OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_gf2m.c
Go to the documentation of this file.
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * In addition, Sun covenants to all licensees who provide a reciprocal
13  * covenant with respect to their own patents if any, not to sue under
14  * current and future patent claims necessarily infringed by the making,
15  * using, practicing, selling, offering for sale and/or otherwise
16  * disposing of the ECC Code as delivered hereunder (or portions thereof),
17  * provided that such covenant shall not apply:
18  * 1) for code that a licensee deletes from the ECC Code;
19  * 2) separates from the ECC Code; or
20  * 3) for infringements caused by:
21  * i) the modification of the ECC Code or
22  * ii) the combination of the ECC Code with other software or
23  * devices where such combination causes the infringement.
24  *
25  * The software is originally written by Sheueling Chang Shantz and
26  * Douglas Stebila of Sun Microsystems Laboratories.
27  *
28  */
29 
30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31  * and may be modified; but after modifications, the above covenant
32  * may no longer apply! In such cases, the corresponding paragraph
33  * ["In addition, Sun covenants ... causes the infringement."] and
34  * this note can be edited out; but please keep the Sun copyright
35  * notice and attribution. */
36 
37 /* ====================================================================
38  * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  * notice, this list of conditions and the following disclaimer.
46  *
47  * 2. Redistributions in binary form must reproduce the above copyright
48  * notice, this list of conditions and the following disclaimer in
49  * the documentation and/or other materials provided with the
50  * distribution.
51  *
52  * 3. All advertising materials mentioning features or use of this
53  * software must display the following acknowledgment:
54  * "This product includes software developed by the OpenSSL Project
55  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56  *
57  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58  * endorse or promote products derived from this software without
59  * prior written permission. For written permission, please contact
61  *
62  * 5. Products derived from this software may not be called "OpenSSL"
63  * nor may "OpenSSL" appear in their names without prior written
64  * permission of the OpenSSL Project.
65  *
66  * 6. Redistributions of any form whatsoever must retain the following
67  * acknowledgment:
68  * "This product includes software developed by the OpenSSL Project
69  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82  * OF THE POSSIBILITY OF SUCH DAMAGE.
83  * ====================================================================
84  *
85  * This product includes cryptographic software written by Eric Young
86  * ([email protected]). This product includes software written by Tim
87  * Hudson ([email protected]).
88  *
89  */
90 
91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"
96 
97 #ifndef OPENSSL_NO_EC2M
98 
99 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
100 #define MAX_ITERATIONS 50
101 
102 static const BN_ULONG SQR_tb[16] =
103  { 0, 1, 4, 5, 16, 17, 20, 21,
104  64, 65, 68, 69, 80, 81, 84, 85 };
105 /* Platform-specific macros to accelerate squaring. */
106 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
107 #define SQR1(w) \
108  SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
109  SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
110  SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
111  SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
112 #define SQR0(w) \
113  SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
114  SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
115  SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
116  SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
117 #endif
118 #ifdef THIRTY_TWO_BIT
119 #define SQR1(w) \
120  SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
121  SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
122 #define SQR0(w) \
123  SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
124  SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
125 #endif
126 
127 #if !defined(OPENSSL_BN_ASM_GF2m)
128 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
129  * result is a polynomial r with degree < 2 * BN_BITS - 1
130  * The caller MUST ensure that the variables have the right amount
131  * of space allocated.
132  */
133 #ifdef THIRTY_TWO_BIT
134 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
135  {
136  register BN_ULONG h, l, s;
137  BN_ULONG tab[8], top2b = a >> 30;
138  register BN_ULONG a1, a2, a4;
139 
140  a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
141 
142  tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
143  tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
144 
145  s = tab[b & 0x7]; l = s;
146  s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
147  s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
148  s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
149  s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
150  s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
151  s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
152  s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
153  s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
154  s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
155  s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
156 
157  /* compensate for the top two bits of a */
158 
159  if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
160  if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
161 
162  *r1 = h; *r0 = l;
163  }
164 #endif
165 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167  {
168  register BN_ULONG h, l, s;
169  BN_ULONG tab[16], top3b = a >> 61;
170  register BN_ULONG a1, a2, a4, a8;
171 
172  a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
173 
174  tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
175  tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
176  tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
177  tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
178 
179  s = tab[b & 0xF]; l = s;
180  s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
181  s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
182  s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
183  s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
184  s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
185  s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
186  s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
187  s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
188  s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
189  s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
190  s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
191  s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
192  s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
193  s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
194  s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
195 
196  /* compensate for the top three bits of a */
197 
198  if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
199  if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
200  if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
201 
202  *r1 = h; *r0 = l;
203  }
204 #endif
205 
206 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
207  * result is a polynomial r with degree < 4 * BN_BITS2 - 1
208  * The caller MUST ensure that the variables have the right amount
209  * of space allocated.
