OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_exp.c
Go to the documentation of this file.
1 /* crypto/bn/bn_exp.c */
2 /* Copyright (C) 1995-1998 Eric Young ([email protected])
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young ([email protected]).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to. The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson ([email protected]).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  * notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  * notice, this list of conditions and the following disclaimer in the
30  * documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  * must display the following acknowledgement:
33  * "This product includes cryptographic software written by
34  * Eric Young ([email protected])"
35  * The word 'cryptographic' can be left out if the rouines from the library
36  * being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  * the apps directory (application code) you must include an acknowledgement:
39  * "This product includes software written by Tim Hudson ([email protected])"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed. i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  * notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  * notice, this list of conditions and the following disclaimer in
70  * the documentation and/or other materials provided with the
71  * distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  * software must display the following acknowledgment:
75  * "This product includes software developed by the OpenSSL Project
76  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  * endorse or promote products derived from this software without
80  * prior written permission. For written permission, please contact
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  * nor may "OpenSSL" appear in their names without prior written
85  * permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  * acknowledgment:
89  * "This product includes software developed by the OpenSSL Project
90  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * ([email protected]). This product includes software written by Tim
108  * Hudson ([email protected]).
109  *
110  */
111 
112 
113 #include "cryptlib.h"
114 #include "bn_lcl.h"
115 
116 #include <stdlib.h>
117 #ifdef _WIN32
118 # include <malloc.h>
119 # ifndef alloca
120 # define alloca _alloca
121 # endif
122 #elif defined(__GNUC__)
123 # ifndef alloca
124 # define alloca(s) __builtin_alloca((s))
125 # endif
126 #endif
127 
128 /* maximum precomputation table size for *variable* sliding windows */
129 #define TABLE_SIZE 32
130 
131 /* this one works - simple but works */
132 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
133  {
134  int i,bits,ret=0;
135  BIGNUM *v,*rr;
136 
137  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
138  {
139  /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
141  return -1;
142  }
143 
144  BN_CTX_start(ctx);
145  if ((r == a) || (r == p))
146  rr = BN_CTX_get(ctx);
147  else
148  rr = r;
149  v = BN_CTX_get(ctx);
150  if (rr == NULL || v == NULL) goto err;
151 
152  if (BN_copy(v,a) == NULL) goto err;
153  bits=BN_num_bits(p);
154 
155  if (BN_is_odd(p))
156  { if (BN_copy(rr,a) == NULL) goto err; }
157  else { if (!BN_one(rr)) goto err; }
158 
159  for (i=1; i<bits; i++)
160  {
161  if (!BN_sqr(v,v,ctx)) goto err;
162  if (BN_is_bit_set(p,i))
163  {
164  if (!BN_mul(rr,rr,v,ctx)) goto err;
165  }
166  }
167  ret=1;
168 err:
169  if (r != rr) BN_copy(r,rr);
170  BN_CTX_end(ctx);
171  bn_check_top(r);
172  return(ret);
173  }
174 
175 
176 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
177  BN_CTX *ctx)
178  {
179  int ret;
180 
181  bn_check_top(a);
182  bn_check_top(p);
183  bn_check_top(m);
184 
185  /* For even modulus m = 2^k*m_odd, it might make sense to compute
186  * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
187  * exponentiation for the odd part), using appropriate exponent
188  * reductions, and combine the results using the CRT.
189  *
190  * For now, we use Montgomery only if the modulus is odd; otherwise,
191  * exponentiation using the reciprocal-based quick remaindering
192  * algorithm is used.
193  *
194  * (Timing obtained with expspeed.c [computations a^p mod m
195  * where a, p, m are of the same length: 256, 512, 1024, 2048,
196  * 4096, 8192 bits], compared to the running time of the
197  * standard algorithm:
198  *
199  * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
200  * 55 .. 77 % [UltraSparc processor, but
201  * debug-solaris-sparcv8-gcc conf.]
202  *
203  * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
204  * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
205  *
206  * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
207  * at 2048 and more bits, but at 512 and 1024 bits, it was
208  * slower even than the standard algorithm!
