OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_asm.c
Go to the documentation of this file.
1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young ([email protected])
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young ([email protected]).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to. The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson ([email protected]).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  * notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  * notice, this list of conditions and the following disclaimer in the
30  * documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  * must display the following acknowledgement:
33  * "This product includes cryptographic software written by
34  * Eric Young ([email protected])"
35  * The word 'cryptographic' can be left out if the rouines from the library
36  * being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  * the apps directory (application code) you must include an acknowledgement:
39  * "This product includes software written by Tim Hudson ([email protected])"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed. i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
63 
64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"
68 
69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
70 
71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72  {
73  BN_ULONG c1=0;
74 
75  assert(num >= 0);
76  if (num <= 0) return(c1);
77 
78 #ifndef OPENSSL_SMALL_FOOTPRINT
79  while (num&~3)
80  {
81  mul_add(rp[0],ap[0],w,c1);
82  mul_add(rp[1],ap[1],w,c1);
83  mul_add(rp[2],ap[2],w,c1);
84  mul_add(rp[3],ap[3],w,c1);
85  ap+=4; rp+=4; num-=4;
86  }
87 #endif
88  while (num)
89  {
90  mul_add(rp[0],ap[0],w,c1);
91  ap++; rp++; num--;
92  }
93 
94  return(c1);
95  }
96 
97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98  {
99  BN_ULONG c1=0;
100 
101  assert(num >= 0);
102  if (num <= 0) return(c1);
103 
104 #ifndef OPENSSL_SMALL_FOOTPRINT
105  while (num&~3)
106  {
107  mul(rp[0],ap[0],w,c1);
108  mul(rp[1],ap[1],w,c1);
109  mul(rp[2],ap[2],w,c1);
110  mul(rp[3],ap[3],w,c1);
111  ap+=4; rp+=4; num-=4;
112  }
113 #endif
114  while (num)
115  {
116  mul(rp[0],ap[0],w,c1);
117  ap++; rp++; num--;
118  }
119  return(c1);
120  }
121 
122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123  {
124  assert(n >= 0);
125  if (n <= 0) return;
126 
127 #ifndef OPENSSL_SMALL_FOOTPRINT
128  while (n&~3)
129  {
130  sqr(r[0],r[1],a[0]);
131  sqr(r[2],r[3],a[1]);
132  sqr(r[4],r[5],a[2]);
133  sqr(r[6],r[7],a[3]);
134  a+=4; r+=8; n-=4;
135  }
136 #endif
137  while (n)
138  {
139  sqr(r[0],r[1],a[0]);
140  a++; r+=2; n--;
141  }
142  }
143 