210  */
211 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
212  {
213  BN_ULONG m1, m0;
214  /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
215  bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
216  bn_GF2m_mul_1x1(r+1, r, a0, b0);
217  bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
218  /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
219  r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
220  r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
221  }
222 #else
223 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
224 #endif
225 
226 /* Add polynomials a and b and store result in r; r could be a or b, a and b
227  * could be equal; r is the bitwise XOR of a and b.
228  */
229 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
230  {
231  int i;
232  const BIGNUM *at, *bt;
233 
234  bn_check_top(a);
235  bn_check_top(b);
236 
237  if (a->top < b->top) { at = b; bt = a; }
238  else { at = a; bt = b; }
239 
240  if(bn_wexpand(r, at->top) == NULL)
241  return 0;
242 
243  for (i = 0; i < bt->top; i++)
244  {
245  r->d[i] = at->d[i] ^ bt->d[i];
246  }
247  for (; i < at->top; i++)
248  {
249  r->d[i] = at->d[i];
250  }
251 
252  r->top = at->top;
253  bn_correct_top(r);
254 
255  return 1;
256  }
257 
258 
259 /* Some functions allow for representation of the irreducible polynomials
260  * as an int[], say p. The irreducible f(t) is then of the form:
261  * t^p[0] + t^p[1] + ... + t^p[k]
262  * where m = p[0] > p[1] > ... > p[k] = 0.
263  */
264 
265 
266 /* Performs modular reduction of a and store result in r. r could be a. */
267 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
268  {
269  int j, k;
270  int n, dN, d0, d1;
271  BN_ULONG zz, *z;
272 
273  bn_check_top(a);
274 
275  if (!p[0])
276  {
277  /* reduction mod 1 => return 0 */
278  BN_zero(r);
279  return 1;
280  }
281 
282  /* Since the algorithm does reduction in the r value, if a != r, copy
283  * the contents of a into r so we can do reduction in r.
284  */
285  if (a != r)
286  {
287  if (!bn_wexpand(r, a->top)) return 0;
288  for (j = 0; j < a->top; j++)
289  {
290  r->d[j] = a->d[j];
291  }
292  r->top = a->top;
293  }
294  z = r->d;
295 
296  /* start reduction */
297  dN = p[0] / BN_BITS2;
298  for (j = r->top - 1; j > dN;)
299  {
300  zz = z[j];
301  if (z[j] == 0) { j--; continue; }
302  z[j] = 0;
303 
304  for (k = 1; p[k] != 0; k++)
305  {
306  /* reducing component t^p[k] */
307  n = p[0] - p[k];
308  d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
309  n /= BN_BITS2;
310  z[j-n] ^= (zz>>d0);
311  if (d0) z[j-n-1] ^= (zz<<d1);
312  }
313 
314  /* reducing component t^0 */
315  n = dN;
316  d0 = p[0] % BN_BITS2;
317  d1 = BN_BITS2 - d0;
318  z[j-n] ^= (zz >> d0);
319  if (d0) z[j-n-1] ^= (zz << d1);
320  }
321 
322  /* final round of reduction */
323  while (j == dN)
324  {
325 
326  d0 = p[0] % BN_BITS2;
327  zz = z[dN] >> d0;
328  if (zz == 0) break;
329  d1 = BN_BITS2 - d0;
330 
331  /* clear up the top d1 bits */
332  if (d0)
333  z[dN] = (z[dN] << d1) >> d1;
334  else
335  z[dN] = 0;
336  z[0] ^= zz; /* reduction t^0 component */
337 
338  for (k = 1; p[k] != 0; k++)
339  {
340  BN_ULONG tmp_ulong;
341 
342  /* reducing component t^p[k]*/
343  n = p[k] / BN_BITS2;
344  d0 = p[k] % BN_BITS2;
345  d1 = BN_BITS2 - d0;
346  z[n] ^= (zz << d0);
347  tmp_ulong = zz >> d1;
348  if (d0 && tmp_ulong)
349  z[n+1] ^= tmp_ulong;
350  }
351 
352 
353  }
354 
355  bn_correct_top(r);
356  return 1;
357  }
358 
359 /* Performs modular reduction of a by p and store result in r. r could be a.
360  *
361  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
362  * function is only provided for convenience; for best performance, use the
363  * BN_GF2m_mod_arr function.
364  */
365 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
366  {
367  int ret = 0;
368  int arr[6];
369  bn_check_top(a);
370  bn_check_top(p);
371  ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
372  if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
373  {
375  return 0;
376  }
377  ret = BN_GF2m_mod_arr(r, a, arr);
378  bn_check_top(r);
379  return ret;
380  }
381 
382 
383 /* Compute the product of two polynomials a and b, reduce modulo p, and store
384  * the result in r. r could be a or b; a could be b.
385  */
386 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
387  {
388  int zlen, i, j, k, ret = 0;
389  BIGNUM *s;
390  BN_ULONG x1, x0, y1, y0, zz[4];
391 
392  bn_check_top(a);
393  bn_check_top(b);
394 
395  if (a == b)
396  {
397  return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
398  }
399 
400  BN_CTX_start(ctx);
401  if ((s = BN_CTX_get(ctx)) == NULL) goto err;
402 
403  zlen = a->top + b->top + 4;
404  if (!bn_wexpand(s, zlen)) goto err;
405  s->top = zlen;
406 
407  for (i = 0; i < zlen; i++) s->d[i] = 0;
408 
409  for (j = 0; j < b->top; j += 2)
410  {
411  y0 = b->d[j];
412  y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
413  for (i = 0; i < a->top; i += 2)
414  {
415  x0 = a->d[i];
416  x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
417  bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
418  for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
419  }
420  }
421 
422  bn_correct_top(s);
423  if (BN_GF2m_mod_arr(r, s, p))
424  ret = 1;
425  bn_check_top(r);
426 
427 err:
428  BN_CTX_end(ctx);
429  return ret;
430  }
431 
432 /* Compute the product of two polynomials a and b, reduce modulo p, and store
433  * the result in r. r could be a or b; a could equal b.
434  *
435  * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
436  * function is only provided for convenience; for best performance, use the
437  * BN_GF2m_mod_mul_arr function.
438  */
439 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
440  {
441  int ret = 0;
442  const int max = BN_num_bits(p) + 1;
443  int *arr=NULL;
444  bn_check_top(a);
445  bn_check_top(b);
446  bn_check_top(p);
447  if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
448  ret = BN_GF2m_poly2arr(p, arr, max);
449  if (!ret || ret > max)
450  {
452  goto err;
453  }
454  ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
455  bn_check_top(r);
456 err:
457  if (arr) OPENSSL_free(arr);
458  return ret;
459  }
460 
461 
462 /* Square a, reduce the result mod p, and store it in a. r could be a. */
463 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
464  {
465  int i, ret = 0;
466  BIGNUM *s;
467 
468  bn_check_top(a);
469  BN_CTX_start(ctx);
470  if ((s = BN_CTX_get(ctx)) == NULL) return 0;
471  if (!bn_wexpand(s, 2 * a->top)) goto err;
472 
473  for (i = a->top - 1; i >= 0; i--)
474  {
475  s->d[2*i+1] = SQR1(a->d[i]);
476  s->d[2*i ] = SQR0(a->d[i]);
477  }
478 
479  s->top = 2 * a->top;
480  bn_correct_top(s);
481  if (!BN_GF2m_mod_arr(r, s, p)) goto err;
482  bn_check_top(r);
483  ret = 1;
484 err:
485  BN_CTX_end(ctx);
486  return ret;
487  }
488 
489 /* Square a, reduce the result mod p, and store it in a. r could be a.
490  *
491  * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
492  * function is only provided for convenience; for best performance, use the
493  * BN_GF2m_mod_sqr_arr function.
494  */
495 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
496  {
497  int ret = 0;
498  const int max = BN_num_bits(p) + 1;
499  int *arr=NULL;
500 
501  bn_check_top(a);
502  bn_check_top(p);
503  if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
504  ret = BN_GF2m_poly2arr(p, arr, max);
505  if (!ret || ret > max)
506  {
508  goto err;
509  }
510  ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
511  bn_check_top(r);
512 err:
513  if (arr) OPENSSL_free(arr);
514  return ret;
515  }
516 
517 
518 /* Invert a, reduce modulo p, and store the result in r. r could be a.
519  * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
520  * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
521  * of Elliptic Curve Cryptography Over Binary Fields".
522  */
523 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
524  {
525  BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
526  int ret = 0;
527 
528  bn_check_top(a);
529  bn_check_top(p);
530 
531  BN_CTX_start(ctx);
532 
533  if ((b = BN_CTX_get(ctx))==NULL) goto err;
534  if ((c = BN_CTX_get(ctx))==NULL) goto err;
535  if ((u = BN_CTX_get(ctx))==NULL) goto err;
536  if ((v = BN_CTX_get(ctx))==NULL) goto err;
537 
538  if (!BN_GF2m_mod(u, a, p)) goto err;
539  if (BN_is_zero(u)) goto err;
540 
541  if (!BN_copy(v, p)) goto err;
542 #if 0
543  if (!BN_one(b)) goto err;
544 
545  while (1)
546  {
547  while (!BN_is_odd(u))
548  {
549  if (BN_is_zero(u)) goto err;
550  if (!BN_rshift1(u, u)) goto err;
551  if (BN_is_odd(b))
552  {
553  if (!BN_GF2m_add(b, b, p)) goto err;
554  }
555  if (!BN_rshift1(b, b)) goto err;
556  }
557 
558  if (BN_abs_is_word(u, 1)) break;
559 
560  if (BN_num_bits(u) < BN_num_bits(v))
561  {
562  tmp = u; u = v; v = tmp;
563  tmp = b; b = c; c = tmp;
564  }
565 
566  if (!BN_GF2m_add(u, u, v)) goto err;
567  if (!BN_GF2m_add(b, b, c)) goto err;
568  }
569 #else
570  {
571  int i, ubits = BN_num_bits(u),
572  vbits = BN_num_bits(v), /* v is copy of p */
573  top = p->top;
574  BN_ULONG *udp,*bdp,*vdp,*cdp;
575 
576  bn_wexpand(u,top); udp = u->d;
577  for (i=u->top;i<top;i++) udp[i] = 0;
578  u->top = top;
579  bn_wexpand(b,top); bdp = b->d;
580  bdp[0] = 1;
581  for (i=1;i<top;i++) bdp[i] = 0;
582  b->top = top;
583  bn_wexpand(c,top); cdp = c->d;
584  for (i=0;i<top;i++) cdp[i] = 0;
585  c->top = top;
586  vdp = v->d; /* It pays off to "cache" *->d pointers, because
587  * it allows optimizer to be more aggressive.
588  * But we don't have to "cache" p->d, because *p
589  * is declared 'const'... */
590  while (1)
591  {
592  while (ubits && !(udp[0]&1))
593  {
594  BN_ULONG u0,u1,b0,b1,mask;
595 
596  u0 = udp[0];
597  b0 = bdp[0];
598  mask = (BN_ULONG)0-(b0&1);
599  b0 ^= p->d[0]&mask;
600  for (i=0;i<top-1;i++)
601  {
602  u1 = udp[i+1];
603  udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
604  u0 = u1;
605  b1 = bdp[i+1]^(p->d[i+1]&mask);
606  bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
607  b0 = b1;
608  }
609  udp[i] = u0>>1;
610  bdp[i] = b0>>1;
611  ubits--;
612  }
613 
614  if (ubits<=BN_BITS2 && udp[0]==1) break;
615 
616  if (ubits<vbits)
617  {
618  i = ubits; ubits = vbits; vbits = i;
619  tmp = u; u = v; v = tmp;
620  tmp = b; b = c; c = tmp;
621  udp = vdp; vdp = v->d;
622  bdp = cdp; cdp = c->d;
623  }
624  for(i=0;i<top;i++)
625  {
626  udp[i] ^= vdp[i];
627  bdp[i] ^= cdp[i];
628  }
629  if (ubits==vbits)
630  {
631  BN_ULONG ul;
632  int utop = (ubits-1)/BN_BITS2;
633 
634  while ((ul=udp[utop])==0 && utop) utop--;
635  ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
636  }
637  }
638  bn_correct_top(b);
639  }
640 #endif
641 
642  if (!BN_copy(r, b)) goto err;
643  bn_check_top(r);
644  ret = 1;
645 
646 err:
647 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
648  bn_correct_top(c);
649  bn_correct_top(u);
650  bn_correct_top(v);
651 #endif
652  BN_CTX_end(ctx);
653  return ret;
654  }
655 
656 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
657  *
658  * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
659  * function is only provided for convenience; for best performance, use the
660  * BN_GF2m_mod_inv function.
661  */
662 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
663  {
664  BIGNUM *field;
665  int ret = 0;
666 
667  bn_check_top(xx);
668  BN_CTX_start(ctx);
669  if ((field = BN_CTX_get(ctx)) == NULL) goto err;
670  if (!BN_GF2m_arr2poly(p, field)) goto err;
671 
672  ret = BN_GF2m_mod_inv(r, xx, field, ctx);
673  bn_check_top(r);
674 
675 err:
676  BN_CTX_end(ctx);
677  return ret;
678  }
679 
680 
681 #ifndef OPENSSL_SUN_GF2M_DIV
682 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
683  * or y, x could equal y.
684  */
685 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
686  {
687  BIGNUM *xinv = NULL;
688  int ret = 0;
689 
690  bn_check_top(y);
691  bn_check_top(x);
692  bn_check_top(p);
693 
694  BN_CTX_start(ctx);
695  xinv = BN_CTX_get(ctx);
696  if (xinv == NULL) goto err;
697 
698  if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
699  if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
700  bn_check_top(r);
701  ret = 1;
702 
703 err:
704  BN_CTX_end(ctx);
705  return ret;
706  }
707 #else
708 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
709  * or y, x could equal y.
710  * Uses algorithm Modular_Division_GF(2^m) from
711  * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
712  * the Great Divide".
713  */
714 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
715  {
716  BIGNUM *a, *b, *u, *v;
717  int ret = 0;
718 
719  bn_check_top(y);
720  bn_check_top(x);
721  bn_check_top(p);
722 
723  BN_CTX_start(ctx);
724 
725  a = BN_CTX_get(ctx);
726  b = BN_CTX_get(ctx);
727  u = BN_CTX_get(ctx);
728  v = BN_CTX_get(ctx);
729  if (v == NULL) goto err;
730 
731  /* reduce x and y mod p */
732  if (!BN_GF2m_mod(u, y, p)) goto err;
733  if (!BN_GF2m_mod(a, x, p)) goto err;
734  if (!BN_copy(b, p)) goto err;
735 
736  while (!BN_is_odd(a))
737  {
738  if (!BN_rshift1(a, a)) goto err;
739  if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
740  if (!BN_rshift1(u, u)) goto err;
741  }
742 
743  do
744  {
745  if (BN_GF2m_cmp(b, a) > 0)
746  {
747  if (!BN_GF2m_add(b, b, a)) goto err;
748  if (!BN_GF2m_add(v, v, u)) goto err;
749  do
750  {
751  if (!BN_rshift1(b, b)) goto err;
752  if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
753  if (!BN_rshift1(v, v)) goto err;
754  } while (!BN_is_odd(b));
755  }
756  else if (BN_abs_is_word(a, 1))
757  break;
758  else
759  {
760  if (!BN_GF2m_add(a, a, b)) goto err;
761  if (!BN_GF2m_add(u, u, v)) goto err;
762  do
763  {
764  if (!BN_rshift1(a, a)) goto err;
765  if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
766  if (!BN_rshift1(u, u)) goto err;
767  } while (!BN_is_odd(a));
768  }
769  } while (1);
770 
771  if (!BN_copy(r, u)) goto err;
772  bn_check_top(r);
773  ret = 1;
774 
775 err:
776  BN_CTX_end(ctx);
777  return ret;
778  }
779 #endif
780 
781 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
782  * or yy, xx could equal yy.
783  *
784  * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
785  * function is only provided for convenience; for best performance, use the
786  * BN_GF2m_mod_div function.
