00001 /* 00002 ** 2001 September 15 00003 ** 00004 ** The author disclaims copyright to this source code. In place of 00005 ** a legal notice, here is a blessing: 00006 ** 00007 ** May you do good and not evil. 00008 ** May you find forgiveness for yourself and forgive others. 00009 ** May you share freely, never taking more than you give. 00010 ** 00011 ************************************************************************* 00012 ** Internal interface definitions for SQLite. 00013 ** 00014 ** @(#) $Id: sqliteInt.h,v 1.220.2.2 2005/06/06 15:07:03 drh Exp $ 00015 */ 00016 #include "config.h" 00017 #include "sqlite.h" 00018 #include "hash.h" 00019 #include "parse.h" 00020 #include "btree.h" 00021 #include <stdio.h> 00022 #include <stdlib.h> 00023 #include <string.h> 00024 #include <assert.h> 00025 00026 /* 00027 ** The maximum number of in-memory pages to use for the main database 00028 ** table and for temporary tables. 00029 */ 00030 #define MAX_PAGES 2000 00031 #define TEMP_PAGES 500 00032 00033 /* 00034 ** If the following macro is set to 1, then NULL values are considered 00035 ** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT 00036 ** compound queries. No other SQL database engine (among those tested) 00037 ** works this way except for OCELOT. But the SQL92 spec implies that 00038 ** this is how things should work. 00039 ** 00040 ** If the following macro is set to 0, then NULLs are indistinct for 00041 ** SELECT DISTINCT and for UNION. 00042 */ 00043 #define NULL_ALWAYS_DISTINCT 0 00044 00045 /* 00046 ** If the following macro is set to 1, then NULL values are considered 00047 ** distinct when determining whether or not two entries are the same 00048 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, 00049 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this 00050 ** is the way things are suppose to work. 00051 ** 00052 ** If the following macro is set to 0, the NULLs are indistinct for 00053 ** a UNIQUE index. In this mode, you can only have a single NULL entry 00054 ** for a column declared UNIQUE. This is the way Informix and SQL Server 00055 ** work. 00056 */ 00057 #define NULL_DISTINCT_FOR_UNIQUE 1 00058 00059 /* 00060 ** The maximum number of attached databases. This must be at least 2 00061 ** in order to support the main database file (0) and the file used to 00062 ** hold temporary tables (1). And it must be less than 256 because 00063 ** an unsigned character is used to stored the database index. 00064 */ 00065 #define MAX_ATTACHED 10 00066 00067 /* 00068 ** The next macro is used to determine where TEMP tables and indices 00069 ** are stored. Possible values: 00070 ** 00071 ** 0 Always use a temporary files 00072 ** 1 Use a file unless overridden by "PRAGMA temp_store" 00073 ** 2 Use memory unless overridden by "PRAGMA temp_store" 00074 ** 3 Always use memory 00075 */ 00076 #ifndef TEMP_STORE 00077 # define TEMP_STORE 1 00078 #endif 00079 00080 /* 00081 ** When building SQLite for embedded systems where memory is scarce, 00082 ** you can define one or more of the following macros to omit extra 00083 ** features of the library and thus keep the size of the library to 00084 ** a minimum. 00085 */ 00086 /* #define SQLITE_OMIT_AUTHORIZATION 1 */ 00087 /* #define SQLITE_OMIT_INMEMORYDB 1 */ 00088 /* #define SQLITE_OMIT_VACUUM 1 */ 00089 /* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ 00090 /* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ 00091 00092 /* 00093 ** Integers of known sizes. These typedefs might change for architectures 00094 ** where the sizes very. Preprocessor macros are available so that the 00095 ** types can be conveniently redefined at compile-type. Like this: 00096 ** 00097 ** cc '-DUINTPTR_TYPE=long long int' ... 00098 */ 00099 #ifndef UINT32_TYPE 00100 # define UINT32_TYPE unsigned int 00101 #endif 00102 #ifndef UINT16_TYPE 00103 # define UINT16_TYPE unsigned short int 00104 #endif 00105 #ifndef INT16_TYPE 00106 # define INT16_TYPE short int 00107 #endif 00108 #ifndef UINT8_TYPE 00109 # define UINT8_TYPE unsigned char 00110 #endif 00111 #ifndef INT8_TYPE 00112 # define INT8_TYPE signed char 00113 #endif 00114 #ifndef INTPTR_TYPE 00115 # if SQLITE_PTR_SZ==4 00116 # define INTPTR_TYPE int 00117 # else 00118 # define INTPTR_TYPE long long 00119 # endif 00120 #endif 00121 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 00122 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 00123 typedef INT16_TYPE i16; /* 2-byte signed integer */ 00124 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 00125 typedef UINT8_TYPE i8; /* 1-byte signed integer */ 00126 typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ 00127 typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */ 00128 00129 /* 00130 ** Defer sourcing vdbe.h until after the "u8" typedef is defined. 