144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
145 
146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147  {
148  BN_ULONG c=0;
149  BN_ULONG bl,bh;
150 
151  assert(num >= 0);
152  if (num <= 0) return((BN_ULONG)0);
153 
154  bl=LBITS(w);
155  bh=HBITS(w);
156 
157 #ifndef OPENSSL_SMALL_FOOTPRINT
158  while (num&~3)
159  {
160  mul_add(rp[0],ap[0],bl,bh,c);
161  mul_add(rp[1],ap[1],bl,bh,c);
162  mul_add(rp[2],ap[2],bl,bh,c);
163  mul_add(rp[3],ap[3],bl,bh,c);
164  ap+=4; rp+=4; num-=4;
165  }
166 #endif
167  while (num)
168  {
169  mul_add(rp[0],ap[0],bl,bh,c);
170  ap++; rp++; num--;
171  }
172  return(c);
173  }
174 
175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176  {
177  BN_ULONG carry=0;
178  BN_ULONG bl,bh;
179 
180  assert(num >= 0);
181  if (num <= 0) return((BN_ULONG)0);
182 
183  bl=LBITS(w);
184  bh=HBITS(w);
185 
186 #ifndef OPENSSL_SMALL_FOOTPRINT
187  while (num&~3)
188  {
189  mul(rp[0],ap[0],bl,bh,carry);
190  mul(rp[1],ap[1],bl,bh,carry);
191  mul(rp[2],ap[2],bl,bh,carry);
192  mul(rp[3],ap[3],bl,bh,carry);
193  ap+=4; rp+=4; num-=4;
194  }
195 #endif
196  while (num)
197  {
198  mul(rp[0],ap[0],bl,bh,carry);
199  ap++; rp++; num--;
200  }
201  return(carry);
202  }
203 
204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205  {
206  assert(n >= 0);
207  if (n <= 0) return;
208 
209 #ifndef OPENSSL_SMALL_FOOTPRINT
210  while (n&~3)
211  {
212  sqr64(r[0],r[1],a[0]);
213  sqr64(r[2],r[3],a[1]);
214  sqr64(r[4],r[5],a[2]);
215  sqr64(r[6],r[7],a[3]);
216  a+=4; r+=8; n-=4;
217  }
218 #endif
219  while (n)
220  {
221  sqr64(r[0],r[1],a[0]);
222  a++; r+=2; n--;
223  }
224  }
225 
226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
227 
228 #if defined(BN_LLONG) && defined(BN_DIV2W)
229 
230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231  {
232  return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233  }
234 
235 #else
236 
237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-( */
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240  {
241  BN_ULONG dh,dl,q,ret=0,th,tl,t;
242  int i,count=2;
243 
244  if (d == 0) return(BN_MASK2);
245 
246  i=BN_num_bits_word(d);
247  assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
248 
249  i=BN_BITS2-i;
250  if (h >= d) h-=d;
251 
252  if (i)
253  {
254  d<<=i;
255  h=(h<<i)|(l>>(BN_BITS2-i));
256  l<<=i;
257  }
258  dh=(d&BN_MASK2h)>>BN_BITS4;
259  dl=(d&BN_MASK2l);
260  for (;;)
261  {
262  if ((h>>BN_BITS4) == dh)
263  q=BN_MASK2l;
264  else
265  q=h/dh;
266 
267  th=q*dh;
268  tl=dl*q;
269  for (;;)
270  {
271  t=h-th;
272  if ((t&BN_MASK2h) ||
273  ((tl) <= (
274  (t<<BN_BITS4)|
275  ((l&BN_MASK2h)>>BN_BITS4))))
276  break;
277  q--;
278  th-=dh;
279  tl-=dl;
280  }
