OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
ec_mult.c
Go to the documentation of this file.
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in
17  * the documentation and/or other materials provided with the
18  * distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  * software must display the following acknowledgment:
22  * "This product includes software developed by the OpenSSL Project
23  * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  * endorse or promote products derived from this software without
27  * prior written permission. For written permission, please contact
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  * nor may "OpenSSL" appear in their names without prior written
32  * permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  * acknowledgment:
36  * "This product includes software developed by the OpenSSL Project
37  * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * ([email protected]). This product includes software written by Tim
55  * Hudson ([email protected]).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63 
64 #include <string.h>
65 
66 #include <openssl/err.h>
67 
68 #include "ec_lcl.h"
69 
70 
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77 
78 
79 
80 
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83  const EC_GROUP *group; /* parent EC_GROUP object */
84  size_t blocksize; /* block size for wNAF splitting */
85  size_t numblocks; /* max. number of blocks for which we have precomputation */
86  size_t w; /* window size */
87  EC_POINT **points; /* array with pre-calculated multiples of generator:
88  * 'num' pointers to EC_POINT objects followed by a NULL */
89  size_t num; /* numblocks * 2^(w-1) */
91 } EC_PRE_COMP;
92 
93 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94 static void *ec_pre_comp_dup(void *);
95 static void ec_pre_comp_free(void *);
96 static void ec_pre_comp_clear_free(void *);
97 
98 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99  {
100  EC_PRE_COMP *ret = NULL;
101 
102  if (!group)
103  return NULL;
104 
105  ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106  if (!ret)
107  {
109  return ret;
110  }
111  ret->group = group;
112  ret->blocksize = 8; /* default */
113  ret->numblocks = 0;
114  ret->w = 4; /* default */
115  ret->points = NULL;
116  ret->num = 0;
117  ret->references = 1;
118  return ret;
119  }
120 
121 static void *ec_pre_comp_dup(void *src_)
122  {
123  EC_PRE_COMP *src = src_;
124 
125  /* no need to actually copy, these objects never change! */
126 
128 
129  return src_;
130  }
131 
132 static void ec_pre_comp_free(void *pre_)
133  {
134  int i;
135  EC_PRE_COMP *pre = pre_;
136 
137  if (!pre)
138  return;
139 
141  if (i > 0)
142  return;
143 
144  if (pre->points)
145  {
146  EC_POINT **p;
147 
148  for (p = pre->points; *p != NULL; p++)
149  EC_POINT_free(*p);
150  OPENSSL_free(pre->points);
151  }
152  OPENSSL_free(pre);
153  }
154 
155 static void ec_pre_comp_clear_free(void *pre_)
156  {
157  int i;
158  EC_PRE_COMP *pre = pre_;
159 
160  if (!pre)
161  return;
162 
164  if (i > 0)
165  return;
166 
167  if (pre->points)
168  {
169  EC_POINT **p;
170 
171  for (p = pre->points; *p != NULL; p++)
172  {
174  OPENSSL_cleanse(p, sizeof *p);
175  }
176  OPENSSL_free(pre->points);
177  }
178  OPENSSL_cleanse(pre, sizeof *pre);
179  OPENSSL_free(pre);
180  }
181 
182 
183 
184 
185 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
186  * This is an array r[] of values that are either zero or odd with an
187  * absolute value less than 2^w satisfying
188  * scalar = \sum_j r[j]*2^j
189  * where at most one of any w+1 consecutive digits is non-zero
190  * with the exception that the most significant digit may be only
191  * w-1 zeros away from that next non-zero digit.
192  */
193 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
194  {
195  int window_val;
196  int ok = 0;
197  signed char *r = NULL;
198  int sign = 1;
199  int bit, next_bit, mask;
200  size_t len = 0, j;
201 
202  if (BN_is_zero(scalar))
203  {
204  r = OPENSSL_malloc(1);
205  if (!r)
206  {
208  goto err;
209  }
210  r[0] = 0;
211  *ret_len = 1;
212  return r;
213  }
214 
215  if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
216  {
218  goto err;
219  }
220  bit = 1 << w; /* at most 128 */
221  next_bit = bit << 1; /* at most 256 */
222  mask = next_bit - 1; /* at most 255 */
223 
224  if (BN_is_negative(scalar))
225  {
226  sign = -1;
227  }
228 
229  if (scalar->d == NULL || scalar->top == 0)
230  {
232  goto err;
233  }
234 
235  len = BN_num_bits(scalar);
236  r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
237  * (*ret_len will be set to the actual length, i.e. at most
238  * BN_num_bits(scalar) + 1) */
239  if (r == NULL)
240  {
242  goto err;
243  }
244  window_val = scalar->d[0] & mask;
245  j = 0;
246  while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
247  {
248  int digit = 0;
249 
250  /* 0 <= window_val <= 2^(w+1) */
251 
252  if (window_val & 1)
253  {
254  /* 0 < window_val < 2^(w+1) */
255 
256  if (window_val & bit)
257  {
258  digit = window_val - next_bit; /* -2^w < digit < 0 */
259 
260 #if 1 /* modified wNAF */
261  if (j + w + 1 >= len)
262  {
263  /* special case for generating modified wNAFs:
264  * no new bits will be added into window_val,
265  * so using a positive digit here will decrease
266  * the total length of the representation */
267 
268  digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
269  }
270 #endif
271  }
272  else
273  {
274  digit = window_val; /* 0 < digit < 2^w */
275  }
276 
277  if (digit <= -bit || digit >= bit || !(digit & 1))
278  {
280  goto err;
281  }
282 
283  window_val -= digit;
284 
285  /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
286  * for modified window NAFs, it may also be 2^w
287  */
288  if (window_val != 0 && window_val != next_bit && window_val != bit)
289  {
291  goto err;
292  }
293  }
294 
295  r[j++] = sign * digit;
296 
297  window_val >>= 1;
298  window_val += bit * BN_is_bit_set(scalar, j + w);
299 
300  if (window_val > next_bit)
301  {
303  goto err;
304  }
305  }
306 
307  if (j > len + 1)
308  {
310  goto err;
311  }
312  len = j;
313  ok = 1;
314 
315  err:
316  if (!ok)
317  {
318  OPENSSL_free(r);
319  r = NULL;
320  }
321  if (ok)
322  *ret_len = len;
323  return r;
324  }
325 
326 
327 /* TODO: table should be optimised for the wNAF-based implementation,
328  * sometimes smaller windows will give better performance
329  * (thus the boundaries should be increased)
330  */
331 #define EC_window_bits_for_scalar_size(b) \
332  ((size_t) \
333  ((b) >= 2000 ? 6 : \
334  (b) >= 800 ? 5 : \
335  (b) >= 300 ? 4 : \
336  (b) >= 70 ? 3 : \
337  (b) >= 20 ? 2 : \
338  1))
339 
340 /* Compute
341  * \sum scalars[i]*points[i],
342  * also including
343  * scalar*generator
344  * in the addition if scalar != NULL
345  */
346 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
347  size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
348  {
349  BN_CTX *new_ctx = NULL;
350  const EC_POINT *generator = NULL;
351  EC_POINT *tmp = NULL;
352  size_t totalnum;
353  size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
354  size_t pre_points_per_block = 0;
355  size_t i, j;
356  int k;
357  int r_is_inverted = 0;
358  int r_is_at_infinity = 1;
359  size_t *wsize = NULL; /* individual window sizes */
360  signed char **wNAF = NULL; /* individual wNAFs */
361  size_t *wNAF_len = NULL;
362  size_t max_len = 0;
363  size_t num_val;
364  EC_POINT **val = NULL; /* precomputation */
365  EC_POINT **v;
366  EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
367  const EC_PRE_COMP *pre_comp = NULL;
368  int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
369  * i.e. precomputation is not available */
370  int ret = 0;
371 
372  if (group->meth != r->meth)
373  {
375  return 0;
376  }
377 
378  if ((scalar == NULL) && (num == 0))
379  {
380  return EC_POINT_set_to_infinity(group, r);
381  }
382 
383  for (i = 0; i < num; i++)
384  {
385  if (group->meth != points[i]->meth)
386  {
388  return 0;
389  }
390  }
391 
392  if (ctx == NULL)
393  {
394  ctx = new_ctx = BN_CTX_new();
395  if (ctx == NULL)
396  goto err;
397  }
398 
399  if (scalar != NULL)
400  {
401  generator = EC_GROUP_get0_generator(group);
402  if (generator == NULL)
403  {
405  goto err;
406  }
407 
408  /* look if we can use precomputed multiples of generator */
409 
410  pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
411 
412  if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
413  {
414  blocksize = pre_comp->blocksize;
415 
416  /* determine maximum number of blocks that wNAF splitting may yield
417  * (NB: maximum wNAF length is bit length plus one) */
418  numblocks = (BN_num_bits(scalar) / blocksize) + 1;
419 
420  /* we cannot use more blocks than we have precomputation for */
421  if (numblocks > pre_comp->numblocks)
422  numblocks = pre_comp->numblocks;
423 
424  pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
425 
426  /* check that pre_comp looks sane */
427  if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
428  {
430  goto err;
431  }
432  }
433  else
434  {
435  /* can't use precomputation */
436  pre_comp = NULL;
437  numblocks = 1;
438  num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
439  }
440  }
441 
442  totalnum = num + numblocks;
443 
444  wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
445  wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
446  wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
447  val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
448 
449  if (!wsize || !wNAF_len || !wNAF || !val_sub)
450  {
452  goto err;
453  }
454 
455  wNAF[0] = NULL; /* preliminary pivot */
456 
457  /* num_val will be the total number of temporarily precomputed points */
458  num_val = 0;
459 
460  for (i = 0; i < num + num_scalar; i++)
461  {
462  size_t bits;
463 
464  bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
465  wsize[i] = EC_window_bits_for_scalar_size(bits);
466  num_val += (size_t)1 << (wsize[i] - 1);
467  wNAF[i + 1] = NULL; /* make sure we always have a pivot */
468  wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
469  if (wNAF[i] == NULL)
470  goto err;
471  if (wNAF_len[i] > max_len)
472  max_len = wNAF_len[i];
473  }
474 
475  if (numblocks)
476  {
477  /* we go here iff scalar != NULL */
478 
479  if (pre_comp == NULL)
480  {
481  if (num_scalar != 1)
482  {
484  goto err;
485  }
486  /* we have already generated a wNAF for 'scalar' */
487  }
488  else
489  {
490  signed char *tmp_wNAF = NULL;
491  size_t tmp_len = 0;
492 
493  if (num_scalar != 0)
494  {
496  goto err;
497  }
498 
499  /* use the window size for which we have precomputation */
500  wsize[num] = pre_comp->w;
501  tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
502  if (!tmp_wNAF)
503  goto err;
504 
505  if (tmp_len <= max_len)
506  {
507  /* One of the other wNAFs is at least as long
508  * as the wNAF belonging to the generator,
509  * so wNAF splitting will not buy us anything. */
510 
511  numblocks = 1;
512  totalnum = num + 1; /* don't use wNAF splitting */
513  wNAF[num] = tmp_wNAF;
514  wNAF[num + 1] = NULL;
515  wNAF_len[num] = tmp_len;
516  if (tmp_len > max_len)
517  max_len = tmp_len;
518  /* pre_comp->points starts with the points that we need here: */
519  val_sub[num] = pre_comp->points;
520  }
521  else
522  {
523  /* don't include tmp_wNAF directly into wNAF array
524  * - use wNAF splitting and include the blocks */
525 
526  signed char *pp;
527  EC_POINT **tmp_points;
528 
529  if (tmp_len < numblocks * blocksize)
530  {
531  /* possibly we can do with fewer blocks than estimated */
532  numblocks = (tmp_len + blocksize - 1) / blocksize;
533  if (numblocks > pre_comp->numblocks)
534  {
536  goto err;
537  }
538  totalnum = num + numblocks;
539  }
540 
541  /* split wNAF in 'numblocks' parts */
542  pp = tmp_wNAF;
543  tmp_points = pre_comp->points;
544 
545  for (i = num; i < totalnum; i++)
546  {
547  if (i < totalnum - 1)
548  {
549  wNAF_len[i] = blocksize;
550  if (tmp_len < blocksize)
551  {
553  goto err;
554  }
555  tmp_len -= blocksize;
556  }
557  else
558  /* last block gets whatever is left
559  * (this could be more or less than 'blocksize'!) */
560  wNAF_len[i] = tmp_len;
561 
562  wNAF[i + 1] = NULL;
563  wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
564  if (wNAF[i] == NULL)
565  {
567  OPENSSL_free(tmp_wNAF);
568  goto err;
569  }
570  memcpy(wNAF[i], pp, wNAF_len[i]);
571  if (wNAF_len[i] > max_len)
572  max_len = wNAF_len[i];
573 
574  if (*tmp_points == NULL)
575  {
577  OPENSSL_free(tmp_wNAF);
578  goto err;
579  }
580  val_sub[i] = tmp_points;
581  tmp_points += pre_points_per_block;
582  pp += blocksize;
583  }
584  OPENSSL_free(tmp_wNAF);
585  }
586  }
587  }
588 
589  /* All points we precompute now go into a single array 'val'.