00131 */ 00132 #include "vdbe.h" 00133 00134 /* 00135 ** Most C compilers these days recognize "long double", don't they? 00136 ** Just in case we encounter one that does not, we will create a macro 00137 ** for long double so that it can be easily changed to just "double". 00138 */ 00139 #ifndef LONGDOUBLE_TYPE 00140 # define LONGDOUBLE_TYPE long double 00141 #endif 00142 00143 /* 00144 ** This macro casts a pointer to an integer. Useful for doing 00145 ** pointer arithmetic. 00146 */ 00147 #define Addr(X) ((uptr)X) 00148 00149 /* 00150 ** The maximum number of bytes of data that can be put into a single 00151 ** row of a single table. The upper bound on this limit is 16777215 00152 ** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB 00153 ** here because the overflow page chain is inefficient for really big 00154 ** records and we want to discourage people from thinking that 00155 ** multi-megabyte records are OK. If your needs are different, you can 00156 ** change this define and recompile to increase or decrease the record 00157 ** size. 00158 ** 00159 ** The 16777198 is computed as follows: 238 bytes of payload on the 00160 ** original pages plus 16448 overflow pages each holding 1020 bytes of 00161 ** data. 00162 */ 00163 #define MAX_BYTES_PER_ROW 1048576 00164 /* #define MAX_BYTES_PER_ROW 16777198 */ 00165 00166 /* 00167 ** If memory allocation problems are found, recompile with 00168 ** 00169 ** -DMEMORY_DEBUG=1 00170 ** 00171 ** to enable some sanity checking on malloc() and free(). To 00172 ** check for memory leaks, recompile with 00173 ** 00174 ** -DMEMORY_DEBUG=2 00175 ** 00176 ** and a line of text will be written to standard error for 00177 ** each malloc() and free(). This output can be analyzed 00178 ** by an AWK script to determine if there are any leaks. 00179 */ 00180 #ifdef MEMORY_DEBUG 00181 # define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__) 00182 # define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__) 00183 # define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) 00184 # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) 00185 # define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) 00186 # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) 00187 void sqliteStrRealloc(char**); 00188 #else 00189 # define sqliteRealloc_(X,Y) sqliteRealloc(X,Y) 00190 # define sqliteStrRealloc(X) 00191 #endif 00192 00193 /* 00194 ** This variable gets set if malloc() ever fails. After it gets set, 00195 ** the SQLite library shuts down permanently. 00196 */ 00197 extern int sqlite_malloc_failed; 00198 00199 /* 00200 ** The following global variables are used for testing and debugging 00201 ** only. They only work if MEMORY_DEBUG is defined. 00202 */ 00203 #ifdef MEMORY_DEBUG 00204 extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ 00205 extern int sqlite_nFree; /* Number of sqliteFree() calls */ 00206 extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ 00207 #endif 00208 00209 /* 00210 ** Name of the master database table. The master database table 00211 ** is a special table that holds the names and attributes of all 00212 ** user tables and indices. 00213 */ 00214 #define MASTER_NAME "sqlite_master" 00215 #define TEMP_MASTER_NAME "sqlite_temp_master" 00216 00217 /* 00218 ** The name of the schema table. 00219 */ 00220 #define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME) 00221 00222 /* 00223 ** A convenience macro that returns the number of elements in 00224 ** an array. 00225 */ 00226 #define ArraySize(X) (sizeof(X)/sizeof(X[0])) 00227 00228 /* 00229 ** Forward references to structures 00230 */ 00231 typedef struct Column Column; 00232 typedef struct Table Table; 00233 typedef struct Index Index; 00234 typedef struct Instruction Instruction; 00235 typedef struct Expr Expr; 00236 typedef struct ExprList ExprList; 00237 typedef struct Parse Parse; 00238 typedef struct Token Token; 00239 typedef struct IdList IdList; 00240 typedef struct SrcList SrcList; 00241 typedef struct WhereInfo WhereInfo; 00242 typedef struct WhereLevel WhereLevel; 00243 typedef struct Select Select; 00244 typedef struct AggExpr AggExpr; 00245 typedef struct FuncDef FuncDef; 00246 typedef struct Trigger Trigger; 00247 typedef struct TriggerStep TriggerStep; 00248 typedef struct TriggerStack TriggerStack; 00249 typedef struct FKey FKey; 00250 typedef struct Db Db; 00251 typedef struct AuthContext AuthContext; 00252 00253 /* 00254 ** Each database file to be accessed by the system is an instance 00255 ** of the following structure. There are normally two of these structures 00256 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 00257 ** aDb[1] is the database file used to hold temporary tables. Additional 00258 ** databases may be attached. 