281  t=(tl>>BN_BITS4);
282  tl=(tl<<BN_BITS4)&BN_MASK2h;
283  th+=t;
284 
285  if (l < tl) th++;
286  l-=tl;
287  if (h < th)
288  {
289  h+=d;
290  q--;
291  }
292  h-=th;
293 
294  if (--count == 0) break;
295 
296  ret=q<<BN_BITS4;
297  h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298  l=(l&BN_MASK2l)<<BN_BITS4;
299  }
300  ret|=q;
301  return(ret);
302  }
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
304 
305 #ifdef BN_LLONG
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307  {
308  BN_ULLONG ll=0;
309 
310  assert(n >= 0);
311  if (n <= 0) return((BN_ULONG)0);
312 
313 #ifndef OPENSSL_SMALL_FOOTPRINT
314  while (n&~3)
315  {
316  ll+=(BN_ULLONG)a[0]+b[0];
317  r[0]=(BN_ULONG)ll&BN_MASK2;
318  ll>>=BN_BITS2;
319  ll+=(BN_ULLONG)a[1]+b[1];
320  r[1]=(BN_ULONG)ll&BN_MASK2;
321  ll>>=BN_BITS2;
322  ll+=(BN_ULLONG)a[2]+b[2];
323  r[2]=(BN_ULONG)ll&BN_MASK2;
324  ll>>=BN_BITS2;
325  ll+=(BN_ULLONG)a[3]+b[3];
326  r[3]=(BN_ULONG)ll&BN_MASK2;
327  ll>>=BN_BITS2;
328  a+=4; b+=4; r+=4; n-=4;
329  }
330 #endif
331  while (n)
332  {
333  ll+=(BN_ULLONG)a[0]+b[0];
334  r[0]=(BN_ULONG)ll&BN_MASK2;
335  ll>>=BN_BITS2;
336  a++; b++; r++; n--;
337  }
338  return((BN_ULONG)ll);
339  }
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342  {
343  BN_ULONG c,l,t;
344 
345  assert(n >= 0);
346  if (n <= 0) return((BN_ULONG)0);
347 
348  c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350  while (n&~3)
351  {
352  t=a[0];
353  t=(t+c)&BN_MASK2;
354  c=(t < c);
355  l=(t+b[0])&BN_MASK2;
356  c+=(l < t);
357  r[0]=l;
358  t=a[1];
359  t=(t+c)&BN_MASK2;
360  c=(t < c);
361  l=(t+b[1])&BN_MASK2;
362  c+=(l < t);
363  r[1]=l;
364  t=a[2];
365  t=(t+c)&BN_MASK2;
366  c=(t < c);
367  l=(t+b[2])&BN_MASK2;
368  c+=(l < t);
369  r[2]=l;
370  t=a[3];
371  t=(t+c)&BN_MASK2;
372  c=(t < c);
373  l=(t+b[3])&BN_MASK2;
374  c+=(l < t);
375  r[3]=l;
376  a+=4; b+=4; r+=4; n-=4;
377  }
378 #endif
379  while(n)
380  {
381  t=a[0];
382  t=(t+c)&BN_MASK2;
383  c=(t < c);
384  l=(t+b[0])&BN_MASK2;
385  c+=(l < t);
386  r[0]=l;
387  a++; b++; r++; n--;
388  }
389  return((BN_ULONG)c);
390  }
391 #endif /* !BN_LLONG */
392 
393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394  {
395  BN_ULONG t1,t2;
396  int c=0;
397 
398  assert(n >= 0);
399  if (n <= 0) return((BN_ULONG)0);
400 
401 #ifndef OPENSSL_SMALL_FOOTPRINT
402  while (n&~3)
403  {
404  t1=a[0]; t2=b[0];
405  r[0]=(t1-t2-c)&BN_MASK2;
406  if (t1 != t2) c=(t1 < t2);
407  t1=a[1]; t2=b[1];
408  r[1]=(t1-t2-c)&BN_MASK2;
409  if (t1 != t2) c=(t1 < t2);
410  t1=a[2]; t2=b[2];
411  r[2]=(t1-t2-c)&BN_MASK2;
412  if (t1 != t2) c=(t1 < t2);
413  t1=a[3]; t2=b[3];
414  r[3]=(t1-t2-c)&BN_MASK2;
415  if (t1 != t2) c=(t1 < t2);