209  *
210  * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
211  * should be obtained when the new Montgomery reduction code
212  * has been integrated into OpenSSL.)
213  */
214 
215 #define MONT_MUL_MOD
216 #define MONT_EXP_WORD
217 #define RECP_MUL_MOD
218 
219 #ifdef MONT_MUL_MOD
220  /* I have finally been able to take out this pre-condition of
221  * the top bit being set. It was caused by an error in BN_div
222  * with negatives. There was also another problem when for a^b%m
223  * a >= m. eay 07-May-97 */
224 /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
225 
226  if (BN_is_odd(m))
227  {
228 # ifdef MONT_EXP_WORD
229  if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0))
230  {
231  BN_ULONG A = a->d[0];
232  ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
233  }
234  else
235 # endif
236  ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
237  }
238  else
239 #endif
240 #ifdef RECP_MUL_MOD
241  { ret=BN_mod_exp_recp(r,a,p,m,ctx); }
242 #else
243  { ret=BN_mod_exp_simple(r,a,p,m,ctx); }
244 #endif
245 
246  bn_check_top(r);
247  return(ret);
248  }
249 
250 
251 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
252  const BIGNUM *m, BN_CTX *ctx)
253  {
254  int i,j,bits,ret=0,wstart,wend,window,wvalue;
255  int start=1;
256  BIGNUM *aa;
257  /* Table of variables obtained from 'ctx' */
258  BIGNUM *val[TABLE_SIZE];
259  BN_RECP_CTX recp;
260 
261  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
262  {
263  /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
265  return -1;
266  }
267 
268  bits=BN_num_bits(p);
269 
270  if (bits == 0)
271  {
272  ret = BN_one(r);
273  return ret;
274  }
275 
276  BN_CTX_start(ctx);
277  aa = BN_CTX_get(ctx);
278  val[0] = BN_CTX_get(ctx);
279  if(!aa || !val[0]) goto err;
280 
281  BN_RECP_CTX_init(&recp);
282  if (m->neg)
283  {
284  /* ignore sign of 'm' */
285  if (!BN_copy(aa, m)) goto err;
286  aa->neg = 0;
287  if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err;
288  }
289  else
290  {
291  if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
292  }
293 
294  if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */
295  if (BN_is_zero(val[0]))
296  {
297  BN_zero(r);
298  ret = 1;
299  goto err;
300  }
301 
302  window = BN_window_bits_for_exponent_size(bits);
303  if (window > 1)
304  {
305  if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx))
306  goto err; /* 2 */
307  j=1<<(window-1);
308  for (i=1; i<j; i++)
309  {
310  if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
311  !BN_mod_mul_reciprocal(val[i],val[i-1],
312  aa,&recp,ctx))
313  goto err;
314  }
315  }
316 
317  start=1; /* This is used to avoid multiplication etc
318  * when there is only the value '1' in the
319  * buffer. */
320  wvalue=0; /* The 'value' of the window */
321  wstart=bits-1; /* The top bit of the window */
322  wend=0; /* The bottom bit of the window */
323 
324  if (!BN_one(r)) goto err;
325 
326  for (;;)
327  {
328  if (BN_is_bit_set(p,wstart) == 0)
329  {
330  if (!start)
331  if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
332  goto err;
333  if (wstart == 0) break;
334  wstart--;
335  continue;
336  }
337  /* We now have wstart on a 'set' bit, we now need to work out
338  * how bit a window to do. To do this we need to scan
339  * forward until the last set bit before the end of the
340  * window */
341  j=wstart;
342  wvalue=1;
343  wend=0;
344  for (i=1; i<window; i++)
345  {
346  if (wstart-i < 0) break;
347  if (BN_is_bit_set(p,wstart-i))
348  {
349  wvalue<<=(i-wend);
350  wvalue|=1;
351  wend=i;
352  }
353  }
354 
355  /* wend is the size of the current window */
356  j=wend+1;
357  /* add the 'bytes above' */
358  if (!start)
359  for (i=0; i<j; i++)
360  {
361  if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
362  goto err;
363  }
364 
365  /* wvalue will be an odd number < 2^window */
366  if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx))
367  goto err;
368 
369  /* move the 'window' down further */