00259 */ 00260 struct Db { 00261 char *zName; /* Name of this database */ 00262 Btree *pBt; /* The B*Tree structure for this database file */ 00263 int schema_cookie; /* Database schema version number for this file */ 00264 Hash tblHash; /* All tables indexed by name */ 00265 Hash idxHash; /* All (named) indices indexed by name */ 00266 Hash trigHash; /* All triggers indexed by name */ 00267 Hash aFKey; /* Foreign keys indexed by to-table */ 00268 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 00269 u16 flags; /* Flags associated with this database */ 00270 void *pAux; /* Auxiliary data. Usually NULL */ 00271 void (*xFreeAux)(void*); /* Routine to free pAux */ 00272 }; 00273 00274 /* 00275 ** These macros can be used to test, set, or clear bits in the 00276 ** Db.flags field. 00277 */ 00278 #define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) 00279 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) 00280 #define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) 00281 #define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) 00282 00283 /* 00284 ** Allowed values for the DB.flags field. 00285 ** 00286 ** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint 00287 ** opcode is emitted for a database. This prevents multiple occurances 00288 ** of those opcodes for the same database in the same program. Similarly, 00289 ** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted, 00290 ** and prevents duplicate OP_VerifyCookies from taking up space and slowing 00291 ** down execution. 00292 ** 00293 ** The DB_SchemaLoaded flag is set after the database schema has been 00294 ** read into internal hash tables. 00295 ** 00296 ** DB_UnresetViews means that one or more views have column names that 00297 ** have been filled out. If the schema changes, these column names might 00298 ** changes and so the view will need to be reset. 00299 */ 00300 #define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */ 00301 #define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */ 00302 #define DB_SchemaLoaded 0x0004 /* The schema has been loaded */ 00303 #define DB_UnresetViews 0x0008 /* Some views have defined column names */ 00304 00305 00306 /* 00307 ** Each database is an instance of the following structure. 00308 ** 00309 ** The sqlite.file_format is initialized by the database file 00310 ** and helps determines how the data in the database file is 00311 ** represented. This field allows newer versions of the library 00312 ** to read and write older databases. The various file formats 00313 ** are as follows: 00314 ** 00315 ** file_format==1 Version 2.1.0. 00316 ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY. 00317 ** file_format==3 Version 2.6.0. Fix empty-string index bug. 00318 ** file_format==4 Version 2.7.0. Add support for separate numeric and 00319 ** text datatypes. 00320 ** 00321 ** The sqlite.temp_store determines where temporary database files 00322 ** are stored. If 1, then a file is created to hold those tables. If 00323 ** 2, then they are held in memory. 0 means use the default value in 00324 ** the TEMP_STORE macro. 00325 ** 00326 ** The sqlite.lastRowid records the last insert rowid generated by an 00327 ** insert statement. Inserts on views do not affect its value. Each 00328 ** trigger has its own context, so that lastRowid can be updated inside 00329 ** triggers as usual. The previous value will be restored once the trigger 00330 ** exits. Upon entering a before or instead of trigger, lastRowid is no 00331 ** longer (since after version 2.8.12) reset to -1. 00332 ** 00333 ** The sqlite.nChange does not count changes within triggers and keeps no 00334 ** context. It is reset at start of sqlite_exec. 00335 ** The sqlite.lsChange represents the number of changes made by the last 00336 ** insert, update, or delete statement. It remains constant throughout the 00337 ** length of a statement and is then updated by OP_SetCounts. It keeps a 00338 ** context stack just like lastRowid so that the count of changes 00339 ** within a trigger is not seen outside the trigger. Changes to views do not 00340 ** affect the value of lsChange. 00341 ** The sqlite.csChange keeps track of the number of current changes (since 00342 ** the last statement) and is used to update sqlite_lsChange. 