590  * 'val_sub[i]' is a pointer to the subarray for the i-th point,
591  * or to a subarray of 'pre_comp->points' if we already have precomputation. */
592  val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
593  if (val == NULL)
594  {
596  goto err;
597  }
598  val[num_val] = NULL; /* pivot element */
599 
600  /* allocate points for precomputation */
601  v = val;
602  for (i = 0; i < num + num_scalar; i++)
603  {
604  val_sub[i] = v;
605  for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++)
606  {
607  *v = EC_POINT_new(group);
608  if (*v == NULL) goto err;
609  v++;
610  }
611  }
612  if (!(v == val + num_val))
613  {
615  goto err;
616  }
617 
618  if (!(tmp = EC_POINT_new(group)))
619  goto err;
620 
621  /* prepare precomputed values:
622  * val_sub[i][0] := points[i]
623  * val_sub[i][1] := 3 * points[i]
624  * val_sub[i][2] := 5 * points[i]
625  * ...
626  */
627  for (i = 0; i < num + num_scalar; i++)
628  {
629  if (i < num)
630  {
631  if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
632  }
633  else
634  {
635  if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
636  }
637 
638  if (wsize[i] > 1)
639  {
640  if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
641  for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++)
642  {
643  if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
644  }
645  }
646  }
647 
648 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
649  if (!EC_POINTs_make_affine(group, num_val, val, ctx))
650  goto err;
651 #endif
652 
653  r_is_at_infinity = 1;
654 
655  for (k = max_len - 1; k >= 0; k--)
656  {
657  if (!r_is_at_infinity)
658  {
659  if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
660  }
661 
662  for (i = 0; i < totalnum; i++)
663  {
664  if (wNAF_len[i] > (size_t)k)
665  {
666  int digit = wNAF[i][k];
667  int is_neg;
668 
669  if (digit)
670  {
671  is_neg = digit < 0;
672 
673  if (is_neg)
674  digit = -digit;
675 
676  if (is_neg != r_is_inverted)
677  {
678  if (!r_is_at_infinity)
679  {
680  if (!EC_POINT_invert(group, r, ctx)) goto err;
681  }
682  r_is_inverted = !r_is_inverted;
683  }
684 
685  /* digit > 0 */
686 
687  if (r_is_at_infinity)
688  {
689  if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
690  r_is_at_infinity = 0;
691  }
692  else
693  {
694  if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
695  }
696  }
697  }
698  }
699  }
700 
701  if (r_is_at_infinity)
702  {
703  if (!EC_POINT_set_to_infinity(group, r)) goto err;
704  }
705  else
706  {
707  if (r_is_inverted)
708  if (!EC_POINT_invert(group, r, ctx)) goto err;
709  }
710 
711  ret = 1;
712 
713  err:
714  if (new_ctx != NULL)
715  BN_CTX_free(new_ctx);
716  if (tmp != NULL)
717  EC_POINT_free(tmp);
718  if (wsize != NULL)
719  OPENSSL_free(wsize);
720  if (wNAF_len != NULL)
721  OPENSSL_free(wNAF_len);
722  if (wNAF != NULL)
723  {
724  signed char **w;
725 
726  for (w = wNAF; *w != NULL; w++)
727  OPENSSL_free(*w);
728 
729  OPENSSL_free(wNAF);
730  }
731  if (val != NULL)
732  {
733  for (v = val; *v != NULL; v++)
735 
736  OPENSSL_free(val);
737  }
738  if (val_sub != NULL)
739  {
740  OPENSSL_free(val_sub);
741  }
742  return ret;
743  }
744 
745 
746 /* ec_wNAF_precompute_mult()
747  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
748  * for use with wNAF splitting as implemented in ec_wNAF_mul().
749  *
750  * 'pre_comp->points' is an array of multiples of the generator
751  * of the following form:
752  * points[0] = generator;
753  * points[1] = 3 * generator;
754  * ...
755  * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
756  * points[2^(w-1)] = 2^blocksize * generator;
757  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
758  * ...
759  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
760  * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
761  * ...