787  */
788 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx)
789  {
790  BIGNUM *field;
791  int ret = 0;
792 
793  bn_check_top(yy);
794  bn_check_top(xx);
795 
796  BN_CTX_start(ctx);
797  if ((field = BN_CTX_get(ctx)) == NULL) goto err;
798  if (!BN_GF2m_arr2poly(p, field)) goto err;
799 
800  ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
801  bn_check_top(r);
802 
803 err:
804  BN_CTX_end(ctx);
805  return ret;
806  }
807 
808 
809 /* Compute the bth power of a, reduce modulo p, and store
810  * the result in r. r could be a.
811  * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
812  */
813 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx)
814  {
815  int ret = 0, i, n;
816  BIGNUM *u;
817 
818  bn_check_top(a);
819  bn_check_top(b);
820 
821  if (BN_is_zero(b))
822  return(BN_one(r));
823 
824  if (BN_abs_is_word(b, 1))
825  return (BN_copy(r, a) != NULL);
826 
827  BN_CTX_start(ctx);
828  if ((u = BN_CTX_get(ctx)) == NULL) goto err;
829 
830  if (!BN_GF2m_mod_arr(u, a, p)) goto err;
831 
832  n = BN_num_bits(b) - 1;
833  for (i = n - 1; i >= 0; i--)
834  {
835  if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
836  if (BN_is_bit_set(b, i))
837  {
838  if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
839  }
840  }
841  if (!BN_copy(r, u)) goto err;
842  bn_check_top(r);
843  ret = 1;
844 err:
845  BN_CTX_end(ctx);
846  return ret;
847  }
848 
849 /* Compute the bth power of a, reduce modulo p, and store
850  * the result in r. r could be a.
851  *
852  * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
853  * function is only provided for convenience; for best performance, use the
854  * BN_GF2m_mod_exp_arr function.
855  */
856 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
857  {
858  int ret = 0;
859  const int max = BN_num_bits(p) + 1;
860  int *arr=NULL;
861  bn_check_top(a);
862  bn_check_top(b);
863  bn_check_top(p);
864  if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
865  ret = BN_GF2m_poly2arr(p, arr, max);
866  if (!ret || ret > max)
867  {
869  goto err;
870  }
871  ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
872  bn_check_top(r);
873 err:
874  if (arr) OPENSSL_free(arr);
875  return ret;
876  }
877 
878 /* Compute the square root of a, reduce modulo p, and store
879  * the result in r. r could be a.
880  * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
881  */
882 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx)
883  {
884  int ret = 0;
885  BIGNUM *u;
886 
887  bn_check_top(a);
888 
889  if (!p[0])
890  {
891  /* reduction mod 1 => return 0 */
892  BN_zero(r);
893  return 1;
894  }
895 
896  BN_CTX_start(ctx);
897  if ((u = BN_CTX_get(ctx)) == NULL) goto err;
898 
899  if (!BN_set_bit(u, p[0] - 1)) goto err;
900  ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
901  bn_check_top(r);
902 
903 err:
904  BN_CTX_end(ctx);
905  return ret;
906  }
907 
908 /* Compute the square root of a, reduce modulo p, and store
909  * the result in r. r could be a.
910  *
911  * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
912  * function is only provided for convenience; for best performance, use the
913  * BN_GF2m_mod_sqrt_arr function.