00343 */ 00344 struct sqlite { 00345 int nDb; /* Number of backends currently in use */ 00346 Db *aDb; /* All backends */ 00347 Db aDbStatic[2]; /* Static space for the 2 default backends */ 00348 int flags; /* Miscellanous flags. See below */ 00349 u8 file_format; /* What file format version is this database? */ 00350 u8 safety_level; /* How aggressive at synching data to disk */ 00351 u8 want_to_close; /* Close after all VDBEs are deallocated */ 00352 u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */ 00353 u8 onError; /* Default conflict algorithm */ 00354 int next_cookie; /* Next value of aDb[0].schema_cookie */ 00355 int cache_size; /* Number of pages to use in the cache */ 00356 int nTable; /* Number of tables in the database */ 00357 void *pBusyArg; /* 1st Argument to the busy callback */ 00358 int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ 00359 void *pCommitArg; /* Argument to xCommitCallback() */ 00360 int (*xCommitCallback)(void*);/* Invoked at every commit. */ 00361 Hash aFunc; /* All functions that can be in SQL exprs */ 00362 int lastRowid; /* ROWID of most recent insert (see above) */ 00363 int priorNewRowid; /* Last randomly generated ROWID */ 00364 int magic; /* Magic number for detect library misuse */ 00365 int nChange; /* Number of rows changed (see above) */ 00366 int lsChange; /* Last statement change count (see above) */ 00367 int csChange; /* Current statement change count (see above) */ 00368 struct sqliteInitInfo { /* Information used during initialization */ 00369 int iDb; /* When back is being initialized */ 00370 int newTnum; /* Rootpage of table being initialized */ 00371 u8 busy; /* TRUE if currently initializing */ 00372 } init; 00373 struct Vdbe *pVdbe; /* List of active virtual machines */ 00374 void (*xTrace)(void*,const char*); /* Trace function */ 00375 void *pTraceArg; /* Argument to the trace function */ 00376 #ifndef SQLITE_OMIT_AUTHORIZATION 00377 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 00378 /* Access authorization function */ 00379 void *pAuthArg; /* 1st argument to the access auth function */ 00380 #endif 00381 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 00382 int (*xProgress)(void *); /* The progress callback */ 00383 void *pProgressArg; /* Argument to the progress callback */ 00384 int nProgressOps; /* Number of opcodes for progress callback */ 00385 #endif 00386 }; 00387 00388 /* 00389 ** Possible values for the sqlite.flags and or Db.flags fields. 00390 ** 00391 ** On sqlite.flags, the SQLITE_InTrans value means that we have 00392 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement 00393 ** transaction is active on that particular database file. 00394 */ 00395 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ 00396 #define SQLITE_Initialized 0x00000002 /* True after initialization */ 00397 #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ 00398 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ 00399 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ 00400 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ 00401 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ 00402 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ 00403 /* DELETE, or UPDATE and return */ 00404 /* the count using a callback. */ 00405 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ 00406 /* result set is empty */ 00407 #define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */ 00408 /* in 4th argument of callback */ 00409 00410 /* 00411 ** Possible values for the sqlite.magic field. 00412 ** The numbers are obtained at random and have no special meaning, other 00413 ** than being distinct from one another. 00414 */ 00415 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 00416 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 00417 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 00418 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 00419 00420 /* 00421 ** Each SQL function is defined by an instance of the following 00422 ** structure. A pointer to this structure is stored in the sqlite.aFunc 00423 ** hash table. When multiple functions have the same name, the hash table 00424 ** points to a linked list of these structures. 00425 */ 00426 struct FuncDef { 00427 void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */ 00428 void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */ 00429 void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */ 00430 signed char nArg; /* Number of arguments. -1 means unlimited */ 00431 signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */ 00432 /* -2=TEXT. -3=SQLITE_ARGS */ 00433 u8 includeTypes; /* Add datatypes to args of xFunc and xStep */ 00434 void *pUserData; /* User data parameter */ 00435 FuncDef *pNext; /* Next function with same name */ 00436 }; 00437 00438 /* 00439 ** information about each column of an SQL table is held in an instance 00440 ** of this structure. 00441 */ 00442 struct Column { 00443 char *zName; /* Name of this column */ 00444 char *zDflt; /* Default value of this column */ 00445 char *zType; /* Data type for this column */ 00446 u8 notNull; /* True if there is a NOT NULL constraint */ 00447 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 00448 u8 sortOrder; /* Some combination of SQLITE_SO_... values */ 00449 u8 dottedName; /* True if zName contains a "." character */ 00450 }; 00451 00452 /* 00453 ** The allowed sort orders. 