OpenSSL  1.0.1c
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros
sha256.c
Go to the documentation of this file.
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9 
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>
16 
17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
18 
20  {
21  memset (c,0,sizeof(*c));
22  c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
23  c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
24  c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
25  c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
26  c->md_len=SHA224_DIGEST_LENGTH;
27  return 1;
28  }
29 
31  {
32  memset (c,0,sizeof(*c));
33  c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
34  c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
35  c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
36  c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
37  c->md_len=SHA256_DIGEST_LENGTH;
38  return 1;
39  }
40 
41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
42  {
43  SHA256_CTX c;
44  static unsigned char m[SHA224_DIGEST_LENGTH];
45 
46  if (md == NULL) md=m;
47  SHA224_Init(&c);
48  SHA256_Update(&c,d,n);
49  SHA256_Final(md,&c);
50  OPENSSL_cleanse(&c,sizeof(c));
51  return(md);
52  }
53 
54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
55  {
56  SHA256_CTX c;
57  static unsigned char m[SHA256_DIGEST_LENGTH];
58 
59  if (md == NULL) md=m;
60  SHA256_Init(&c);
61  SHA256_Update(&c,d,n);
62  SHA256_Final(md,&c);
63  OPENSSL_cleanse(&c,sizeof(c));
64  return(md);
65  }
66 
67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68 { return SHA256_Update (c,data,len); }
69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70 { return SHA256_Final (md,c); }
71 
72 #define DATA_ORDER_IS_BIG_ENDIAN
73 
74 #define HASH_LONG SHA_LONG
75 #define HASH_CTX SHA256_CTX
76 #define HASH_CBLOCK SHA_CBLOCK
77 /*
78  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
79  * default: case below covers for it. It's not clear however if it's
80  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
81  * but if it is, then default: case shall be extended. For reference.
82  * Idea behind separate cases for pre-defined lenghts is to let the
83  * compiler decide if it's appropriate to unroll small loops.
84  */
85 #define HASH_MAKE_STRING(c,s) do { \
86  unsigned long ll; \
87  unsigned int nn; \
88  switch ((c)->md_len) \
89  { case SHA224_DIGEST_LENGTH: \
90  for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
91  { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
92  break; \
93  case SHA256_DIGEST_LENGTH: \
94  for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
95  { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
96  break; \
97  default: \
98  if ((c)->md_len > SHA256_DIGEST_LENGTH) \
99  return 0; \
100  for (nn=0;nn<(c)->md_len/4;nn++) \
101  { ll=(c)->h[nn]; HOST_l2c(ll,(s)); } \
102  break; \
103  } \
104  } while (0)
105 
106 #define HASH_UPDATE SHA256_Update
107 #define HASH_TRANSFORM SHA256_Transform
108 #define HASH_FINAL SHA256_Final
109 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
110 #ifndef SHA256_ASM
111 static
112 #endif
113 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
114 
115 #include "md32_common.h"
116 
117 #ifndef SHA256_ASM
118 static const SHA_LONG K256[64] = {
119  0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
120  0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
121  0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
122  0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
123  0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
124  0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
125  0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
126  0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
127  0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
128  0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
129  0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
130  0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
131  0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
132  0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
133  0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
134  0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
135 
136 /*
137  * FIPS specification refers to right rotations, while our ROTATE macro
138  * is left one. This is why you might notice that rotation coefficients
139  * differ from those observed in FIPS document by 32-N...
140  */
141 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
142 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
143 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
144 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
145 
146 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
147 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
148 
149 #ifdef OPENSSL_SMALL_FOOTPRINT
150 
151 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
152  {
153  unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
154  SHA_LONG X[16],l;
155  int i;
156  const unsigned char *data=in;
157 
158  while (num--) {
159 
160  a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
161  e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
162 
163  for (i=0;i<16;i++)
164  {
165  HOST_c2l(data,l); T1 = X[i] = l;
166  T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
167  T2 = Sigma0(a) + Maj(a,b,c);
168  h = g; g = f; f = e; e = d + T1;
169  d = c; c = b; b = a; a = T1 + T2;
170  }
171 
172  for (;i<64;i++)
173  {
174  s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
175  s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);
176 
177  T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
178  T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
179  T2 = Sigma0(a) + Maj(a,b,c);
180  h = g; g = f; f = e; e = d + T1;
181  d = c; c = b; b = a; a = T1 + T2;
182  }
183 
184  ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
185  ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
186 
187  }
188 }
189 
190 #else
191 
192 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
193  T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
194  h = Sigma0(a) + Maj(a,b,c); \
195  d += T1; h += T1; } while (0)
196 
197 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
198  s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
199  s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
200  T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
201  ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
202 
203 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
204  {
205  unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
206  SHA_LONG X[16];
207  int i;
208  const unsigned char *data=in;
209  const union { long one; char little; } is_endian = {1};
210 
211  while (num--) {
212 
213  a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
214  e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];
215 
216  if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
217  {
218  const SHA_LONG *W=(const SHA_LONG *)data;
219 
220  T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
221  T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
222  T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
223  T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
224  T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
225  T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
226  T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
227  T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
228  T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
229  T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
230  T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
231  T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
232  T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
233  T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
234  T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
235  T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
236 
237  data += SHA256_CBLOCK;
238  }
239  else
240  {
241  SHA_LONG l;
242 
243  HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h);
244  HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g);
245  HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f);
246  HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e);
247  HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d);
248  HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c);
249  HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b);
250  HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a);
251  HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h);
252  HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g);
253  HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
254  HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
255  HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
256  HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
257  HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
258  HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
259  }
260 
261  for (i=16;i<64;i+=8)
262  {
263  ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
264  ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
265  ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
266  ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
267  ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
268  ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
269  ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
270  ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
271  }
272 
273  ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
274  ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
275 
276  }
277  }
278 
279 #endif
280 #endif /* SHA256_ASM */
281 
282 #endif /* OPENSSL_NO_SHA256 */