LAPACK  3.7.0
LAPACK: Linear Algebra PACKage
subroutine dlaswlq ( integer  M,
integer  N,
integer  MB,
integer  NB,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( ldt, *)  T,
integer  LDT,
double precision, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)
Purpose:

DLASWLQ computes a blocked Short-Wide LQ factorization of a M-by-N matrix A, where N >= M: A = L * Q

Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          M >= MB >= 1
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          NB > M.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and bleow the diagonal
          of the array contain the N-by-N lower triangular matrix L;
          the elements above the diagonal represent Q by the rows
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is DOUBLE PRECISION array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
[in]LWORK
          The dimension of the array WORK.  LWORK >= MB*M.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, representing Q as a product of other orthogonal matrices Q = Q(1) * Q(2) * . . . * Q(k) where each Q(i) zeros out upper diagonal entries of a block of NB rows of A: Q(1) zeros out the upper diagonal entries of rows 1:NB of A Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A . . .

Q(1) is computed by GELQT, which represents Q(1) by Householder vectors stored under the diagonal of rows 1:MB of A, and by upper triangular block reflectors, stored in array T(1:LDT,1:N). For more information see Further Details in GELQT.

Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M). The last Q(k) may use fewer rows. For more information see Further Details in TPQRT.

For more details of the overall algorithm, see the description of Sequential TSQR in Section 2.2 of [1].

[1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” J. Demmel, L. Grigori, M. Hoemmen, J. Langou, SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 152 of file dlaswlq.f.

152 *
153 * -- LAPACK computational routine (version 3.7.0) --
154 * -- LAPACK is a software package provided by Univ. of Tennessee, --
155 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
156 * December 2016
157 *
158 * .. Scalar Arguments ..
159  INTEGER info, lda, m, n, mb, nb, lwork, ldt
160 * ..
161 * .. Array Arguments ..
162  DOUBLE PRECISION a( lda, * ), work( * ), t( ldt, *)
163 * ..
164 *
165 * =====================================================================
166 *
167 * ..
168 * .. Local Scalars ..
169  LOGICAL lquery
170  INTEGER i, ii, kk, ctr
171 * ..
172 * .. EXTERNAL FUNCTIONS ..
173  LOGICAL lsame
174  EXTERNAL lsame
175 * .. EXTERNAL SUBROUTINES ..
176  EXTERNAL dgelqt, dtplqt, xerbla
177 * .. INTRINSIC FUNCTIONS ..
178  INTRINSIC max, min, mod
179 * ..
180 * .. EXECUTABLE STATEMENTS ..
181 *
182 * TEST THE INPUT ARGUMENTS
183 *
184  info = 0
185 *
186  lquery = ( lwork.EQ.-1 )
187 *
188  IF( m.LT.0 ) THEN
189  info = -1
190  ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
191  info = -2
192  ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 )) THEN
193  info = -3
194  ELSE IF( nb.LE.m ) THEN
195  info = -4
196  ELSE IF( lda.LT.max( 1, m ) ) THEN
197  info = -5
198  ELSE IF( ldt.LT.mb ) THEN
199  info = -8
200  ELSE IF( ( lwork.LT.m*mb) .AND. (.NOT.lquery) ) THEN
201  info = -10
202  END IF
203  IF( info.EQ.0) THEN
204  work(1) = mb*m
205  END IF
206 *
207  IF( info.NE.0 ) THEN
208  CALL xerbla( 'DLASWLQ', -info )
209  RETURN
210  ELSE IF (lquery) THEN
211  RETURN
212  END IF
213 *
214 * Quick return if possible
215 *
216  IF( min(m,n).EQ.0 ) THEN
217  RETURN
218  END IF
219 *
220 * The LQ Decomposition
221 *
222  IF((m.GE.n).OR.(nb.LE.m).OR.(nb.GE.n)) THEN
223  CALL dgelqt( m, n, mb, a, lda, t, ldt, work, info)
224  RETURN
225  END IF
226 *
227  kk = mod((n-m),(nb-m))
228  ii=n-kk+1
229 *
230 * Compute the LQ factorization of the first block A(1:M,1:NB)
231 *
232  CALL dgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info)
233  ctr = 1
234 *
235  DO i = nb+1, ii-nb+m , (nb-m)
236 *
237 * Compute the QR factorization of the current block A(1:M,I:I+NB-M)
238 *
239  CALL dtplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
240  $ lda, t(1, ctr * m + 1),
241  $ ldt, work, info )
242  ctr = ctr + 1
243  END DO
244 *
245 * Compute the QR factorization of the last block A(1:M,II:N)
246 *
247  IF (ii.LE.n) THEN
248  CALL dtplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
249  $ lda, t(1, ctr * m + 1), ldt,
250  $ work, info )
251  END IF
252 *
253  work( 1 ) = m * mb
254  RETURN
255 *
256 * End of DLASWLQ
257 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine dtplqt(M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK, INFO)
DTPLQT
Definition: dtplqt.f:191
subroutine dgelqt(M, N, MB, A, LDA, T, LDT, WORK, INFO)
DGELQT
Definition: dgelqt.f:141

Here is the call graph for this function:

Here is the caller graph for this function: