LLVM API Documentation
00001 //===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the classes used to describe a subtarget's machine model 00011 // for scheduling and other instruction cost heuristics. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_MC_MCSCHEDULE_H 00016 #define LLVM_MC_MCSCHEDULE_H 00017 00018 #include "llvm/Support/DataTypes.h" 00019 #include <cassert> 00020 00021 namespace llvm { 00022 00023 struct InstrItinerary; 00024 00025 /// Define a kind of processor resource that will be modeled by the scheduler. 00026 struct MCProcResourceDesc { 00027 #ifndef NDEBUG 00028 const char *Name; 00029 #endif 00030 unsigned NumUnits; // Number of resource of this kind 00031 unsigned SuperIdx; // Index of the resources kind that contains this kind. 00032 00033 // Number of resources that may be buffered. 00034 // 00035 // Buffered resources (BufferSize != 0) may be consumed at some indeterminate 00036 // cycle after dispatch. This should be used for out-of-order cpus when 00037 // instructions that use this resource can be buffered in a reservaton 00038 // station. 00039 // 00040 // Unbuffered resources (BufferSize == 0) always consume their resource some 00041 // fixed number of cycles after dispatch. If a resource is unbuffered, then 00042 // the scheduler will avoid scheduling instructions with conflicting resources 00043 // in the same cycle. This is for in-order cpus, or the in-order portion of 00044 // an out-of-order cpus. 00045 int BufferSize; 00046 00047 bool operator==(const MCProcResourceDesc &Other) const { 00048 return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx 00049 && BufferSize == Other.BufferSize; 00050 } 00051 }; 00052 00053 /// Identify one of the processor resource kinds consumed by a particular 00054 /// scheduling class for the specified number of cycles. 00055 struct MCWriteProcResEntry { 00056 unsigned ProcResourceIdx; 00057 unsigned Cycles; 00058 00059 bool operator==(const MCWriteProcResEntry &Other) const { 00060 return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles; 00061 } 00062 }; 00063 00064 /// Specify the latency in cpu cycles for a particular scheduling class and def 00065 /// index. -1 indicates an invalid latency. Heuristics would typically consider 00066 /// an instruction with invalid latency to have infinite latency. Also identify 00067 /// the WriteResources of this def. When the operand expands to a sequence of 00068 /// writes, this ID is the last write in the sequence. 00069 struct MCWriteLatencyEntry { 00070 int Cycles; 00071 unsigned WriteResourceID; 00072 00073 bool operator==(const MCWriteLatencyEntry &Other) const { 00074 return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID; 00075 } 00076 }; 00077 00078 /// Specify the number of cycles allowed after instruction issue before a 00079 /// particular use operand reads its registers. This effectively reduces the 00080 /// write's latency. Here we allow negative cycles for corner cases where 00081 /// latency increases. This rule only applies when the entry's WriteResource 00082 /// matches the write's WriteResource. 00083 /// 00084 /// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by 00085 /// WriteResourceIdx. 00086 struct MCReadAdvanceEntry { 00087 unsigned UseIdx; 00088 unsigned WriteResourceID; 00089 int Cycles; 00090 00091 bool operator==(const MCReadAdvanceEntry &Other) const { 00092 return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID 00093 && Cycles == Other.Cycles; 00094 } 00095 }; 00096 00097 /// Summarize the scheduling resources required for an instruction of a 00098 /// particular scheduling class. 00099 /// 00100 /// Defined as an aggregate struct for creating tables with initializer lists. 00101 struct MCSchedClassDesc { 00102 static const unsigned short InvalidNumMicroOps = UINT16_MAX; 00103 static const unsigned short VariantNumMicroOps = UINT16_MAX - 1; 00104 00105 #ifndef NDEBUG 00106 const char* Name; 00107 #endif 00108 unsigned short NumMicroOps; 00109 bool BeginGroup; 00110 bool EndGroup; 00111 unsigned WriteProcResIdx; // First index into WriteProcResTable. 00112 unsigned NumWriteProcResEntries; 00113 unsigned WriteLatencyIdx; // First index into WriteLatencyTable. 00114 unsigned NumWriteLatencyEntries; 00115 unsigned ReadAdvanceIdx; // First index into ReadAdvanceTable. 00116 unsigned NumReadAdvanceEntries; 00117 00118 bool isValid() const { 00119 return NumMicroOps != InvalidNumMicroOps; 00120 } 00121 bool isVariant() const { 00122 return NumMicroOps == VariantNumMicroOps; 00123 } 00124 }; 00125 00126 /// Machine model for scheduling, bundling, and heuristics. 