416  a+=4; b+=4; r+=4; n-=4;
417  }
418 #endif
419  while (n)
420  {
421  t1=a[0]; t2=b[0];
422  r[0]=(t1-t2-c)&BN_MASK2;
423  if (t1 != t2) c=(t1 < t2);
424  a++; b++; r++; n--;
425  }
426  return(c);
427  }
428 
429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
430 
431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4
435 
436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
440 
441 #ifdef BN_LLONG
442 #define mul_add_c(a,b,c0,c1,c2) \
443  t=(BN_ULLONG)a*b; \
444  t1=(BN_ULONG)Lw(t); \
445  t2=(BN_ULONG)Hw(t); \
446  c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
448 
449 #define mul_add_c2(a,b,c0,c1,c2) \
450  t=(BN_ULLONG)a*b; \
451  tt=(t+t)&BN_MASK; \
452  if (tt < t) c2++; \
453  t1=(BN_ULONG)Lw(tt); \
454  t2=(BN_ULONG)Hw(tt); \
455  c0=(c0+t1)&BN_MASK2; \
456  if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
458 
459 #define sqr_add_c(a,i,c0,c1,c2) \
460  t=(BN_ULLONG)a[i]*a[i]; \
461  t1=(BN_ULONG)Lw(t); \
462  t2=(BN_ULONG)Hw(t); \
463  c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
465 
466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
467  mul_add_c2((a)[i],(a)[j],c0,c1,c2)
468 
469 #elif defined(BN_UMULT_LOHI)
470 
471 #define mul_add_c(a,b,c0,c1,c2) { \
472  BN_ULONG ta=(a),tb=(b); \
473  BN_UMULT_LOHI(t1,t2,ta,tb); \
474  c0 += t1; t2 += (c0<t1)?1:0; \
475  c1 += t2; c2 += (c1<t2)?1:0; \
476  }
477 
478 #define mul_add_c2(a,b,c0,c1,c2) { \
479  BN_ULONG ta=(a),tb=(b),t0; \
480  BN_UMULT_LOHI(t0,t1,ta,tb); \
481  t2 = t1+t1; c2 += (t2<t1)?1:0; \
482  t1 = t0+t0; t2 += (t1<t0)?1:0; \
483  c0 += t1; t2 += (c0<t1)?1:0; \
484  c1 += t2; c2 += (c1<t2)?1:0; \
485  }
486 
487 #define sqr_add_c(a,i,c0,c1,c2) { \
488  BN_ULONG ta=(a)[i]; \
489  BN_UMULT_LOHI(t1,t2,ta,ta); \
490  c0 += t1; t2 += (c0<t1)?1:0; \
491  c1 += t2; c2 += (c1<t2)?1:0; \
492  }
493 
494 #define sqr_add_c2(a,i,j,c0,c1,c2) \
495  mul_add_c2((a)[i],(a)[j],c0,c1,c2)
496 
497 #elif defined(BN_UMULT_HIGH)
498 
499 #define mul_add_c(a,b,c0,c1,c2) { \
500  BN_ULONG ta=(a),tb=(b); \
501  t1 = ta * tb; \
502  t2 = BN_UMULT_HIGH(ta,tb); \
503  c0 += t1; t2 += (c0<t1)?1:0; \
504  c1 += t2; c2 += (c1<t2)?1:0; \
505  }
506 
507 #define mul_add_c2(a,b,c0,c1,c2) { \
508  BN_ULONG ta=(a),tb=(b),t0; \
509  t1 = BN_UMULT_HIGH(ta,tb); \
510  t0 = ta * tb; \
511  t2 = t1+t1; c2 += (t2<t1)?1:0; \
512  t1 = t0+t0; t2 += (t1<t0)?1:0; \
513  c0 += t1; t2 += (c0<t1)?1:0; \
514  c1 += t2; c2 += (c1<t2)?1:0; \
515  }
516 
517 #define sqr_add_c(a,i,c0,c1,c2) { \
518  BN_ULONG ta=(a)[i]; \
519  t1 = ta * ta; \
520  t2 = BN_UMULT_HIGH(ta,ta); \
521  c0 += t1; t2 += (c0<t1)?1:0; \
522  c1 += t2; c2 += (c1<t2)?1:0; \
523  }
524 
525 #define sqr_add_c2(a,i,j,c0,c1,c2) \
