OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
ec2_mult.c
Go to the documentation of this file.
1 /* crypto/ec/ec2_mult.c */
2 /* ====================================================================
3  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4  *
5  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7  * to the OpenSSL project.
8  *
9  * The ECC Code is licensed pursuant to the OpenSSL open source
10  * license provided below.
11  *
12  * The software is originally written by Sheueling Chang Shantz and
13  * Douglas Stebila of Sun Microsystems Laboratories.
14  *
15  */
16 /* ====================================================================
17  * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  *
23  * 1. Redistributions of source code must retain the above copyright
24  * notice, this list of conditions and the following disclaimer.
25  *
26  * 2. Redistributions in binary form must reproduce the above copyright
27  * notice, this list of conditions and the following disclaimer in
28  * the documentation and/or other materials provided with the
29  * distribution.
30  *
31  * 3. All advertising materials mentioning features or use of this
32  * software must display the following acknowledgment:
33  * "This product includes software developed by the OpenSSL Project
34  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35  *
36  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37  * endorse or promote products derived from this software without
38  * prior written permission. For written permission, please contact
40  *
41  * 5. Products derived from this software may not be called "OpenSSL"
42  * nor may "OpenSSL" appear in their names without prior written
43  * permission of the OpenSSL Project.
44  *
45  * 6. Redistributions of any form whatsoever must retain the following
46  * acknowledgment:
47  * "This product includes software developed by the OpenSSL Project
48  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61  * OF THE POSSIBILITY OF SUCH DAMAGE.
62  * ====================================================================
63  *
64  * This product includes cryptographic software written by Eric Young
65  * ([email protected]). This product includes software written by Tim
66  * Hudson ([email protected]).
67  *
68  */
69 
70 #include <openssl/err.h>
71 
72 #include "ec_lcl.h"
73 
74 #ifndef OPENSSL_NO_EC2M
75 
76 
77 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
78  * coordinates.
79  * Uses algorithm Mdouble in appendix of
80  * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
81  * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
82  * modified to not require precomputation of c=b^{2^{m-1}}.
83  */
84 static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx)
85  {
86  BIGNUM *t1;
87  int ret = 0;
88 
89  /* Since Mdouble is static we can guarantee that ctx != NULL. */
90  BN_CTX_start(ctx);
91  t1 = BN_CTX_get(ctx);
92  if (t1 == NULL) goto err;
93 
94  if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
95  if (!group->meth->field_sqr(group, t1, z, ctx)) goto err;
96  if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err;
97  if (!group->meth->field_sqr(group, x, x, ctx)) goto err;
98  if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err;
99  if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err;
100  if (!BN_GF2m_add(x, x, t1)) goto err;
101 
102  ret = 1;
103 
104  err:
105  BN_CTX_end(ctx);
106  return ret;
107  }
108 
109 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
110  * projective coordinates.
111  * Uses algorithm Madd in appendix of
112  * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
113  * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
114  */
115 static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1,
116  const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx)
117  {
118  BIGNUM *t1, *t2;
119  int ret = 0;
120 
121  /* Since Madd is static we can guarantee that ctx != NULL. */
122  BN_CTX_start(ctx);
123  t1 = BN_CTX_get(ctx);
124  t2 = BN_CTX_get(ctx);
125  if (t2 == NULL) goto err;
126 
127  if (!BN_copy(t1, x)) goto err;
128  if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err;
129  if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err;
130  if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err;
131  if (!BN_GF2m_add(z1, z1, x1)) goto err;
132  if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err;
133  if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err;
134  if (!BN_GF2m_add(x1, x1, t2)) goto err;
135 
136  ret = 1;
137 
138  err:
139  BN_CTX_end(ctx);
140  return ret;
141  }
142 
143 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
144  * using Montgomery point multiplication algorithm Mxy() in appendix of
145  * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
146  * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
147  * Returns:
148  * 0 on error
149  * 1 if return value should be the point at infinity
150  * 2 otherwise
151  */
152 static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1,
153  BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx)
154  {
155  BIGNUM *t3, *t4, *t5;
156  int ret = 0;
157 
158  if (BN_is_zero(z1))
159  {
160  BN_zero(x2);
161  BN_zero(z2);
162  return 1;
163  }
164 
165  if (BN_is_zero(z2))
166  {
167  if (!BN_copy(x2, x)) return 0;
168  if (!BN_GF2m_add(z2, x, y)) return 0;
169  return 2;
170  }
171 
172  /* Since Mxy is static we can guarantee that ctx != NULL. */
173  BN_CTX_start(ctx);
174  t3 = BN_CTX_get(ctx);
175  t4 = BN_CTX_get(ctx);
176  t5 = BN_CTX_get(ctx);
177  if (t5 == NULL) goto err;
178 
179  if (!BN_one(t5)) goto err;
180 
181  if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err;
182 
183  if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err;
184  if (!BN_GF2m_add(z1, z1, x1)) goto err;
185  if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err;
186  if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err;
187  if (!BN_GF2m_add(z2, z2, x2)) goto err;
188 
189  if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err;
190  if (!group->meth->field_sqr(group, t4, x, ctx)) goto err;
191  if (!BN_GF2m_add(t4, t4, y)) goto err;
192  if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err;
193  if (!BN_GF2m_add(t4, t4, z2)) goto err;
194 
195  if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err;
196  if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err;
197  if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err;
198  if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err;
199  if (!BN_GF2m_add(z2, x2, x)) goto err;
200 
201  if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err;
202  if (!BN_GF2m_add(z2, z2, y)) goto err;
203 
204  ret = 2;
205 
206  err:
207  BN_CTX_end(ctx);
208  return ret;
209  }
210 
211 /* Computes scalar*point and stores the result in r.
