OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_sqrt.c
Go to the documentation of this file.
1 /* crypto/bn/bn_sqrt.c */
2 /* Written by Lenka Fibikova <[email protected]>
3  * and Bodo Moeller for the OpenSSL project. */
4 /* ====================================================================
5  * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  * notice, this list of conditions and the following disclaimer in
16  * the documentation and/or other materials provided with the
17  * distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  * software must display the following acknowledgment:
21  * "This product includes software developed by the OpenSSL Project
22  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  * endorse or promote products derived from this software without
26  * prior written permission. For written permission, please contact
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  * nor may "OpenSSL" appear in their names without prior written
31  * permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  * acknowledgment:
35  * "This product includes software developed by the OpenSSL Project
36  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * ([email protected]). This product includes software written by Tim
54  * Hudson ([email protected]).
55  *
56  */
57 
58 #include "cryptlib.h"
59 #include "bn_lcl.h"
60 
61 
62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns 'ret' such that
64  * ret^2 == a (mod p),
65  * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66  * in Algebraic Computational Number Theory", algorithm 1.5.1).
67  * 'p' must be prime!
68  */
69  {
70  BIGNUM *ret = in;
71  int err = 1;
72  int r;
73  BIGNUM *A, *b, *q, *t, *x, *y;
74  int e, i, j;
75 
76  if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77  {
78  if (BN_abs_is_word(p, 2))
79  {
80  if (ret == NULL)
81  ret = BN_new();
82  if (ret == NULL)
83  goto end;
84  if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85  {
86  if (ret != in)
87  BN_free(ret);
88  return NULL;
89  }
90  bn_check_top(ret);
91  return ret;
92  }
93 
95  return(NULL);
96  }
97 
98  if (BN_is_zero(a) || BN_is_one(a))
99  {
100  if (ret == NULL)
101  ret = BN_new();
102  if (ret == NULL)
103  goto end;
104  if (!BN_set_word(ret, BN_is_one(a)))
105  {
106  if (ret != in)
107  BN_free(ret);
108  return NULL;
109  }
110  bn_check_top(ret);
111  return ret;
112  }
113 
114  BN_CTX_start(ctx);
115  A = BN_CTX_get(ctx);
116  b = BN_CTX_get(ctx);
117  q = BN_CTX_get(ctx);
118  t = BN_CTX_get(ctx);
119  x = BN_CTX_get(ctx);
120  y = BN_CTX_get(ctx);
121  if (y == NULL) goto end;
122 
123  if (ret == NULL)
124  ret = BN_new();
125  if (ret == NULL) goto end;
126 
127  /* A = a mod p */
128  if (!BN_nnmod(A, a, p, ctx)) goto end;
129 
130  /* now write |p| - 1 as 2^e*q where q is odd */
131  e = 1;
132  while (!BN_is_bit_set(p, e))
133  e++;
134  /* we'll set q later (if needed) */
135 
136  if (e == 1)
137  {
138  /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
139  * modulo (|p|-1)/2, and square roots can be computed
140  * directly by modular exponentiation.
141  * We have
142  * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
143  * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
144  */
145  if (!BN_rshift(q, p, 2)) goto end;
146  q->neg = 0;
147  if (!BN_add_word(q, 1)) goto end;
148  if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
149  err = 0;
150  goto vrfy;
151  }
152 
153  if (e == 2)
154  {
155  /* |p| == 5 (mod 8)
156  *
157  * In this case 2 is always a non-square since
158  * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
159  * So if a really is a square, then 2*a is a non-square.
160  * Thus for
161  * b := (2*a)^((|p|-5)/8),
162  * i := (2*a)*b^2
163  * we have
164  * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
165  * = (2*a)^((p-1)/2)
166  * = -1;
167  * so if we set
168  * x := a*b*(i-1),
169  * then
170  * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
171  * = a^2 * b^2 * (-2*i)
172  * = a*(-i)*(2*a*b^2)
173  * = a*(-i)*i
174  * = a.
175  *
176  * (This is due to A.O.L. Atkin,
177  * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
178  * November 1992.)
179  */
180 
181  /* t := 2*a */
182  if (!BN_mod_lshift1_quick(t, A, p)) goto end;
183 
184  /* b := (2*a)^((|p|-5)/8) */
185  if (!BN_rshift(q, p, 3)) goto end;
186  q->neg = 0;
187  if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
188 
189  /* y := b^2 */
190  if (!BN_mod_sqr(y, b, p, ctx)) goto end;
191 
192  /* t := (2*a)*b^2 - 1*/
193  if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
194  if (!BN_sub_word(t, 1)) goto end;
195 
196  /* x = a*b*t */
197  if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
198  if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
199 
200  if (!BN_copy(ret, x)) goto end;
201  err = 0;
202  goto vrfy;
203  }
204 
205  /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
206  * First, find some y that is not a square. */
207  if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
208  q->neg = 0;
209  i = 2;
210  do
211  {
212  /* For efficiency, try small numbers first;
213  * if this fails, try random numbers.
214  */
215  if (i < 22)
216  {
217  if (!BN_set_word(y, i)) goto end;
218  }
219  else
220  {
221  if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
222  if (BN_ucmp(y, p) >= 0)
223  {
224  if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
225  }
226  /* now 0 <= y < |p| */
227  if (BN_is_zero(y))
228  if (!BN_set_word(y, i)) goto end;
229  }
230 
231  r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
232  if (r < -1) goto end;
233  if (r == 0)
234  {
235  /* m divides p */
237  goto end;
238  }
239  }
240  while (r == 1 && ++i < 82);
241 
242  if (r != -1)
243  {
244  /* Many rounds and still no non-square -- this is more likely
245  * a bug than just bad luck.
246  * Even if p is not prime, we should have found some y
247  * such that r == -1.
248  */
250  goto end;
251  }
252 
253  /* Here's our actual 'q': */
254  if (!BN_rshift(q, q, e)) goto end;
255 
256  /* Now that we have some non-square, we can find an element
257  * of order 2^e by computing its q'th power. */
258  if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
259  if (BN_is_one(y))
260  {
262  goto end;
263  }
264 
265  /* Now we know that (if p is indeed prime) there is an integer
266  * k, 0 <= k < 2^e, such that
267  *
268  * a^q * y^k == 1 (mod p).
269  *
270  * As a^q is a square and y is not, k must be even.
271  * q+1 is even, too, so there is an element
272  *
273  * X := a^((q+1)/2) * y^(k/2),
274  *
275  * and it satisfies
276  *
277  * X^2 = a^q * a * y^k
278  * = a,
279  *
280  * so it is the square root that we are looking for.
281  */
282 
283  /* t := (q-1)/2 (note that q is odd) */
284  if (!BN_rshift1(t, q)) goto end;
285 
286  /* x := a^((q-1)/2) */
287  if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
288  {
289  if (!BN_nnmod(t, A, p, ctx)) goto end;
290  if (BN_is_zero(t))
291  {
292  /* special case: a == 0 (mod p) */
293  BN_zero(ret);
294  err = 0;
295  goto end;
296  }
297  else
298  if (!BN_one(x)) goto end;
299  }
300  else
301  {
302  if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
303  if (BN_is_zero(x))
304  {
305  /* special case: a == 0 (mod p) */
306  BN_zero(ret);
307  err = 0;
308  goto end;
309  }
310  }
311 
312  /* b := a*x^2 (= a^q) */
313  if (!BN_mod_sqr(b, x, p, ctx)) goto end;
314  if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
315 
316  /* x := a*x (= a^((q+1)/2)) */
317  if (!BN_mod_mul(x, x, A, p, ctx)) goto end;
318 
319  while (1)
320  {
321  /* Now b is a^q * y^k for some even k (0 <= k < 2^E
322  * where E refers to the original value of e, which we
323  * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
324  *
325  * We have a*b = x^2,
326  * y^2^(e-1) = -1,
327  * b^2^(e-1) = 1.
328  */
329 
330  if (BN_is_one(b))
331  {
332  if (!BN_copy(ret, x)) goto end;
333  err = 0;
334  goto vrfy;
335  }
336 
337 
338  /* find smallest i such that b^(2^i) = 1 */
339  i = 1;
340  if (!BN_mod_sqr(t, b, p, ctx)) goto end;
341  while (!BN_is_one(t))
342  {
343  i++;
344  if (i == e)
345  {
347  goto end;
348  }
349  if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
350  }
351 
352 
353  /* t := y^2^(e - i - 1) */
354  if (!BN_copy(t, y)) goto end;
355  for (j = e - i - 1; j > 0; j--)
356  {
357  if (!BN_mod_sqr(t, t, p, ctx)) goto end;
358  }
359  if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
360  if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
361  if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
362  e = i;
363  }
364 
365  vrfy:
366  if (!err)
367  {
368  /* verify the result -- the input might have been not a square
369  * (test added in 0.9.8) */
370 
371  if (!BN_mod_sqr(x, ret, p, ctx))
372  err = 1;
373 
374  if (!err && 0 != BN_cmp(x, A))
375  {
377  err = 1;
378  }
379  }
380 
381  end:
382  if (err)
383  {
384  if (ret != NULL && ret != in)
385  {
386  BN_clear_free(ret);
387  }
388  ret = NULL;
389  }
390  BN_CTX_end(ctx);
391  bn_check_top(ret);
392  return ret;
393  }