526  mul_add_c2((a)[i],(a)[j],c0,c1,c2)
527 
528 #else /* !BN_LLONG */
529 #define mul_add_c(a,b,c0,c1,c2) \
530  t1=LBITS(a); t2=HBITS(a); \
531  bl=LBITS(b); bh=HBITS(b); \
532  mul64(t1,t2,bl,bh); \
533  c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
535 
536 #define mul_add_c2(a,b,c0,c1,c2) \
537  t1=LBITS(a); t2=HBITS(a); \
538  bl=LBITS(b); bh=HBITS(b); \
539  mul64(t1,t2,bl,bh); \
540  if (t2 & BN_TBIT) c2++; \
541  t2=(t2+t2)&BN_MASK2; \
542  if (t1 & BN_TBIT) t2++; \
543  t1=(t1+t1)&BN_MASK2; \
544  c0=(c0+t1)&BN_MASK2; \
545  if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
547 
548 #define sqr_add_c(a,i,c0,c1,c2) \
549  sqr64(t1,t2,(a)[i]); \
550  c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551  c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
552 
553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
554  mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555 #endif /* !BN_LLONG */
556 
557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
558  {
559 #ifdef BN_LLONG
560  BN_ULLONG t;
561 #else
562  BN_ULONG bl,bh;
563 #endif
564  BN_ULONG t1,t2;
565  BN_ULONG c1,c2,c3;
566 
567  c1=0;
568  c2=0;
569  c3=0;
570  mul_add_c(a[0],b[0],c1,c2,c3);
571  r[0]=c1;
572  c1=0;
573  mul_add_c(a[0],b[1],c2,c3,c1);
574  mul_add_c(a[1],b[0],c2,c3,c1);
575  r[1]=c2;
576  c2=0;
577  mul_add_c(a[2],b[0],c3,c1,c2);
578  mul_add_c(a[1],b[1],c3,c1,c2);
579  mul_add_c(a[0],b[2],c3,c1,c2);
580  r[2]=c3;
581  c3=0;
582  mul_add_c(a[0],b[3],c1,c2,c3);
583  mul_add_c(a[1],b[2],c1,c2,c3);
584  mul_add_c(a[2],b[1],c1,c2,c3);
585  mul_add_c(a[3],b[0],c1,c2,c3);
586  r[3]=c1;
587  c1=0;
588  mul_add_c(a[4],b[0],c2,c3,c1);
589  mul_add_c(a[3],b[1],c2,c3,c1);
590  mul_add_c(a[2],b[2],c2,c3,c1);
591  mul_add_c(a[1],b[3],c2,c3,c1);
592  mul_add_c(a[0],b[4],c2,c3,c1);
593  r[4]=c2;
594  c2=0;
595  mul_add_c(a[0],b[5],c3,c1,c2);
596  mul_add_c(a[1],b[4],c3,c1,c2);
597  mul_add_c(a[2],b[3],c3,c1,c2);
598  mul_add_c(a[3],b[2],c3,c1,c2);
599  mul_add_c(a[4],b[1],c3,c1,c2);
600  mul_add_c(a[5],b[0],c3,c1,c2);
601  r[5]=c3;
602  c3=0;
603  mul_add_c(a[6],b[0],c1,c2,c3);
604  mul_add_c(a[5],b[1],c1,c2,c3);
605  mul_add_c(a[4],b[2],c1,c2,c3);
606  mul_add_c(a[3],b[3],c1,c2,c3);
607  mul_add_c(a[2],b[4],c1,c2,c3);
608  mul_add_c(a[1],b[5],c1,c2,c3);
609  mul_add_c(a[0],b[6],c1,c2,c3);
610  r[6]=c1;
611  c1=0;
612  mul_add_c(a[0],b[7],c2,c3,c1);
613  mul_add_c(a[1],b[6],c2,c3,c1);
614  mul_add_c(a[2],b[5],c2,c3,c1);
615  mul_add_c(a[3],b[4],c2,c3,c1);
616  mul_add_c(a[4],b[3],c2,c3,c1);
617  mul_add_c(a[5],b[2],c2,c3,c1);
618  mul_add_c(a[6],b[1],c2,c3,c1);
619  mul_add_c(a[7],b[0],c2,c3,c1);
620  r[7]=c2;
621  c2=0;
622  mul_add_c(a[7],b[1],c3,c1,c2);
623  mul_add_c(a[6],b[2],c3,c1,c2);