212  * point can not equal r.
213  * Uses algorithm 2P of
214  * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
215  * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
216  */
217 static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
218  const EC_POINT *point, BN_CTX *ctx)
219  {
220  BIGNUM *x1, *x2, *z1, *z2;
221  int ret = 0, i;
222  BN_ULONG mask,word;
223 
224  if (r == point)
225  {
227  return 0;
228  }
229 
230  /* if result should be point at infinity */
231  if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
232  EC_POINT_is_at_infinity(group, point))
233  {
234  return EC_POINT_set_to_infinity(group, r);
235  }
236 
237  /* only support affine coordinates */
238  if (!point->Z_is_one) return 0;
239 
240  /* Since point_multiply is static we can guarantee that ctx != NULL. */
241  BN_CTX_start(ctx);
242  x1 = BN_CTX_get(ctx);
243  z1 = BN_CTX_get(ctx);
244  if (z1 == NULL) goto err;
245 
246  x2 = &r->X;
247  z2 = &r->Y;
248 
249  if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */
250  if (!BN_one(z1)) goto err; /* z1 = 1 */
251  if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */
252  if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err;
253  if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */
254 
255  /* find top most bit and go one past it */
256  i = scalar->top - 1;
257  mask = BN_TBIT;
258  word = scalar->d[i];
259  while (!(word & mask)) mask >>= 1;
260  mask >>= 1;
261  /* if top most bit was at word break, go to next word */
262  if (!mask)
263  {
264  i--;
265  mask = BN_TBIT;
266  }
267 
268  for (; i >= 0; i--)
269  {
270  word = scalar->d[i];
271  while (mask)
272  {
273  if (word & mask)
274  {
275  if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err;
276  if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;
277  }
278  else
279  {
280  if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err;
281  if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
282  }
283  mask >>= 1;
284  }
285  mask = BN_TBIT;
286  }
287 
288  /* convert out of "projective" coordinates */
289  i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
290  if (i == 0) goto err;
291  else if (i == 1)
292  {
293  if (!EC_POINT_set_to_infinity(group, r)) goto err;
294  }
295  else
296  {
297  if (!BN_one(&r->Z)) goto err;
298  r->Z_is_one = 1;
299  }
300 
301  /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
302  BN_set_negative(&r->X, 0);
303  BN_set_negative(&r->Y, 0);
304 
305  ret = 1;
306 
307  err:
308  BN_CTX_end(ctx);
309  return ret;
310  }
311 
312 
313 /* Computes the sum
314  * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
315  * gracefully ignoring NULL scalar values.
316  */
317 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
318  size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
319  {
320  BN_CTX *new_ctx = NULL;
321  int ret = 0;
322  size_t i;
323  EC_POINT *p=NULL;
324  EC_POINT *acc = NULL;
325 
326  if (ctx == NULL)
327  {
328  ctx = new_ctx = BN_CTX_new();
329  if (ctx == NULL)
330  return 0;
331  }
332 
333  /* This implementation is more efficient than the wNAF implementation for 2
334  * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points,
335  * or if we can perform a fast multiplication based on precomputation.
336  */
337  if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group)))
338  {
339  ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
340  goto err;
341  }
342 
343  if ((p = EC_POINT_new(group)) == NULL) goto err;
344  if ((acc = EC_POINT_new(group)) == NULL) goto err;
345 
346  if (!EC_POINT_set_to_infinity(group, acc)) goto err;
347 
348  if (scalar)
349  {
350  if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err;
351  if (BN_is_negative(scalar))
352  if (!group->meth->invert(group, p, ctx)) goto err;
353  if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
354  }
355 
356  for (i = 0; i < num; i++)
357  {
358  if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err;
359  if (BN_is_negative(scalars[i]))
360  if (!group->meth->invert(group, p, ctx)) goto err;
361  if (!group->meth->add(group, acc, acc, p, ctx)) goto err;
362  }
363 
364  if (!EC_POINT_copy(r, acc)) goto err;
365 
366  ret = 1;
367 
368  err:
369  if (p) EC_POINT_free(p);
370  if (acc) EC_POINT_free(acc);
371  if (new_ctx != NULL)
372  BN_CTX_free(new_ctx);
373  return ret;
374  }
375 
376 
377 /* Precomputation for point multiplication: fall back to wNAF methods
378  * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */
379 
381  {
382  return ec_wNAF_precompute_mult(group, ctx);
383  }
384 
386  {
387  return ec_wNAF_have_precompute_mult(group);
388  }
389 
390 #endif