00454 ** 00455 ** The TEXT and NUM values use bits that do not overlap with DESC and ASC. 00456 ** That way the two can be combined into a single number. 00457 */ 00458 #define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ 00459 #define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ 00460 #define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */ 00461 #define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ 00462 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 00463 #define SQLITE_SO_DESC 1 /* Sort in descending order */ 00464 #define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ 00465 00466 /* 00467 ** Each SQL table is represented in memory by an instance of the 00468 ** following structure. 00469 ** 00470 ** Table.zName is the name of the table. The case of the original 00471 ** CREATE TABLE statement is stored, but case is not significant for 00472 ** comparisons. 00473 ** 00474 ** Table.nCol is the number of columns in this table. Table.aCol is a 00475 ** pointer to an array of Column structures, one for each column. 00476 ** 00477 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 00478 ** the column that is that key. Otherwise Table.iPKey is negative. Note 00479 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 00480 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 00481 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 00482 ** is generated for each row of the table. Table.hasPrimKey is true if 00483 ** the table has any PRIMARY KEY, INTEGER or otherwise. 00484 ** 00485 ** Table.tnum is the page number for the root BTree page of the table in the 00486 ** database file. If Table.iDb is the index of the database table backend 00487 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 00488 ** holds temporary tables and indices. If Table.isTransient 00489 ** is true, then the table is stored in a file that is automatically deleted 00490 ** when the VDBE cursor to the table is closed. In this case Table.tnum 00491 ** refers VDBE cursor number that holds the table open, not to the root 00492 ** page number. Transient tables are used to hold the results of a 00493 ** sub-query that appears instead of a real table name in the FROM clause 00494 ** of a SELECT statement. 00495 */ 00496 struct Table { 00497 char *zName; /* Name of the table */ 00498 int nCol; /* Number of columns in this table */ 00499 Column *aCol; /* Information about each column */ 00500 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ 00501 Index *pIndex; /* List of SQL indexes on this table. */ 00502 int tnum; /* Root BTree node for this table (see note above) */ 00503 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 00504 u8 readOnly; /* True if this table should not be written by the user */ 00505 u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ 00506 u8 isTransient; /* True if automatically deleted when VDBE finishes */ 00507 u8 hasPrimKey; /* True if there exists a primary key */ 00508 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 00509 Trigger *pTrigger; /* List of SQL triggers on this table */ 00510 FKey *pFKey; /* Linked list of all foreign keys in this table */ 00511 }; 00512 00513 /* 00514 ** Each foreign key constraint is an instance of the following structure. 00515 ** 00516 ** A foreign key is associated with two tables. The "from" table is 00517 ** the table that contains the REFERENCES clause that creates the foreign 00518 ** key. The "to" table is the table that is named in the REFERENCES clause. 00519 ** Consider this example: 00520 ** 00521 ** CREATE TABLE ex1( 00522 ** a INTEGER PRIMARY KEY, 00523 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 00524 ** ); 00525 ** 00526 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 00527 ** 00528 ** Each REFERENCES clause generates an instance of the following structure 00529 ** which is attached to the from-table. The to-table need not exist when 00530 ** the from-table is created. The existance of the to-table is not checked 00531 ** until an attempt is made to insert data into the from-table. 00532 ** 00533 ** The sqlite.aFKey hash table stores pointers to this structure 00534 ** given the name of a to-table. For each to-table, all foreign keys 00535 ** associated with that table are on a linked list using the FKey.pNextTo 00536 ** field. 