370  wstart-=wend+1;
371  wvalue=0;
372  start=0;
373  if (wstart < 0) break;
374  }
375  ret=1;
376 err:
377  BN_CTX_end(ctx);
378  BN_RECP_CTX_free(&recp);
379  bn_check_top(r);
380  return(ret);
381  }
382 
383 
384 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
385  const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
386  {
387  int i,j,bits,ret=0,wstart,wend,window,wvalue;
388  int start=1;
389  BIGNUM *d,*r;
390  const BIGNUM *aa;
391  /* Table of variables obtained from 'ctx' */
392  BIGNUM *val[TABLE_SIZE];
393  BN_MONT_CTX *mont=NULL;
394 
395  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
396  {
397  return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
398  }
399 
400  bn_check_top(a);
401  bn_check_top(p);
402  bn_check_top(m);
403 
404  if (!BN_is_odd(m))
405  {
407  return(0);
408  }
409  bits=BN_num_bits(p);
410  if (bits == 0)
411  {
412  ret = BN_one(rr);
413  return ret;
414  }
415 
416  BN_CTX_start(ctx);
417  d = BN_CTX_get(ctx);
418  r = BN_CTX_get(ctx);
419  val[0] = BN_CTX_get(ctx);
420  if (!d || !r || !val[0]) goto err;
421 
422  /* If this is not done, things will break in the montgomery
423  * part */
424 
425  if (in_mont != NULL)
426  mont=in_mont;
427  else
428  {
429  if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
430  if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
431  }
432 
433  if (a->neg || BN_ucmp(a,m) >= 0)
434  {
435  if (!BN_nnmod(val[0],a,m,ctx))
436  goto err;
437  aa= val[0];
438  }
439  else
440  aa=a;
441  if (BN_is_zero(aa))
442  {
443  BN_zero(rr);
444  ret = 1;
445  goto err;
446  }
447  if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */
448 
449  window = BN_window_bits_for_exponent_size(bits);
450  if (window > 1)
451  {
452  if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */
453  j=1<<(window-1);
454  for (i=1; i<j; i++)
455  {
456  if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
457  !BN_mod_mul_montgomery(val[i],val[i-1],
458  d,mont,ctx))
459  goto err;
460  }
461  }
462 
463  start=1; /* This is used to avoid multiplication etc
464  * when there is only the value '1' in the
465  * buffer. */
466  wvalue=0; /* The 'value' of the window */
467  wstart=bits-1; /* The top bit of the window */
468  wend=0; /* The bottom bit of the window */
469 
470  if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
471  for (;;)
472  {
473  if (BN_is_bit_set(p,wstart) == 0)
474  {
475  if (!start)
476  {
477  if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
478  goto err;
479  }
480  if (wstart == 0) break;
481  wstart--;
482  continue;
483  }
484  /* We now have wstart on a 'set' bit, we now need to work out
485  * how bit a window to do. To do this we need to scan
486  * forward until the last set bit before the end of the
487  * window */
488  j=wstart;
489  wvalue=1;
490  wend=0;
491  for (i=1; i<window; i++)
492  {
493  if (wstart-i < 0) break;
494  if (BN_is_bit_set(p,wstart-i))
495  {
496  wvalue<<=(i-wend);
497  wvalue|=1;
498  wend=i;
499  }
500  }
501 
502  /* wend is the size of the current window */
503  j=wend+1;
504  /* add the 'bytes above' */
505  if (!start)
506  for (i=0; i<j; i++)
507  {
508  if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
509  goto err;
510  }
511 
512  /* wvalue will be an odd number < 2^window */
513  if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx))
514  goto err;
515 
516  /* move the 'window' down further */
517  wstart-=wend+1;
518  wvalue=0;
519  start=0;
520  if (wstart < 0) break;
521  }
522  if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
523  ret=1;
524 err:
525  if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
526  BN_CTX_end(ctx);
527  bn_check_top(rr);
528  return(ret);
529  }
530 
531 
532 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout
533  * so that accessing any of these table values shows the same access pattern as far
534  * as cache lines are concerned. The following functions are used to transfer a BIGNUM
535  * from/to that table. */
536 