624  mul_add_c(a[5],b[3],c3,c1,c2);
625  mul_add_c(a[4],b[4],c3,c1,c2);
626  mul_add_c(a[3],b[5],c3,c1,c2);
627  mul_add_c(a[2],b[6],c3,c1,c2);
628  mul_add_c(a[1],b[7],c3,c1,c2);
629  r[8]=c3;
630  c3=0;
631  mul_add_c(a[2],b[7],c1,c2,c3);
632  mul_add_c(a[3],b[6],c1,c2,c3);
633  mul_add_c(a[4],b[5],c1,c2,c3);
634  mul_add_c(a[5],b[4],c1,c2,c3);
635  mul_add_c(a[6],b[3],c1,c2,c3);
636  mul_add_c(a[7],b[2],c1,c2,c3);
637  r[9]=c1;
638  c1=0;
639  mul_add_c(a[7],b[3],c2,c3,c1);
640  mul_add_c(a[6],b[4],c2,c3,c1);
641  mul_add_c(a[5],b[5],c2,c3,c1);
642  mul_add_c(a[4],b[6],c2,c3,c1);
643  mul_add_c(a[3],b[7],c2,c3,c1);
644  r[10]=c2;
645  c2=0;
646  mul_add_c(a[4],b[7],c3,c1,c2);
647  mul_add_c(a[5],b[6],c3,c1,c2);
648  mul_add_c(a[6],b[5],c3,c1,c2);
649  mul_add_c(a[7],b[4],c3,c1,c2);
650  r[11]=c3;
651  c3=0;
652  mul_add_c(a[7],b[5],c1,c2,c3);
653  mul_add_c(a[6],b[6],c1,c2,c3);
654  mul_add_c(a[5],b[7],c1,c2,c3);
655  r[12]=c1;
656  c1=0;
657  mul_add_c(a[6],b[7],c2,c3,c1);
658  mul_add_c(a[7],b[6],c2,c3,c1);
659  r[13]=c2;
660  c2=0;
661  mul_add_c(a[7],b[7],c3,c1,c2);
662  r[14]=c3;
663  r[15]=c1;
664  }
665 
666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
667  {
668 #ifdef BN_LLONG
669  BN_ULLONG t;
670 #else
671  BN_ULONG bl,bh;
672 #endif
673  BN_ULONG t1,t2;
674  BN_ULONG c1,c2,c3;
675 
676  c1=0;
677  c2=0;
678  c3=0;
679  mul_add_c(a[0],b[0],c1,c2,c3);
680  r[0]=c1;
681  c1=0;
682  mul_add_c(a[0],b[1],c2,c3,c1);
683  mul_add_c(a[1],b[0],c2,c3,c1);
684  r[1]=c2;
685  c2=0;
686  mul_add_c(a[2],b[0],c3,c1,c2);
687  mul_add_c(a[1],b[1],c3,c1,c2);
688  mul_add_c(a[0],b[2],c3,c1,c2);
689  r[2]=c3;
690  c3=0;
691  mul_add_c(a[0],b[3],c1,c2,c3);
692  mul_add_c(a[1],b[2],c1,c2,c3);
693  mul_add_c(a[2],b[1],c1,c2,c3);
694  mul_add_c(a[3],b[0],c1,c2,c3);
695  r[3]=c1;
696  c1=0;
697  mul_add_c(a[3],b[1],c2,c3,c1);
698  mul_add_c(a[2],b[2],c2,c3,c1);
699  mul_add_c(a[1],b[3],c2,c3,c1);
700  r[4]=c2;
701  c2=0;
702  mul_add_c(a[2],b[3],c3,c1,c2);
703  mul_add_c(a[3],b[2],c3,c1,c2);
704  r[5]=c3;
705  c3=0;
706  mul_add_c(a[3],b[3],c1,c2,c3);
707  r[6]=c1;
708  r[7]=c2;
709  }
710 
711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
712  {
713 #ifdef BN_LLONG
714  BN_ULLONG t,tt;
715 #else
716  BN_ULONG bl,bh;
717 #endif
718  BN_ULONG t1,t2;
719  BN_ULONG c1,c2,c3;
720 
721  c1=0;
722  c2=0;
723  c3=0;
724  sqr_add_c(a,0,c1,c2,c3);
725  r[0]=c1;
726  c1=0;
727  sqr_add_c2(a,1,0,c2,c3,c1);
728  r[1]=c2;
729  c2=0;
730  sqr_add_c(a,1,c3,c1,c2);
731  sqr_add_c2(a,2,0,c3,c1,c2);
732  r[2]=c3;
733  c3=0;
734  sqr_add_c2(a,3,0,c1,c2,c3);
735  sqr_add_c2(a,2,1,c1,c2,c3);
736  r[3]=c1;
737  c1=0;
738  sqr_add_c(a,2,c2,c3,c1);
739  sqr_add_c2(a,3,1,c2,c3,c1);
