Header And Logo

PostgreSQL
| The world's most advanced open source database.

rijndael.c

Go to the documentation of this file.
00001 /*  $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
00002 
00003 /* contrib/pgcrypto/rijndael.c */
00004 
00005 /* This is an independent implementation of the encryption algorithm:   */
00006 /*                                                                      */
00007 /*         RIJNDAEL by Joan Daemen and Vincent Rijmen                   */
00008 /*                                                                      */
00009 /* which is a candidate algorithm in the Advanced Encryption Standard   */
00010 /* programme of the US National Institute of Standards and Technology.  */
00011 /*                                                                      */
00012 /* Copyright in this implementation is held by Dr B R Gladman but I     */
00013 /* hereby give permission for its free direct or derivative use subject */
00014 /* to acknowledgment of its origin and compliance with any conditions   */
00015 /* that the originators of the algorithm place on its exploitation.     */
00016 /*                                                                      */
00017 /* Dr Brian Gladman ([email protected]) 14th January 1999     */
00018 
00019 /* Timing data for Rijndael (rijndael.c)
00020 
00021 Algorithm: rijndael (rijndael.c)
00022 
00023 128 bit key:
00024 Key Setup:    305/1389 cycles (encrypt/decrypt)
00025 Encrypt:       374 cycles =    68.4 mbits/sec
00026 Decrypt:       352 cycles =    72.7 mbits/sec
00027 Mean:          363 cycles =    70.5 mbits/sec
00028 
00029 192 bit key:
00030 Key Setup:    277/1595 cycles (encrypt/decrypt)
00031 Encrypt:       439 cycles =    58.3 mbits/sec
00032 Decrypt:       425 cycles =    60.2 mbits/sec
00033 Mean:          432 cycles =    59.3 mbits/sec
00034 
00035 256 bit key:
00036 Key Setup:    374/1960 cycles (encrypt/decrypt)
00037 Encrypt:       502 cycles =    51.0 mbits/sec
00038 Decrypt:       498 cycles =    51.4 mbits/sec
00039 Mean:          500 cycles =    51.2 mbits/sec
00040 
00041 */
00042 
00043 #include "postgres.h"
00044 
00045 #include <sys/param.h>
00046 
00047 #include "px.h"
00048 #include "rijndael.h"
00049 
00050 #define PRE_CALC_TABLES
00051 #define LARGE_TABLES
00052 
00053 static void gen_tabs(void);
00054 
00055 /* 3. Basic macros for speeding up generic operations               */
00056 
00057 /* Circular rotate of 32 bit values                                 */
00058 
00059 #define rotr(x,n)   (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
00060 #define rotl(x,n)   (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
00061 
00062 /* Invert byte order in a 32 bit variable                           */
00063 
00064 #define bswap(x)    ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
00065 
00066 /* Extract byte from a 32 bit quantity (little endian notation)     */
00067 
00068 #define byte(x,n)   ((u1byte)((x) >> (8 * (n))))
00069 
00070 #ifdef WORDS_BIGENDIAN
00071 #define io_swap(x)  bswap(x)
00072 #else
00073 #define io_swap(x)  (x)
00074 #endif
00075 
00076 #ifdef PRINT_TABS
00077 #undef PRE_CALC_TABLES
00078 #endif
00079 
00080 #ifdef PRE_CALC_TABLES
00081 
00082 #include "rijndael.tbl"
00083 #define tab_gen     1
00084 #else                           /* !PRE_CALC_TABLES */
00085 
00086 static u1byte pow_tab[256];
00087 static u1byte log_tab[256];
00088 static u1byte sbx_tab[256];
00089 static u1byte isb_tab[256];
00090 static u4byte rco_tab[10];
00091 static u4byte ft_tab[4][256];
00092 static u4byte it_tab[4][256];
00093 
00094 #ifdef  LARGE_TABLES
00095 static u4byte fl_tab[4][256];
00096 static u4byte il_tab[4][256];
00097 #endif
00098 
00099 static u4byte tab_gen = 0;
00100 #endif   /* !PRE_CALC_TABLES */
00101 
00102 #define ff_mult(a,b)    ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
00103 
00104 #define f_rn(bo, bi, n, k)                              \
00105     (bo)[n] =  ft_tab[0][byte((bi)[n],0)] ^             \
00106              ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^   \
00107              ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^   \
00108              ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
00109 
00110 #define i_rn(bo, bi, n, k)                          \
00111     (bo)[n] =  it_tab[0][byte((bi)[n],0)] ^             \
00112              it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^   \
00113              it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^   \
00114              it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
00115 
00116 #ifdef LARGE_TABLES
00117 
00118 #define ls_box(x)                \
00119     ( fl_tab[0][byte(x, 0)] ^    \
00120       fl_tab[1][byte(x, 1)] ^    \
00121       fl_tab[2][byte(x, 2)] ^    \
00122       fl_tab[3][byte(x, 3)] )
00123 
00124 #define f_rl(bo, bi, n, k)                              \
00125     (bo)[n] =  fl_tab[0][byte((bi)[n],0)] ^             \
00126              fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^   \
00127              fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^   \
00128              fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
00129 
00130 #define i_rl(bo, bi, n, k)                              \
00131     (bo)[n] =  il_tab[0][byte((bi)[n],0)] ^             \
00132              il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^   \
00133              il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^   \
00134              il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
00135 #else
00136 
00137 #define ls_box(x)                            \
00138     ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^    \
00139     ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^    \
00140     ((u4byte)sbx_tab[byte(x, 2)] << 16) ^    \
00141     ((u4byte)sbx_tab[byte(x, 3)] << 24)
00142 
00143 #define f_rl(bo, bi, n, k)                                          \
00144     (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^                    \
00145         rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]),  8) ^  \
00146         rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^  \
00147         rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
00148 
00149 #define i_rl(bo, bi, n, k)                                          \
00150     (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^                    \
00151         rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]),  8) ^  \
00152         rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^  \
00153         rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
00154 #endif
00155 
00156 static void
00157 gen_tabs(void)
00158 {
00159 #ifndef PRE_CALC_TABLES
00160     u4byte      i,
00161                 t;
00162     u1byte      p,
00163                 q;
00164 
00165     /* log and power tables for GF(2**8) finite field with  */
00166     /* 0x11b as modular polynomial - the simplest prmitive  */
00167     /* root is 0x11, used here to generate the tables       */
00168 
00169     for (i = 0, p = 1; i < 256; ++i)
00170     {
00171         pow_tab[i] = (u1byte) p;
00172         log_tab[p] = (u1byte) i;
00173 
00174         p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
00175     }
00176 
00177     log_tab[1] = 0;
00178     p = 1;
00179 
00180     for (i = 0; i < 10; ++i)
00181     {
00182         rco_tab[i] = p;
00183 
00184         p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
00185     }
00186 
00187     /* note that the affine byte transformation matrix in   */
00188     /* rijndael specification is in big endian format with  */
00189     /* bit 0 as the most significant bit. In the remainder  */
00190     /* of the specification the bits are numbered from the  */
00191     /* least significant end of a byte.                     */
00192 
00193     for (i = 0; i < 256; ++i)
00194     {
00195         p = (i ? pow_tab[255 - log_tab[i]] : 0);
00196         q = p;
00197         q = (q >> 7) | (q << 1);
00198         p ^= q;
00199         q = (q >> 7) | (q << 1);
00200         p ^= q;
00201         q = (q >> 7) | (q << 1);
00202         p ^= q;
00203         q = (q >> 7) | (q << 1);
00204         p ^= q ^ 0x63;
00205         sbx_tab[i] = (u1byte) p;
00206         isb_tab[p] = (u1byte) i;
00207     }
00208 
00209     for (i = 0; i < 256; ++i)
00210     {
00211         p = sbx_tab[i];
00212 
00213 #ifdef  LARGE_TABLES
00214 
00215         t = p;
00216         fl_tab[0][i] = t;
00217         fl_tab[1][i] = rotl(t, 8);
00218         fl_tab[2][i] = rotl(t, 16);
00219         fl_tab[3][i] = rotl(t, 24);
00220 #endif
00221         t = ((u4byte) ff_mult(2, p)) |
00222             ((u4byte) p << 8) |
00223             ((u4byte) p << 16) |
00224             ((u4byte) ff_mult(3, p) << 24);
00225 
00226         ft_tab[0][i] = t;
00227         ft_tab[1][i] = rotl(t, 8);
00228         ft_tab[2][i] = rotl(t, 16);
00229         ft_tab[3][i] = rotl(t, 24);
00230 
00231         p = isb_tab[i];
00232 
00233 #ifdef  LARGE_TABLES
00234 
00235         t = p;
00236         il_tab[0][i] = t;
00237         il_tab[1][i] = rotl(t, 8);
00238         il_tab[2][i] = rotl(t, 16);
00239         il_tab[3][i] = rotl(t, 24);
00240 #endif
00241         t = ((u4byte) ff_mult(14, p)) |
00242             ((u4byte) ff_mult(9, p) << 8) |
00243             ((u4byte) ff_mult(13, p) << 16) |
00244             ((u4byte) ff_mult(11, p) << 24);
00245 
00246         it_tab[0][i] = t;
00247         it_tab[1][i] = rotl(t, 8);
00248         it_tab[2][i] = rotl(t, 16);
00249         it_tab[3][i] = rotl(t, 24);
00250     }
00251 
00252     tab_gen = 1;
00253 #endif   /* !PRE_CALC_TABLES */
00254 }
00255 
00256 
00257 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
00258 
00259 #define imix_col(y,x)       \
00260 do { \
00261     u   = star_x(x);        \
00262     v   = star_x(u);        \
00263     w   = star_x(v);        \
00264     t   = w ^ (x);          \
00265    (y)  = u ^ v ^ w;        \
00266    (y) ^= rotr(u ^ t,  8) ^ \
00267           rotr(v ^ t, 16) ^ \
00268           rotr(t,24);       \
00269 } while (0)
00270 
00271 /* initialise the key schedule from the user supplied key   */
00272 
00273 #define loop4(i)                                    \
00274 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
00275     t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
00276     t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
00277     t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
00278     t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
00279 } while (0)
00280 
00281 #define loop6(i)                                    \
00282 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
00283     t ^= e_key[6 * (i)];       e_key[6 * (i) + 6] = t;  \
00284     t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t;    \
00285     t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t;    \
00286     t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t;    \
00287     t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t;   \
00288     t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t;   \
00289 } while (0)
00290 
00291 #define loop8(i)                                    \
00292 do {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
00293     t ^= e_key[8 * (i)];     e_key[8 * (i) + 8] = t;    \
00294     t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t;    \
00295     t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t;   \
00296     t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t;   \
00297     t  = e_key[8 * (i) + 4] ^ ls_box(t);                \
00298     e_key[8 * (i) + 12] = t;                            \
00299     t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t;   \
00300     t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t;   \
00301     t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t;   \
00302 } while (0)
00303 
00304 rijndael_ctx *
00305 rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
00306                  int encrypt)
00307 {
00308     u4byte      i,
00309                 t,
00310                 u,
00311                 v,
00312                 w;
00313     u4byte     *e_key = ctx->e_key;
00314     u4byte     *d_key = ctx->d_key;
00315 
00316     ctx->decrypt = !encrypt;
00317 
00318     if (!tab_gen)
00319         gen_tabs();
00320 
00321     ctx->k_len = (key_len + 31) / 32;
00322 
00323     e_key[0] = io_swap(in_key[0]);
00324     e_key[1] = io_swap(in_key[1]);
00325     e_key[2] = io_swap(in_key[2]);
00326     e_key[3] = io_swap(in_key[3]);
00327 
00328     switch (ctx->k_len)
00329     {
00330         case 4:
00331             t = e_key[3];
00332             for (i = 0; i < 10; ++i)
00333                 loop4(i);
00334             break;
00335 
00336         case 6:
00337             e_key[4] = io_swap(in_key[4]);
00338             t = e_key[5] = io_swap(in_key[5]);
00339             for (i = 0; i < 8; ++i)
00340                 loop6(i);
00341             break;
00342 
00343         case 8:
00344             e_key[4] = io_swap(in_key[4]);
00345             e_key[5] = io_swap(in_key[5]);
00346             e_key[6] = io_swap(in_key[6]);
00347             t = e_key[7] = io_swap(in_key[7]);
00348             for (i = 0; i < 7; ++i)
00349                 loop8(i);
00350             break;
00351     }
00352 
00353     if (!encrypt)
00354     {
00355         d_key[0] = e_key[0];
00356         d_key[1] = e_key[1];
00357         d_key[2] = e_key[2];
00358         d_key[3] = e_key[3];
00359 
00360         for (i = 4; i < 4 * ctx->k_len + 24; ++i)
00361             imix_col(d_key[i], e_key[i]);
00362     }
00363 
00364     return ctx;
00365 }
00366 
00367 /* encrypt a block of text  */
00368 
00369 #define f_nround(bo, bi, k) \
00370 do { \
00371     f_rn(bo, bi, 0, k);     \
00372     f_rn(bo, bi, 1, k);     \
00373     f_rn(bo, bi, 2, k);     \
00374     f_rn(bo, bi, 3, k);     \
00375     k += 4;                 \
00376 } while (0)
00377 
00378 #define f_lround(bo, bi, k) \
00379 do { \
00380     f_rl(bo, bi, 0, k);     \
00381     f_rl(bo, bi, 1, k);     \
00382     f_rl(bo, bi, 2, k);     \
00383     f_rl(bo, bi, 3, k);     \
00384 } while (0)
00385 
00386 void
00387 rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
00388 {
00389     u4byte      k_len = ctx->k_len;
00390     u4byte     *e_key = ctx->e_key;
00391     u4byte      b0[4],
00392                 b1[4],
00393                *kp;
00394 
00395     b0[0] = io_swap(in_blk[0]) ^ e_key[0];
00396     b0[1] = io_swap(in_blk[1]) ^ e_key[1];
00397     b0[2] = io_swap(in_blk[2]) ^ e_key[2];
00398     b0[3] = io_swap(in_blk[3]) ^ e_key[3];
00399 
00400     kp = e_key + 4;
00401 
00402     if (k_len > 6)
00403     {
00404         f_nround(b1, b0, kp);
00405         f_nround(b0, b1, kp);
00406     }
00407 
00408     if (k_len > 4)
00409     {
00410         f_nround(b1, b0, kp);
00411         f_nround(b0, b1, kp);
00412     }
00413 
00414     f_nround(b1, b0, kp);
00415     f_nround(b0, b1, kp);
00416     f_nround(b1, b0, kp);
00417     f_nround(b0, b1, kp);
00418     f_nround(b1, b0, kp);
00419     f_nround(b0, b1, kp);
00420     f_nround(b1, b0, kp);
00421     f_nround(b0, b1, kp);
00422     f_nround(b1, b0, kp);
00423     f_lround(b0, b1, kp);
00424 
00425     out_blk[0] = io_swap(b0[0]);
00426     out_blk[1] = io_swap(b0[1]);
00427     out_blk[2] = io_swap(b0[2]);
00428     out_blk[3] = io_swap(b0[3]);
00429 }
00430 
00431 /* decrypt a block of text  */
00432 
00433 #define i_nround(bo, bi, k) \
00434 do { \
00435     i_rn(bo, bi, 0, k);     \
00436     i_rn(bo, bi, 1, k);     \
00437     i_rn(bo, bi, 2, k);     \
00438     i_rn(bo, bi, 3, k);     \
00439     k -= 4;                 \
00440 } while (0)
00441 
00442 #define i_lround(bo, bi, k) \
00443 do { \
00444     i_rl(bo, bi, 0, k);     \
00445     i_rl(bo, bi, 1, k);     \
00446     i_rl(bo, bi, 2, k);     \
00447     i_rl(bo, bi, 3, k);     \
00448 } while (0)
00449 
00450 void
00451 rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
00452 {
00453     u4byte      b0[4],
00454                 b1[4],
00455                *kp;
00456     u4byte      k_len = ctx->k_len;
00457     u4byte     *e_key = ctx->e_key;
00458     u4byte     *d_key = ctx->d_key;
00459 
00460     b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
00461     b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
00462     b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
00463     b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
00464 
00465     kp = d_key + 4 * (k_len + 5);
00466 
00467     if (k_len > 6)
00468     {
00469         i_nround(b1, b0, kp);
00470         i_nround(b0, b1, kp);
00471     }
00472 
00473     if (k_len > 4)
00474     {
00475         i_nround(b1, b0, kp);
00476         i_nround(b0, b1, kp);
00477     }
00478 
00479     i_nround(b1, b0, kp);
00480     i_nround(b0, b1, kp);
00481     i_nround(b1, b0, kp);
00482     i_nround(b0, b1, kp);
00483     i_nround(b1, b0, kp);
00484     i_nround(b0, b1, kp);
00485     i_nround(b1, b0, kp);
00486     i_nround(b0, b1, kp);
00487     i_nround(b1, b0, kp);
00488     i_lround(b0, b1, kp);
00489 
00490     out_blk[0] = io_swap(b0[0]);
00491     out_blk[1] = io_swap(b0[1]);
00492     out_blk[2] = io_swap(b0[2]);
00493     out_blk[3] = io_swap(b0[3]);
00494 }
00495 
00496 /*
00497  * conventional interface
00498  *
00499  * ATM it hopes all data is 4-byte aligned - which
00500  * should be true for PX.  -marko
00501  */
00502 
00503 void
00504 aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
00505 {
00506     uint32     *k;
00507 
00508     k = (uint32 *) key;
00509     rijndael_set_key(ctx, k, keybits, enc);
00510 }
00511 
00512 void
00513 aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
00514 {
00515     unsigned    bs = 16;
00516     uint32     *d;
00517 
00518     while (len >= bs)
00519     {
00520         d = (uint32 *) data;
00521         rijndael_encrypt(ctx, d, d);
00522 
00523         len -= bs;
00524         data += bs;
00525     }
00526 }
00527 
00528 void
00529 aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
00530 {
00531     unsigned    bs = 16;
00532     uint32     *d;
00533 
00534     while (len >= bs)
00535     {
00536         d = (uint32 *) data;
00537         rijndael_decrypt(ctx, d, d);
00538 
00539         len -= bs;
00540         data += bs;
00541     }
00542 }
00543 
00544 void
00545 aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
00546 {
00547     uint32     *iv = (uint32 *) iva;
00548     uint32     *d = (uint32 *) data;
00549     unsigned    bs = 16;
00550 
00551     while (len >= bs)
00552     {
00553         d[0] ^= iv[0];
00554         d[1] ^= iv[1];
00555         d[2] ^= iv[2];
00556         d[3] ^= iv[3];
00557 
00558         rijndael_encrypt(ctx, d, d);
00559 
00560         iv = d;
00561         d += bs / 4;
00562         len -= bs;
00563     }
00564 }
00565 
00566 void
00567 aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
00568 {
00569     uint32     *d = (uint32 *) data;
00570     unsigned    bs = 16;
00571     uint32      buf[4],
00572                 iv[4];
00573 
00574     memcpy(iv, iva, bs);
00575     while (len >= bs)
00576     {
00577         buf[0] = d[0];
00578         buf[1] = d[1];
00579         buf[2] = d[2];
00580         buf[3] = d[3];
00581 
00582         rijndael_decrypt(ctx, buf, d);
00583 
00584         d[0] ^= iv[0];
00585         d[1] ^= iv[1];
00586         d[2] ^= iv[2];
00587         d[3] ^= iv[3];
00588 
00589         iv[0] = buf[0];
00590         iv[1] = buf[1];
00591         iv[2] = buf[2];
00592         iv[3] = buf[3];
00593         d += 4;
00594         len -= bs;
00595     }
00596 }
00597 
00598 /*
00599  * pre-calculate tables.
00600  *
00601  * On i386 lifts 17k from .bss to .rodata
00602  * and avoids 1k code and setup time.
00603  *    -marko
00604  */
00605 #ifdef PRINT_TABS
00606 
00607 static void
00608 show256u8(char *name, uint8 *data)
00609 {
00610     int         i;
00611 
00612     printf("static const u1byte  %s[256] = {\n  ", name);
00613     for (i = 0; i < 256;)
00614     {
00615         printf("%u", pow_tab[i++]);
00616         if (i < 256)
00617             printf(i % 16 ? ", " : ",\n  ");
00618     }
00619     printf("\n};\n\n");
00620 }
00621 
00622 
00623 static void
00624 show4x256u32(char *name, uint32 data[4][256])
00625 {
00626     int         i,
00627                 j;
00628 
00629     printf("static const u4byte  %s[4][256] = {\n{\n  ", name);
00630     for (i = 0; i < 4; i++)
00631     {
00632         for (j = 0; j < 256;)
00633         {
00634             printf("0x%08x", data[i][j]);
00635             j++;
00636             if (j < 256)
00637                 printf(j % 4 ? ", " : ",\n  ");
00638         }
00639         printf(i < 3 ? "\n}, {\n  " : "\n}\n");
00640     }
00641     printf("};\n\n");
00642 }
00643 
00644 int
00645 main()
00646 {
00647     int         i;
00648     char       *hdr = "/* Generated by rijndael.c */\n\n";
00649 
00650     gen_tabs();
00651 
00652     printf(hdr);
00653     show256u8("pow_tab", pow_tab);
00654     show256u8("log_tab", log_tab);
00655     show256u8("sbx_tab", sbx_tab);
00656     show256u8("isb_tab", isb_tab);
00657 
00658     show4x256u32("ft_tab", ft_tab);
00659     show4x256u32("it_tab", it_tab);
00660 #ifdef LARGE_TABLES
00661     show4x256u32("fl_tab", fl_tab);
00662     show4x256u32("il_tab", il_tab);
00663 #endif
00664     printf("static const u4byte rco_tab[10] = {\n  ");
00665     for (i = 0; i < 10; i++)
00666     {
00667         printf("0x%08x", rco_tab[i]);
00668         if (i < 9)
00669             printf(", ");
00670         if (i == 4)
00671             printf("\n  ");
00672     }
00673     printf("\n};\n\n");
00674     return 0;
00675 }
00676 
00677 #endif