00127 /// 00128 /// The machine model directly provides basic information about the 00129 /// microarchitecture to the scheduler in the form of properties. It also 00130 /// optionally refers to scheduler resource tables and itinerary 00131 /// tables. Scheduler resource tables model the latency and cost for each 00132 /// instruction type. Itinerary tables are an independent mechanism that 00133 /// provides a detailed reservation table describing each cycle of instruction 00134 /// execution. Subtargets may define any or all of the above categories of data 00135 /// depending on the type of CPU and selected scheduler. 00136 struct MCSchedModel { 00137 // IssueWidth is the maximum number of instructions that may be scheduled in 00138 // the same per-cycle group. 00139 unsigned IssueWidth; 00140 static const unsigned DefaultIssueWidth = 1; 00141 00142 // MicroOpBufferSize is the number of micro-ops that the processor may buffer 00143 // for out-of-order execution. 00144 // 00145 // "0" means operations that are not ready in this cycle are not considered 00146 // for scheduling (they go in the pending queue). Latency is paramount. This 00147 // may be more efficient if many instructions are pending in a schedule. 00148 // 00149 // "1" means all instructions are considered for scheduling regardless of 00150 // whether they are ready in this cycle. Latency still causes issue stalls, 00151 // but we balance those stalls against other heuristics. 00152 // 00153 // "> 1" means the processor is out-of-order. This is a machine independent 00154 // estimate of highly machine specific characteristics such as the register 00155 // renaming pool and reorder buffer. 00156 unsigned MicroOpBufferSize; 00157 static const unsigned DefaultMicroOpBufferSize = 0; 00158 00159 // LoopMicroOpBufferSize is the number of micro-ops that the processor may 00160 // buffer for optimized loop execution. More generally, this represents the 00161 // optimal number of micro-ops in a loop body. A loop may be partially 00162 // unrolled to bring the count of micro-ops in the loop body closer to this 00163 // number. 00164 unsigned LoopMicroOpBufferSize; 00165 static const unsigned DefaultLoopMicroOpBufferSize = 0; 00166 00167 // LoadLatency is the expected latency of load instructions. 00168 // 00169 // If MinLatency >= 0, this may be overriden for individual load opcodes by 00170 // InstrItinerary OperandCycles. 00171 unsigned LoadLatency; 00172 static const unsigned DefaultLoadLatency = 4; 00173 00174 // HighLatency is the expected latency of "very high latency" operations. 00175 // See TargetInstrInfo::isHighLatencyDef(). 00176 // By default, this is set to an arbitrarily high number of cycles 00177 // likely to have some impact on scheduling heuristics. 00178 // If MinLatency >= 0, this may be overriden by InstrItinData OperandCycles. 00179 unsigned HighLatency; 00180 static const unsigned DefaultHighLatency = 10; 00181 00182 // MispredictPenalty is the typical number of extra cycles the processor 00183 // takes to recover from a branch misprediction. 00184 unsigned MispredictPenalty; 00185 static const unsigned DefaultMispredictPenalty = 10; 00186 00187 bool PostRAScheduler; // default value is false 00188 00189 bool CompleteModel; 00190 00191 unsigned ProcID; 00192 const MCProcResourceDesc *ProcResourceTable; 00193 const MCSchedClassDesc *SchedClassTable; 00194 unsigned NumProcResourceKinds; 00195 unsigned NumSchedClasses; 00196 // Instruction itinerary tables used by InstrItineraryData. 00197 friend class InstrItineraryData; 00198 const InstrItinerary *InstrItineraries; 00199 00200 unsigned getProcessorID() const { return ProcID; } 00201 00202 /// Does this machine model include instruction-level scheduling. 00203 bool hasInstrSchedModel() const { return SchedClassTable; } 00204 00205 /// Return true if this machine model data for all instructions with a 00206 /// scheduling class (itinerary class or SchedRW list). 00207 bool isComplete() const { return CompleteModel; } 00208 00209 unsigned getNumProcResourceKinds() const { 00210 return NumProcResourceKinds; 00211 } 00212 00213 const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const { 00214 assert(hasInstrSchedModel() && "No scheduling machine model"); 00215 00216 assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx"); 00217 return &ProcResourceTable[ProcResourceIdx]; 00218 } 00219 00220 const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const { 00221 assert(hasInstrSchedModel() && "No scheduling machine model"); 00222 00223 assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx"); 00224 return &SchedClassTable[SchedClassIdx]; 00225 } 00226 00227 // /\brief Returns a default initialiszed mdoel. Used for unknown processors. 00228 static MCSchedModel GetDefaultSchedModel() { 00229 MCSchedModel Ret = { DefaultIssueWidth, 00230 DefaultMicroOpBufferSize, 00231 DefaultLoopMicroOpBufferSize, 00232 DefaultLoadLatency, 00233 DefaultHighLatency, 00234 DefaultMispredictPenalty, 00235 false, 00236 true, 00237 0, 00238 nullptr, 00239 nullptr, 00240 0, 00241 0, 00242 nullptr 00243 }; 00244 return Ret; 00245 } 00246 }; 00247 00248 } // End llvm namespace 00249 00250 #endif