762  * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
763  * points[2^(w-1)*numblocks] = NULL
764  */
766  {
767  const EC_POINT *generator;
768  EC_POINT *tmp_point = NULL, *base = NULL, **var;
769  BN_CTX *new_ctx = NULL;
770  BIGNUM *order;
771  size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
772  EC_POINT **points = NULL;
773  EC_PRE_COMP *pre_comp;
774  int ret = 0;
775 
776  /* if there is an old EC_PRE_COMP object, throw it away */
777  EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
778 
779  if ((pre_comp = ec_pre_comp_new(group)) == NULL)
780  return 0;
781 
782  generator = EC_GROUP_get0_generator(group);
783  if (generator == NULL)
784  {
786  goto err;
787  }
788 
789  if (ctx == NULL)
790  {
791  ctx = new_ctx = BN_CTX_new();
792  if (ctx == NULL)
793  goto err;
794  }
795 
796  BN_CTX_start(ctx);
797  order = BN_CTX_get(ctx);
798  if (order == NULL) goto err;
799 
800  if (!EC_GROUP_get_order(group, order, ctx)) goto err;
801  if (BN_is_zero(order))
802  {
804  goto err;
805  }
806 
807  bits = BN_num_bits(order);
808  /* The following parameters mean we precompute (approximately)
809  * one point per bit.
810  *
811  * TBD: The combination 8, 4 is perfect for 160 bits; for other
812  * bit lengths, other parameter combinations might provide better
813  * efficiency.
814  */
815  blocksize = 8;
816  w = 4;
817  if (EC_window_bits_for_scalar_size(bits) > w)
818  {
819  /* let's not make the window too small ... */
821  }
822 
823  numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
824 
825  pre_points_per_block = (size_t)1 << (w - 1);
826  num = pre_points_per_block * numblocks; /* number of points to compute and store */
827 
828  points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
829  if (!points)
830  {
832  goto err;
833  }
834 
835  var = points;
836  var[num] = NULL; /* pivot */
837  for (i = 0; i < num; i++)
838  {
839  if ((var[i] = EC_POINT_new(group)) == NULL)
840  {
842  goto err;
843  }
844  }
845 
846  if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
847  {
849  goto err;
850  }
851 
852  if (!EC_POINT_copy(base, generator))
853  goto err;
854 
855  /* do the precomputation */
856  for (i = 0; i < numblocks; i++)
857  {
858  size_t j;
859 
860  if (!EC_POINT_dbl(group, tmp_point, base, ctx))
861  goto err;
862 
863  if (!EC_POINT_copy(*var++, base))
864  goto err;
865 
866  for (j = 1; j < pre_points_per_block; j++, var++)
867  {
868  /* calculate odd multiples of the current base point */
869  if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
870  goto err;
871  }
872 
873  if (i < numblocks - 1)
874  {
875  /* get the next base (multiply current one by 2^blocksize) */
876  size_t k;
877 
878  if (blocksize <= 2)
879  {
881  goto err;
882  }
883 
884  if (!EC_POINT_dbl(group, base, tmp_point, ctx))
885  goto err;
886  for (k = 2; k < blocksize; k++)
887  {
888  if (!EC_POINT_dbl(group,base,base,ctx))
889  goto err;
890  }
891  }
892  }
893 
894  if (!EC_POINTs_make_affine(group, num, points, ctx))
895  goto err;
896 
897  pre_comp->group = group;
898  pre_comp->blocksize = blocksize;
899  pre_comp->numblocks = numblocks;
900  pre_comp->w = w;
901  pre_comp->points = points;
902  points = NULL;
903  pre_comp->num = num;
904 
905  if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
906  ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
907  goto err;
908  pre_comp = NULL;
909 
910  ret = 1;
911  err:
912  if (ctx != NULL)
913  BN_CTX_end(ctx);
914  if (new_ctx != NULL)
915  BN_CTX_free(new_ctx);
916  if (pre_comp)
917  ec_pre_comp_free(pre_comp);
918  if (points)
919  {
920  EC_POINT **p;
921 
922  for (p = points; *p != NULL; p++)
923  EC_POINT_free(*p);
924  OPENSSL_free(points);
925  }
926  if (tmp_point)
927  EC_POINT_free(tmp_point);
928  if (base)
929  EC_POINT_free(base);
930  return ret;
931  }
932 
933 
935  {
936  if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
937  return 1;
938  else
939  return 0;
940  }