00537 */ 00538 struct FKey { 00539 Table *pFrom; /* The table that constains the REFERENCES clause */ 00540 FKey *pNextFrom; /* Next foreign key in pFrom */ 00541 char *zTo; /* Name of table that the key points to */ 00542 FKey *pNextTo; /* Next foreign key that points to zTo */ 00543 int nCol; /* Number of columns in this key */ 00544 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 00545 int iFrom; /* Index of column in pFrom */ 00546 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 00547 } *aCol; /* One entry for each of nCol column s */ 00548 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 00549 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ 00550 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ 00551 u8 insertConf; /* How to resolve conflicts that occur on INSERT */ 00552 }; 00553 00554 /* 00555 ** SQLite supports many different ways to resolve a contraint 00556 ** error. ROLLBACK processing means that a constraint violation 00557 ** causes the operation in process to fail and for the current transaction 00558 ** to be rolled back. ABORT processing means the operation in process 00559 ** fails and any prior changes from that one operation are backed out, 00560 ** but the transaction is not rolled back. FAIL processing means that 00561 ** the operation in progress stops and returns an error code. But prior 00562 ** changes due to the same operation are not backed out and no rollback 00563 ** occurs. IGNORE means that the particular row that caused the constraint 00564 ** error is not inserted or updated. Processing continues and no error 00565 ** is returned. REPLACE means that preexisting database rows that caused 00566 ** a UNIQUE constraint violation are removed so that the new insert or 00567 ** update can proceed. Processing continues and no error is reported. 00568 ** 00569 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 00570 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 00571 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 00572 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 00573 ** referenced table row is propagated into the row that holds the 00574 ** foreign key. 00575 ** 00576 ** The following symbolic values are used to record which type 00577 ** of action to take. 00578 */ 00579 #define OE_None 0 /* There is no constraint to check */ 00580 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 00581 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 00582 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 00583 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 00584 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 00585 00586 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 00587 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 00588 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 00589 #define OE_Cascade 9 /* Cascade the changes */ 00590 00591 #define OE_Default 99 /* Do whatever the default action is */ 00592 00593 /* 00594 ** Each SQL index is represented in memory by an 00595 ** instance of the following structure. 00596 ** 00597 ** The columns of the table that are to be indexed are described 00598 ** by the aiColumn[] field of this structure. For example, suppose 00599 ** we have the following table and index: 00600 ** 00601 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 00602 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 00603 ** 00604 ** In the Table structure describing Ex1, nCol==3 because there are 00605 ** three columns in the table. In the Index structure describing 00606 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 00607 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 00608 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 00609 ** The second column to be indexed (c1) has an index of 0 in 00610 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 00611 ** 00612 ** The Index.onError field determines whether or not the indexed columns 00613 ** must be unique and what to do if they are not. When Index.onError=OE_None, 00614 ** it means this is not a unique index. Otherwise it is a unique index 00615 ** and the value of Index.onError indicate the which conflict resolution 00616 ** algorithm to employ whenever an attempt is made to insert a non-unique 00617 ** element. 00618 */ 00619 struct Index { 00620 char *zName; /* Name of this index */ 00621 int nColumn; /* Number of columns in the table used by this index */ 00622 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 00623 Table *pTable; /* The SQL table being indexed */ 00624 int tnum; /* Page containing root of this index in database file */ 00625 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 00626 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 00627 u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ 00628 Index *pNext; /* The next index associated with the same table */ 00629 }; 00630 00631 /* 00632 ** Each token coming out of the lexer is an instance of 00633 ** this structure. Tokens are also used as part of an expression. 