537 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int width)
538  {
539  size_t i, j;
540 
541  if (top > b->top)
542  top = b->top; /* this works because 'buf' is explicitly zeroed */
543  for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
544  {
545  buf[j] = ((unsigned char*)b->d)[i];
546  }
547 
548  return 1;
549  }
550 
551 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width)
552  {
553  size_t i, j;
554 
555  if (bn_wexpand(b, top) == NULL)
556  return 0;
557 
558  for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
559  {
560  ((unsigned char*)b->d)[i] = buf[j];
561  }
562 
563  b->top = top;
564  bn_correct_top(b);
565  return 1;
566  }
567 
568 /* Given a pointer value, compute the next address that is a cache line multiple. */
569 #define MOD_EXP_CTIME_ALIGN(x_) \
570  ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
571 
572 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
573  * precomputation memory layout to limit data-dependency to a minimum
574  * to protect secret exponents (cf. the hyper-threading timing attacks
575  * pointed out by Colin Percival,
576  * http://www.daemonology.net/hyperthreading-considered-harmful/)
577  */
579  const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
580  {
581  int i,bits,ret=0,window,wvalue;
582  int top;
583  BN_MONT_CTX *mont=NULL;
584 
585  int numPowers;
586  unsigned char *powerbufFree=NULL;
587  int powerbufLen = 0;
588  unsigned char *powerbuf=NULL;
589  BIGNUM tmp, am;
590 
591  bn_check_top(a);
592  bn_check_top(p);
593  bn_check_top(m);
594 
595  top = m->top;
596 
597  if (!(m->d[0] & 1))
598  {
600  return(0);
601  }
602  bits=BN_num_bits(p);
603  if (bits == 0)
604  {
605  ret = BN_one(rr);
606  return ret;
607  }
608 
609  BN_CTX_start(ctx);
610 
611  /* Allocate a montgomery context if it was not supplied by the caller.
612  * If this is not done, things will break in the montgomery part.
613  */
614  if (in_mont != NULL)
615  mont=in_mont;
616  else
617  {
618  if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
619  if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
620  }
621 
622  /* Get the window size to use with size of p. */
624 #if defined(OPENSSL_BN_ASM_MONT5)
625  if (window==6 && bits<=1024) window=5; /* ~5% improvement of 2048-bit RSA sign */
626 #endif
627 
628  /* Allocate a buffer large enough to hold all of the pre-computed
629  * powers of am, am itself and tmp.
630  */
631  numPowers = 1 << window;
632  powerbufLen = sizeof(m->d[0])*(top*numPowers +
633  ((2*top)>numPowers?(2*top):numPowers));
634 #ifdef alloca
635  if (powerbufLen < 3072)
636  powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
637  else
638 #endif
639  if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
640  goto err;
641 
642  powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
643  memset(powerbuf, 0, powerbufLen);
644 
645 #ifdef alloca
646  if (powerbufLen < 3072)
647  powerbufFree = NULL;
648 #endif
649 
650  /* lay down tmp and am right after powers table */
651  tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers);
652  am.d = tmp.d + top;
653  tmp.top = am.top = 0;
654  tmp.dmax = am.dmax = top;
655  tmp.neg = am.neg = 0;
656  tmp.flags = am.flags = BN_FLG_STATIC_DATA;
657 
658  /* prepare a^0 in Montgomery domain */
659 #if 1
660  if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx)) goto err;
661 #else
662  tmp.d[0] = (0-m->d[0])&BN_MASK2; /* 2^(top*BN_BITS2) - m */
663  for (i=1;i<top;i++)
664  tmp.d[i] = (~m->d[i])&BN_MASK2;
665  tmp.top = top;
666 #endif
667 
668  /* prepare a^1 in Montgomery domain */
669  if (a->neg || BN_ucmp(a,m) >= 0)
670  {
671  if (!BN_mod(&am,a,m,ctx)) goto err;
672  if (!BN_to_montgomery(&am,&am,mont,ctx)) goto err;
673  }
674  else if (!BN_to_montgomery(&am,a,mont,ctx)) goto err;
675 
676 #if defined(OPENSSL_BN_ASM_MONT5)
677  /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
678  * specifically optimization of cache-timing attack countermeasures
679  * and pre-computation optimization. */
680 
681  /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
682  * 512-bit RSA is hardly relevant, we omit it to spare size... */
683  if (window==5)
684  {
685  void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap,
686  const void *table,const BN_ULONG *np,
687  const BN_ULONG *n0,int num,int power);
688  void bn_scatter5(const BN_ULONG *inp,size_t num,
689  void *table,size_t power);
690  void bn_gather5(BN_ULONG *out,size_t num,
691  void *table,size_t power);
692 
693  BN_ULONG *np=mont->N.d, *n0=mont->n0;
694 
695  /* BN_to_montgomery can contaminate words above .top
696  * [in BN_DEBUG[_DEBUG] build]... */
697  for (i=am.top; i<top; i++) am.d[i]=0;
698  for (i=tmp.top; i<top; i++) tmp.d[i]=0;
699 
700  bn_scatter5(tmp.d,top,powerbuf,0);
701  bn_scatter5(am.d,am.top,powerbuf,1);
702  bn_mul_mont(tmp.d,am.d,am.d,np,n0,top);
703  bn_scatter5(tmp.d,top,powerbuf,2);
704 
705 #if 0
706  for (i=3; i<32; i++)
707  {
708  /* Calculate a^i = a^(i-1) * a */
709  bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
710  bn_scatter5(tmp.d,top,powerbuf,i);
711  }
712 #else
713  /* same as above, but uses squaring for 1/2 of operations */
714  for (i=4; i<32; i*=2)
715  {
716  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
717  bn_scatter5(tmp.d,top,powerbuf,i);
718  }
719  for (i=3; i<8; i+=2)
720  {
721  int j;
722  bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
723  bn_scatter5(tmp.d,top,powerbuf,i);
724  for (j=2*i; j<32; j*=2)
725  {
726  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
727  bn_scatter5(tmp.d,top,powerbuf,j);
728  }
729  }
730  for (; i<16; i+=2)
731  {
732  bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
733  bn_scatter5(tmp.d,top,powerbuf,i);
734  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
735  bn_scatter5(tmp.d,top,powerbuf,2*i);
736  }
737  for (; i<32; i+=2)
738  {
739  bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
740  bn_scatter5(tmp.d,top,powerbuf,i);
741  }
742 #endif
743  bits--;
744  for (wvalue=0, i=bits%5; i>=0; i--,bits--)
745  wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
746  bn_gather5(tmp.d,top,powerbuf,wvalue);
747 
748  /* Scan the exponent one window at a time starting from the most
749  * significant bits.
750  */
751  while (bits >= 0)
752  {
753  for (wvalue=0, i=0; i<5; i++,bits--)
754  wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
755 
756  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
757  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
758  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
759  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
760  bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
761  bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue);
762  }
763 
764  tmp.top=top;
765  bn_correct_top(&tmp);
766  }
767  else
768 #endif
769  {
770  if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) goto err;
771  if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, numPowers)) goto err;
772 
773  /* If the window size is greater than 1, then calculate
774  * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
775  * (even powers could instead be computed as (a^(i/2))^2
776  * to use the slight performance advantage of sqr over mul).
777  */
778  if (window > 1)
779  {
780  if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx)) goto err;
781  if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPowers)) goto err;
782  for (i=3; i<numPowers; i++)
783  {
784  /* Calculate a^i = a^(i-1) * a */
785  if (!BN_mod_mul_montgomery(&tmp,&am,&tmp,mont,ctx))
786  goto err;
787  if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, numPowers)) goto err;
788  }
789  }
790 
791  bits--;
792  for (wvalue=0, i=bits%window; i>=0; i--,bits--)
793  wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
794  if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers)) goto err;
795 
796  /* Scan the exponent one window at a time starting from the most
797  * significant bits.
798  */
799  while (bits >= 0)
800  {
801  wvalue=0; /* The 'value' of the window */
802 
803  /* Scan the window, squaring the result as we go */
804  for (i=0; i<window; i++,bits--)
805  {
806  if (!BN_mod_mul_montgomery(&tmp,&tmp,&tmp,mont,ctx)) goto err;
807  wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
808  }
809 
810  /* Fetch the appropriate pre-computed value from the pre-buf */
811  if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, numPowers)) goto err;
812 
813  /* Multiply the result into the intermediate result */
814  if (!BN_mod_mul_montgomery(&tmp,&tmp,&am,mont,ctx)) goto err;
815  }
816  }
817 
818  /* Convert the final result from montgomery to standard format */
819  if (!BN_from_montgomery(rr,&tmp,mont,ctx)) goto err;
820  ret=1;
821 err:
822  if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
823  if (powerbuf!=NULL)
824  {
825  OPENSSL_cleanse(powerbuf,powerbufLen);
826  if (powerbufFree) OPENSSL_free(powerbufFree);
827  }
828  BN_CTX_end(ctx);
829  return(ret);
830  }
831 
832 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
833  const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
834  {
835  BN_MONT_CTX *mont = NULL;
836  int b, bits, ret=0;
837  int r_is_one;
838  BN_ULONG w, next_w;
839  BIGNUM *d, *r, *t;
840  BIGNUM *swap_tmp;
841 #define BN_MOD_MUL_WORD(r, w, m) \
842  (BN_mul_word(r, (w)) && \
843  (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
844  (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
845  /* BN_MOD_MUL_WORD is only used with 'w' large,
846  * so the BN_ucmp test is probably more overhead
847  * than always using BN_mod (which uses BN_copy if
848  * a similar test returns true). */
849  /* We can use BN_mod and do not need BN_nnmod because our
850  * accumulator is never negative (the result of BN_mod does
851  * not depend on the sign of the modulus).
852  */
853 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
854  (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
855 
856  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
857  {
858  /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
860  return -1;
861  }
862 
863  bn_check_top(p);
864  bn_check_top(m);
865 
866  if (!BN_is_odd(m))
867  {
869  return(0);
870  }
871  if (m->top == 1)
872  a %= m->d[0]; /* make sure that 'a' is reduced */
873 
874  bits = BN_num_bits(p);
875  if (bits == 0)
876  {
877  ret = BN_one(rr);
878  return ret;
879  }
880  if (a == 0)
881  {
882  BN_zero(rr);
883  ret = 1;
884  return ret;
885  }
886 
887  BN_CTX_start(ctx);
888  d = BN_CTX_get(ctx);
889  r = BN_CTX_get(ctx);
890  t = BN_CTX_get(ctx);
891  if (d == NULL || r == NULL || t == NULL) goto err;
892 
893  if (in_mont != NULL)
894  mont=in_mont;
895  else
896  {
897  if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
898  if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
899  }
900 
901  r_is_one = 1; /* except for Montgomery factor */
902 
903  /* bits-1 >= 0 */
904 
905  /* The result is accumulated in the product r*w. */
906  w = a; /* bit 'bits-1' of 'p' is always set */
907  for (b = bits-2; b >= 0; b--)
908  {
909  /* First, square r*w. */
910  next_w = w*w;
911  if ((next_w/w) != w) /* overflow */
912  {
913  if (r_is_one)
914  {
915  if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
916  r_is_one = 0;
917  }
918  else
919  {
920  if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
921  }
922  next_w = 1;
923  }
924  w = next_w;
925  if (!r_is_one)
926  {
927  if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
928  }
929 
930  /* Second, multiply r*w by 'a' if exponent bit is set. */
931  if (BN_is_bit_set(p, b))
932  {
933  next_w = w*a;