914  */
915 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
916  {
917  int ret = 0;
918  const int max = BN_num_bits(p) + 1;
919  int *arr=NULL;
920  bn_check_top(a);
921  bn_check_top(p);
922  if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
923  ret = BN_GF2m_poly2arr(p, arr, max);
924  if (!ret || ret > max)
925  {
927  goto err;
928  }
929  ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
930  bn_check_top(r);
931 err:
932  if (arr) OPENSSL_free(arr);
933  return ret;
934  }
935 
936 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
937  * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
938  */
939 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx)
940  {
941  int ret = 0, count = 0, j;
942  BIGNUM *a, *z, *rho, *w, *w2, *tmp;
943 
944  bn_check_top(a_);
945 
946  if (!p[0])
947  {
948  /* reduction mod 1 => return 0 */
949  BN_zero(r);
950  return 1;
951  }
952 
953  BN_CTX_start(ctx);
954  a = BN_CTX_get(ctx);
955  z = BN_CTX_get(ctx);
956  w = BN_CTX_get(ctx);
957  if (w == NULL) goto err;
958 
959  if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
960 
961  if (BN_is_zero(a))
962  {
963  BN_zero(r);
964  ret = 1;
965  goto err;
966  }
967 
968  if (p[0] & 0x1) /* m is odd */
969  {
970  /* compute half-trace of a */
971  if (!BN_copy(z, a)) goto err;
972  for (j = 1; j <= (p[0] - 1) / 2; j++)
973  {
974  if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975  if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
976  if (!BN_GF2m_add(z, z, a)) goto err;
977  }
978 
979  }
980  else /* m is even */
981  {
982  rho = BN_CTX_get(ctx);
983  w2 = BN_CTX_get(ctx);
984  tmp = BN_CTX_get(ctx);
985  if (tmp == NULL) goto err;
986  do
987  {
988  if (!BN_rand(rho, p[0], 0, 0)) goto err;
989  if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
990  BN_zero(z);
991  if (!BN_copy(w, rho)) goto err;
992  for (j = 1; j <= p[0] - 1; j++)
993  {
994  if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
995  if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
996  if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
997  if (!BN_GF2m_add(z, z, tmp)) goto err;
998  if (!BN_GF2m_add(w, w2, rho)) goto err;
999  }
1000  count++;
1001  } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1002  if (BN_is_zero(w))
1003  {
1005  goto err;
1006  }
1007  }
1008 
1009  if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1010  if (!BN_GF2m_add(w, z, w)) goto err;
1011  if (BN_GF2m_cmp(w, a))
1012  {
1014  goto err;
1015  }
1016 
1017  if (!BN_copy(r, z)) goto err;
1018  bn_check_top(r);
1019 
1020  ret = 1;
1021 
1022 err:
1023  BN_CTX_end(ctx);
1024  return ret;
1025  }
1026 
1027 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1028  *
1029  * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1030  * function is only provided for convenience; for best performance, use the
1031  * BN_GF2m_mod_solve_quad_arr function.
1032  */
1033 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1034  {
1035  int ret = 0;
1036  const int max = BN_num_bits(p) + 1;
1037  int *arr=NULL;
1038  bn_check_top(a);
1039  bn_check_top(p);
1040  if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1041  max)) == NULL) goto err;
1042  ret = BN_GF2m_poly2arr(p, arr, max);
1043  if (!ret || ret > max)
1044  {
1046  goto err;
1047  }
1048  ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1049  bn_check_top(r);
1050 err:
1051  if (arr) OPENSSL_free(arr);
1052  return ret;
1053  }
1054 
1055 /* Convert the bit-string representation of a polynomial
1056  * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1057  * to the bits with non-zero coefficient. Array is terminated with -1.
1058  * Up to max elements of the array will be filled. Return value is total
1059  * number of array elements that would be filled if array was large enough.
1060  */
1061 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1062  {
1063  int i, j, k = 0;
1064  BN_ULONG mask;
1065 
1066  if (BN_is_zero(a))
1067  return 0;
1068 
1069  for (i = a->top - 1; i >= 0; i--)
1070  {
1071  if (!a->d[i])
1072  /* skip word if a->d[i] == 0 */
1073  continue;
1074  mask = BN_TBIT;
1075  for (j = BN_BITS2 - 1; j >= 0; j--)
1076  {
1077  if (a->d[i] & mask)
1078  {
1079  if (k < max) p[k] = BN_BITS2 * i + j;
1080  k++;
1081  }
1082  mask >>= 1;
1083  }
1084  }
1085 
1086  if (k < max) {
1087  p[k] = -1;
1088  k++;
1089  }
1090 
1091  return k;
1092  }
1093 
1094 /* Convert the coefficient array representation of a polynomial to a
1095  * bit-string. The array must be terminated by -1.
1096  */
1097 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1098  {
1099  int i;
1100 
1101  bn_check_top(a);
1102  BN_zero(a);
1103  for (i = 0; p[i] != -1; i++)
1104  {
1105  if (BN_set_bit(a, p[i]) == 0)
1106  return 0;
1107  }
1108  bn_check_top(a);
1109 
1110  return 1;
1111  }
1112 
1113 #endif