00634 ** 00635 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 00636 ** may contain random values. Do not make any assuptions about Token.dyn 00637 ** and Token.n when Token.z==0. 00638 */ 00639 struct Token { 00640 const char *z; /* Text of the token. Not NULL-terminated! */ 00641 unsigned dyn : 1; /* True for malloced memory, false for static */ 00642 unsigned n : 31; /* Number of characters in this token */ 00643 }; 00644 00645 /* 00646 ** Each node of an expression in the parse tree is an instance 00647 ** of this structure. 00648 ** 00649 ** Expr.op is the opcode. The integer parser token codes are reused 00650 ** as opcodes here. For example, the parser defines TK_GE to be an integer 00651 ** code representing the ">=" operator. This same integer code is reused 00652 ** to represent the greater-than-or-equal-to operator in the expression 00653 ** tree. 00654 ** 00655 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list 00656 ** of argument if the expression is a function. 00657 ** 00658 ** Expr.token is the operator token for this node. For some expressions 00659 ** that have subexpressions, Expr.token can be the complete text that gave 00660 ** rise to the Expr. In the latter case, the token is marked as being 00661 ** a compound token. 00662 ** 00663 ** An expression of the form ID or ID.ID refers to a column in a table. 00664 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 00665 ** the integer cursor number of a VDBE cursor pointing to that table and 00666 ** Expr.iColumn is the column number for the specific column. If the 00667 ** expression is used as a result in an aggregate SELECT, then the 00668 ** value is also stored in the Expr.iAgg column in the aggregate so that 00669 ** it can be accessed after all aggregates are computed. 00670 ** 00671 ** If the expression is a function, the Expr.iTable is an integer code 00672 ** representing which function. If the expression is an unbound variable 00673 ** marker (a question mark character '?' in the original SQL) then the 00674 ** Expr.iTable holds the index number for that variable. 00675 ** 00676 ** The Expr.pSelect field points to a SELECT statement. The SELECT might 00677 ** be the right operand of an IN operator. Or, if a scalar SELECT appears 00678 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only 00679 ** operand. 00680 */ 00681 struct Expr { 00682 u8 op; /* Operation performed by this node */ 00683 u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */ 00684 u8 iDb; /* Database referenced by this expression */ 00685 u8 flags; /* Various flags. See below */ 00686 Expr *pLeft, *pRight; /* Left and right subnodes */ 00687 ExprList *pList; /* A list of expressions used as function arguments 00688 ** or in "<expr> IN (<expr-list)" */ 00689 Token token; /* An operand token */ 00690 Token span; /* Complete text of the expression */ 00691 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the 00692 ** iColumn-th field of the iTable-th table. */ 00693 int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull 00694 ** result from the iAgg-th element of the aggregator */ 00695 Select *pSelect; /* When the expression is a sub-select. Also the 00696 ** right side of "<expr> IN (<select>)" */ 00697 }; 00698 00699 /* 00700 ** The following are the meanings of bits in the Expr.flags field. 00701 */ 00702 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 00703 00704 /* 00705 ** These macros can be used to test, set, or clear bits in the 00706 ** Expr.flags field. 00707 */ 00708 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 00709 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 00710 #define ExprSetProperty(E,P) (E)->flags|=(P) 00711 #define ExprClearProperty(E,P) (E)->flags&=~(P) 00712 00713 /* 00714 ** A list of expressions. Each expression may optionally have a 00715 ** name. An expr/name combination can be used in several ways, such 00716 ** as the list of "expr AS ID" fields following a "SELECT" or in the 00717 ** list of "ID = expr" items in an UPDATE. A list of expressions can 00718 ** also be used as the argument to a function, in which case the a.zName 00719 ** field is not used. 00720 */ 00721 struct ExprList { 00722 int nExpr; /* Number of expressions on the list */ 00723 int nAlloc; /* Number of entries allocated below */ 00724 struct ExprList_item { 00725 Expr *pExpr; /* The list of expressions */ 00726 char *zName; /* Token associated with this expression */ 00727 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 00728 u8 isAgg; /* True if this is an aggregate like count(*) */ 00729 u8 done; /* A flag to indicate when processing is finished */ 00730 } *a; /* One entry for each expression */ 00731 }; 00732 00733 /* 00734 ** An instance of this structure can hold a simple list of identifiers, 00735 ** such as the list "a,b,c" in the following statements: 00736 ** 00737 ** INSERT INTO t(a,b,c) VALUES ...; 00738 ** CREATE INDEX idx ON t(a,b,c); 00739 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 00740 ** 00741 ** The IdList.a.idx field is used when the IdList represents the list of 00742 ** column names after a table name in an INSERT statement. In the statement 00743 ** 00744 ** INSERT INTO t(a,b,c) ... 