subroutine dsytrd_2stage(VECT, UPLO, N, A, LDA, D, E, TAU, HOUS2, LHOUS2, WORK, LWORK, INFO)
DSYTRD_2STAGE
subroutine dormtr(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
DORMTR
Definition: dormtr.f:173

Here is the call graph for this function:

Here is the caller graph for this function: