OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
bn_x931p.c
Go to the documentation of this file.
1 /* bn_x931p.c */
2 /* Written by Dr Stephen N Henson ([email protected]) for the OpenSSL
3  * project 2005.
4  */
5 /* ====================================================================
6  * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in
17  * the documentation and/or other materials provided with the
18  * distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  * software must display the following acknowledgment:
22  * "This product includes software developed by the OpenSSL Project
23  * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  * endorse or promote products derived from this software without
27  * prior written permission. For written permission, please contact
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  * nor may "OpenSSL" appear in their names without prior written
32  * permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  * acknowledgment:
36  * "This product includes software developed by the OpenSSL Project
37  * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * ([email protected]). This product includes software written by Tim
55  * Hudson ([email protected]).
56  *
57  */
58 
59 #include <stdio.h>
60 #include <openssl/bn.h>
61 
62 /* X9.31 routines for prime derivation */
63 
64 /* X9.31 prime derivation. This is used to generate the primes pi
65  * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd
66  * integers.
67  */
68 
69 static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
70  BN_GENCB *cb)
71  {
72  int i = 0;
73  if (!BN_copy(pi, Xpi))
74  return 0;
75  if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
76  return 0;
77  for(;;)
78  {
79  i++;
80  BN_GENCB_call(cb, 0, i);
81  /* NB 27 MR is specificed in X9.31 */
82  if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
83  break;
84  if (!BN_add_word(pi, 2))
85  return 0;
86  }
87  BN_GENCB_call(cb, 2, i);
88  return 1;
89  }
90 
91 /* This is the main X9.31 prime derivation function. From parameters
92  * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are
93  * not NULL they will be returned too: this is needed for testing.
94  */
95 
97  const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
98  const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
99  {
100  int ret = 0;
101 
102  BIGNUM *t, *p1p2, *pm1;
103 
104  /* Only even e supported */
105  if (!BN_is_odd(e))
106  return 0;
107 
108  BN_CTX_start(ctx);
109  if (!p1)
110  p1 = BN_CTX_get(ctx);
111 
112  if (!p2)
113  p2 = BN_CTX_get(ctx);
114 
115  t = BN_CTX_get(ctx);
116 
117  p1p2 = BN_CTX_get(ctx);
118 
119  pm1 = BN_CTX_get(ctx);
120 
121  if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
122  goto err;
123 
124  if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
125  goto err;
126 
127  if (!BN_mul(p1p2, p1, p2, ctx))
128  goto err;
129 
130  /* First set p to value of Rp */
131 
132  if (!BN_mod_inverse(p, p2, p1, ctx))
133  goto err;
134 
135  if (!BN_mul(p, p, p2, ctx))
136  goto err;
137 
138  if (!BN_mod_inverse(t, p1, p2, ctx))
139  goto err;
140 
141  if (!BN_mul(t, t, p1, ctx))
142  goto err;
143 
144  if (!BN_sub(p, p, t))
145  goto err;
146 
147  if (p->neg && !BN_add(p, p, p1p2))
148  goto err;
149 
150  /* p now equals Rp */
151 
152  if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
153  goto err;
154 
155  if (!BN_add(p, p, Xp))
156  goto err;
157 
158  /* p now equals Yp0 */
159 
160  for (;;)
161  {
162  int i = 1;
163  BN_GENCB_call(cb, 0, i++);
164  if (!BN_copy(pm1, p))
165  goto err;
166  if (!BN_sub_word(pm1, 1))
167  goto err;
168  if (!BN_gcd(t, pm1, e, ctx))
169  goto err;
170  if (BN_is_one(t)
171  /* X9.31 specifies 8 MR and 1 Lucas test or any prime test
172  * offering similar or better guarantees 50 MR is considerably
173  * better.
174  */
175  && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
176  break;
177  if (!BN_add(p, p, p1p2))
178  goto err;
179  }
180 
181  BN_GENCB_call(cb, 3, 0);
182 
183  ret = 1;
184 
185  err:
186 
187  BN_CTX_end(ctx);
188 
189  return ret;
190  }
191 
192 /* Generate pair of paramters Xp, Xq for X9.31 prime generation.
193  * Note: nbits paramter is sum of number of bits in both.
194  */
195 
196 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
197  {
198  BIGNUM *t;
199  int i;
200  /* Number of bits for each prime is of the form
201  * 512+128s for s = 0, 1, ...
202  */
203  if ((nbits < 1024) || (nbits & 0xff))
204  return 0;
205  nbits >>= 1;
206  /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and
207  * 2^nbits - 1. By setting the top two bits we ensure that the lower
208  * bound is exceeded.
209  */
210  if (!BN_rand(Xp, nbits, 1, 0))
211  return 0;
212 
213  BN_CTX_start(ctx);
214  t = BN_CTX_get(ctx);
215 
216  for (i = 0; i < 1000; i++)
217  {
218  if (!BN_rand(Xq, nbits, 1, 0))
219  return 0;
220  /* Check that |Xp - Xq| > 2^(nbits - 100) */
221  BN_sub(t, Xp, Xq);
222  if (BN_num_bits(t) > (nbits - 100))
223  break;
224  }
225 
226  BN_CTX_end(ctx);
227 
228  if (i < 1000)
229  return 1;
230 
231  return 0;
232 
233  }
234 
235 /* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1
236  * and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL
237  * the relevant parameter will be stored in it.
238  *
239  * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq
240  * are generated using the previous function and supplied as input.
241  */
242 
244  BIGNUM *Xp1, BIGNUM *Xp2,
245  const BIGNUM *Xp,
246  const BIGNUM *e, BN_CTX *ctx,
247  BN_GENCB *cb)
248  {
249  int ret = 0;
250 
251  BN_CTX_start(ctx);
252  if (!Xp1)
253  Xp1 = BN_CTX_get(ctx);
254  if (!Xp2)
255  Xp2 = BN_CTX_get(ctx);
256 
257  if (!BN_rand(Xp1, 101, 0, 0))
258  goto error;
259  if (!BN_rand(Xp2, 101, 0, 0))
260  goto error;
261  if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
262  goto error;
263 
264  ret = 1;
265 
266  error:
267  BN_CTX_end(ctx);
268 
269  return ret;
270 
271  }
272