934  if ((next_w/a) != w) /* overflow */
935  {
936  if (r_is_one)
937  {
938  if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
939  r_is_one = 0;
940  }
941  else
942  {
943  if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
944  }
945  next_w = a;
946  }
947  w = next_w;
948  }
949  }
950 
951  /* Finally, set r:=r*w. */
952  if (w != 1)
953  {
954  if (r_is_one)
955  {
956  if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
957  r_is_one = 0;
958  }
959  else
960  {
961  if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
962  }
963  }
964 
965  if (r_is_one) /* can happen only if a == 1*/
966  {
967  if (!BN_one(rr)) goto err;
968  }
969  else
970  {
971  if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
972  }
973  ret = 1;
974 err:
975  if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
976  BN_CTX_end(ctx);
977  bn_check_top(rr);
978  return(ret);
979  }
980 
981 
982 /* The old fallback, simple version :-) */
983 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
984  const BIGNUM *m, BN_CTX *ctx)
985  {
986  int i,j,bits,ret=0,wstart,wend,window,wvalue;
987  int start=1;
988  BIGNUM *d;
989  /* Table of variables obtained from 'ctx' */
990  BIGNUM *val[TABLE_SIZE];
991 
992  if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
993  {
994  /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
996  return -1;
997  }
998 
999  bits=BN_num_bits(p);
1000 
1001  if (bits == 0)
1002  {
1003  ret = BN_one(r);
1004  return ret;
1005  }
1006 
1007  BN_CTX_start(ctx);
1008  d = BN_CTX_get(ctx);
1009  val[0] = BN_CTX_get(ctx);
1010  if(!d || !val[0]) goto err;
1011 
1012  if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */
1013  if (BN_is_zero(val[0]))
1014  {
1015  BN_zero(r);
1016  ret = 1;
1017  goto err;
1018  }
1019 
1020  window = BN_window_bits_for_exponent_size(bits);
1021  if (window > 1)
1022  {
1023  if (!BN_mod_mul(d,val[0],val[0],m,ctx))
1024  goto err; /* 2 */
1025  j=1<<(window-1);
1026  for (i=1; i<j; i++)
1027  {
1028  if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
1029  !BN_mod_mul(val[i],val[i-1],d,m,ctx))
1030  goto err;
1031  }
1032  }
1033 
1034  start=1; /* This is used to avoid multiplication etc
1035  * when there is only the value '1' in the
1036  * buffer. */
1037  wvalue=0; /* The 'value' of the window */
1038  wstart=bits-1; /* The top bit of the window */
1039  wend=0; /* The bottom bit of the window */
1040 
1041  if (!BN_one(r)) goto err;
1042 
1043  for (;;)
1044  {
1045  if (BN_is_bit_set(p,wstart) == 0)
1046  {
1047  if (!start)
1048  if (!BN_mod_mul(r,r,r,m,ctx))
1049  goto err;
1050  if (wstart == 0) break;
1051  wstart--;
1052  continue;
1053  }
1054  /* We now have wstart on a 'set' bit, we now need to work out
1055  * how bit a window to do. To do this we need to scan
1056  * forward until the last set bit before the end of the
1057  * window */
1058  j=wstart;
1059  wvalue=1;
1060  wend=0;
1061  for (i=1; i<window; i++)
1062  {
1063  if (wstart-i < 0) break;
1064  if (BN_is_bit_set(p,wstart-i))
1065  {
1066  wvalue<<=(i-wend);
1067  wvalue|=1;
1068  wend=i;
1069  }
1070  }
1071 
1072  /* wend is the size of the current window */
1073  j=wend+1;
1074  /* add the 'bytes above' */
1075  if (!start)
1076  for (i=0; i<j; i++)
1077  {
1078  if (!BN_mod_mul(r,r,r,m,ctx))
1079  goto err;
1080  }
1081 
1082  /* wvalue will be an odd number < 2^window */
1083  if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx))
1084  goto err;
1085 
1086  /* move the 'window' down further */
1087  wstart-=wend+1;
1088  wvalue=0;
1089  start=0;
1090  if (wstart < 0) break;
1091  }
1092  ret=1;
1093 err:
1094  BN_CTX_end(ctx);
1095  bn_check_top(r);
1096  return(ret);
1097  }