740  sqr_add_c2(a,4,0,c2,c3,c1);
741  r[4]=c2;
742  c2=0;
743  sqr_add_c2(a,5,0,c3,c1,c2);
744  sqr_add_c2(a,4,1,c3,c1,c2);
745  sqr_add_c2(a,3,2,c3,c1,c2);
746  r[5]=c3;
747  c3=0;
748  sqr_add_c(a,3,c1,c2,c3);
749  sqr_add_c2(a,4,2,c1,c2,c3);
750  sqr_add_c2(a,5,1,c1,c2,c3);
751  sqr_add_c2(a,6,0,c1,c2,c3);
752  r[6]=c1;
753  c1=0;
754  sqr_add_c2(a,7,0,c2,c3,c1);
755  sqr_add_c2(a,6,1,c2,c3,c1);
756  sqr_add_c2(a,5,2,c2,c3,c1);
757  sqr_add_c2(a,4,3,c2,c3,c1);
758  r[7]=c2;
759  c2=0;
760  sqr_add_c(a,4,c3,c1,c2);
761  sqr_add_c2(a,5,3,c3,c1,c2);
762  sqr_add_c2(a,6,2,c3,c1,c2);
763  sqr_add_c2(a,7,1,c3,c1,c2);
764  r[8]=c3;
765  c3=0;
766  sqr_add_c2(a,7,2,c1,c2,c3);
767  sqr_add_c2(a,6,3,c1,c2,c3);
768  sqr_add_c2(a,5,4,c1,c2,c3);
769  r[9]=c1;
770  c1=0;
771  sqr_add_c(a,5,c2,c3,c1);
772  sqr_add_c2(a,6,4,c2,c3,c1);
773  sqr_add_c2(a,7,3,c2,c3,c1);
774  r[10]=c2;
775  c2=0;
776  sqr_add_c2(a,7,4,c3,c1,c2);
777  sqr_add_c2(a,6,5,c3,c1,c2);
778  r[11]=c3;
779  c3=0;
780  sqr_add_c(a,6,c1,c2,c3);
781  sqr_add_c2(a,7,5,c1,c2,c3);
782  r[12]=c1;
783  c1=0;
784  sqr_add_c2(a,7,6,c2,c3,c1);
785  r[13]=c2;
786  c2=0;
787  sqr_add_c(a,7,c3,c1,c2);
788  r[14]=c3;
789  r[15]=c1;
790  }
791 
792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
793  {
794 #ifdef BN_LLONG
795  BN_ULLONG t,tt;
796 #else
797  BN_ULONG bl,bh;
798 #endif
799  BN_ULONG t1,t2;
800  BN_ULONG c1,c2,c3;
801 
802  c1=0;
803  c2=0;
804  c3=0;
805  sqr_add_c(a,0,c1,c2,c3);
806  r[0]=c1;
807  c1=0;
808  sqr_add_c2(a,1,0,c2,c3,c1);
809  r[1]=c2;
810  c2=0;
811  sqr_add_c(a,1,c3,c1,c2);
812  sqr_add_c2(a,2,0,c3,c1,c2);
813  r[2]=c3;
814  c3=0;
815  sqr_add_c2(a,3,0,c1,c2,c3);
816  sqr_add_c2(a,2,1,c1,c2,c3);
817  r[3]=c1;
818  c1=0;
819  sqr_add_c(a,2,c2,c3,c1);
820  sqr_add_c2(a,3,1,c2,c3,c1);
821  r[4]=c2;
822  c2=0;
823  sqr_add_c2(a,3,2,c3,c1,c2);
824  r[5]=c3;
825  c3=0;
826  sqr_add_c(a,3,c1,c2,c3);
827  r[6]=c1;
828  r[7]=c2;
829  }
830 
831 #ifdef OPENSSL_NO_ASM
832 #ifdef OPENSSL_BN_ASM_MONT
833 #include <alloca.h>
834 /*
835  * This is essentially reference implementation, which may or may not
836  * result in performance improvement. E.g. on IA-32 this routine was
837  * observed to give 40% faster rsa1024 private key operations and 10%
838  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
840  * reference implementation, one to be used as starting point for
841  * platform-specific assembler. Mentioned numbers apply to compiler
842  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843  * can vary not only from platform to platform, but even for compiler
844  * versions. Assembler vs. assembler improvement coefficients can
845  * [and are known to] differ and are to be documented elsewhere.
846  */
847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
848  {
849  BN_ULONG c0,c1,ml,*tp,n0;
850 #ifdef mul64
851  BN_ULONG mh;
852 #endif
853  volatile BN_ULONG *vp;
854  int i=0,j;
855 
856 #if 0 /* template for platform-specific implementation */
857  if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
858 #endif
859  vp = tp = alloca((num+2)*sizeof(BN_ULONG));
860 
861  n0 = *n0p;
862 
863  c0 = 0;
864  ml = bp[0];
865 #ifdef mul64
866  mh = HBITS(ml);
867  ml = LBITS(ml);
868  for (j=0;j<num;++j)
869  mul(tp[j],ap[j],ml,mh,c0);
870 #else
871  for (j=0;j<num;++j)
872  mul(tp[j],ap[j],ml,c0);
873 #endif
874 
875  tp[num] = c0;
876  tp[num+1] = 0;
877  goto enter;
878 
879  for(i=0;i<num;i++)
880  {
881  c0 = 0;
882  ml = bp[i];
883 #ifdef mul64
884  mh = HBITS(ml);
885  ml = LBITS(ml);
886  for (j=0;j<num;++j)
887  mul_add(tp[j],ap[j],ml,mh,c0);
888 #else
889  for (j=0;j<num;++j)
890  mul_add(tp[j],ap[j],ml,c0);
891 #endif
892  c1 = (tp[num] + c0)&BN_MASK2;
893  tp[num] = c1;
894  tp[num+1] = (c1<c0?1:0);
895  enter:
896  c1 = tp[0];
897  ml = (c1*n0)&BN_MASK2;
898  c0 = 0;
899 #ifdef mul64
900  mh = HBITS(ml);
901  ml = LBITS(ml);
902  mul_add(c1,np[0],ml,mh,c0);
903 #else
904  mul_add(c1,ml,np[0],c0);
905 #endif
906  for(j=1;j<num;j++)
907  {
908  c1 = tp[j];
909 #ifdef mul64
910  mul_add(c1,np[j],ml,mh,c0);
911 #else
912  mul_add(c1,ml,np[j],c0);
913 #endif
914  tp[j-1] = c1&BN_MASK2;
915  }
916  c1 = (tp[num] + c0)&BN_MASK2;
917  tp[num-1] = c1;
918  tp[num] = tp[num+1] + (c1<c0?1:0);
919  }
920 
921  if (tp[num]!=0 || tp[num-1]>=np[num-1])
922  {
923  c0 = bn_sub_words(rp,tp,np,num);
924  if (tp[num]!=0 || c0==0)
925  {
926  for(i=0;i<num+2;i++) vp[i] = 0;
927  return 1;
928  }
929  }
930  for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
931  vp[num] = 0;
932  vp[num+1] = 0;
933  return 1;
934  }
935 #else
936 /*
937  * Return value of 0 indicates that multiplication/convolution was not
938  * performed to signal the caller to fall down to alternative/original
939  * code-path.
940  */
941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
942 { return 0; }
943 #endif /* OPENSSL_BN_ASM_MONT */
944 #endif
945 
946 #else /* !BN_MUL_COMBA */
947 
948 /* hmm... is it faster just to do a multiply? */
949 #undef bn_sqr_comba4
950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
951  {
952  BN_ULONG t[8];
953  bn_sqr_normal(r,a,4,t);
954  }
955 
956 #undef bn_sqr_comba8
957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
958  {
959  BN_ULONG t[16];
960  bn_sqr_normal(r,a,8,t);
961  }
962 
963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
964  {
965  r[4]=bn_mul_words( &(r[0]),a,4,b[0]);
966  r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
967  r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
968  r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
969  }
970 
971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972  {
973  r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
974  r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
975  r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
976  r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
977  r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
978  r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
979  r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
980  r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
981  }
982 
983 #ifdef OPENSSL_NO_ASM
984 #ifdef OPENSSL_BN_ASM_MONT
985 #include <alloca.h>
986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
987  {
988  BN_ULONG c0,c1,*tp,n0=*n0p;
989  volatile BN_ULONG *vp;
990  int i=0,j;
991 
992  vp = tp = alloca((num+2)*sizeof(BN_ULONG));
993 
994  for(i=0;i<=num;i++) tp[i]=0;
995 
996  for(i=0;i<num;i++)
997  {
998  c0 = bn_mul_add_words(tp,ap,num,bp[i]);
999  c1 = (tp[num] + c0)&BN_MASK2;
1000  tp[num] = c1;
1001  tp[num+1] = (c1<c0?1:0);
1002 
1003  c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004  c1 = (tp[num] + c0)&BN_MASK2;
1005  tp[num] = c1;
1006  tp[num+1] += (c1<c0?1:0);
1007  for(j=0;j<=num;j++) tp[j]=tp[j+1];
1008  }
1009 
1010  if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011  {
1012  c0 = bn_sub_words(rp,tp,np,num);
1013  if (tp[num]!=0 || c0==0)
1014  {
1015  for(i=0;i<num+2;i++) vp[i] = 0;
1016  return 1;
1017  }
1018  }
1019  for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
1020  vp[num] = 0;
1021  vp[num+1] = 0;
1022  return 1;
1023  }
1024 #else
1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1026 { return 0; }
1027 #endif /* OPENSSL_BN_ASM_MONT */
1028 #endif
1029 
1030 #endif /* !BN_MUL_COMBA */