00745 ** 00746 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 00747 */ 00748 struct IdList { 00749 int nId; /* Number of identifiers on the list */ 00750 int nAlloc; /* Number of entries allocated for a[] below */ 00751 struct IdList_item { 00752 char *zName; /* Name of the identifier */ 00753 int idx; /* Index in some Table.aCol[] of a column named zName */ 00754 } *a; 00755 }; 00756 00757 /* 00758 ** The following structure describes the FROM clause of a SELECT statement. 00759 ** Each table or subquery in the FROM clause is a separate element of 00760 ** the SrcList.a[] array. 00761 ** 00762 ** With the addition of multiple database support, the following structure 00763 ** can also be used to describe a particular table such as the table that 00764 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 00765 ** such a table must be a simple name: ID. But in SQLite, the table can 00766 ** now be identified by a database name, a dot, then the table name: ID.ID. 00767 */ 00768 struct SrcList { 00769 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 00770 i16 nAlloc; /* Number of entries allocated in a[] below */ 00771 struct SrcList_item { 00772 char *zDatabase; /* Name of database holding this table */ 00773 char *zName; /* Name of the table */ 00774 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 00775 Table *pTab; /* An SQL table corresponding to zName */ 00776 Select *pSelect; /* A SELECT statement used in place of a table name */ 00777 int jointype; /* Type of join between this table and the next */ 00778 int iCursor; /* The VDBE cursor number used to access this table */ 00779 Expr *pOn; /* The ON clause of a join */ 00780 IdList *pUsing; /* The USING clause of a join */ 00781 } a[1]; /* One entry for each identifier on the list */ 00782 }; 00783 00784 /* 00785 ** Permitted values of the SrcList.a.jointype field 00786 */ 00787 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 00788 #define JT_NATURAL 0x0002 /* True for a "natural" join */ 00789 #define JT_LEFT 0x0004 /* Left outer join */ 00790 #define JT_RIGHT 0x0008 /* Right outer join */ 00791 #define JT_OUTER 0x0010 /* The "OUTER" keyword is present */ 00792 #define JT_ERROR 0x0020 /* unknown or unsupported join type */ 00793 00794 /* 00795 ** For each nested loop in a WHERE clause implementation, the WhereInfo 00796 ** structure contains a single instance of this structure. This structure 00797 ** is intended to be private the the where.c module and should not be 00798 ** access or modified by other modules. 00799 */ 00800 struct WhereLevel { 00801 int iMem; /* Memory cell used by this level */ 00802 Index *pIdx; /* Index used */ 00803 int iCur; /* Cursor number used for this index */ 00804 int score; /* How well this indexed scored */ 00805 int brk; /* Jump here to break out of the loop */ 00806 int cont; /* Jump here to continue with the next loop cycle */ 00807 int op, p1, p2; /* Opcode used to terminate the loop */ 00808 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 00809 int top; /* First instruction of interior of the loop */ 00810 int inOp, inP1, inP2;/* Opcode used to implement an IN operator */ 00811 int bRev; /* Do the scan in the reverse direction */ 00812 }; 00813 00814 /* 00815 ** The WHERE clause processing routine has two halves. The 00816 ** first part does the start of the WHERE loop and the second 00817 ** half does the tail of the WHERE loop. An instance of 00818 ** this structure is returned by the first half and passed 00819 ** into the second half to give some continuity. 00820 */ 00821 struct WhereInfo { 00822 Parse *pParse; 00823 SrcList *pTabList; /* List of tables in the join */ 00824 int iContinue; /* Jump here to continue with next record */ 00825 int iBreak; /* Jump here to break out of the loop */ 00826 int nLevel; /* Number of nested loop */ 00827 int savedNTab; /* Value of pParse->nTab before WhereBegin() */ 00828 int peakNTab; /* Value of pParse->nTab after WhereBegin() */ 00829 WhereLevel a[1]; /* Information about each nest loop in the WHERE */ 00830 }; 00831 00832 /* 00833 ** An instance of the following structure contains all information 00834 ** needed to generate code for a single SELECT statement. 00835 ** 00836 ** The zSelect field is used when the Select structure must be persistent. 00837 ** Normally, the expression tree points to tokens in the original input 00838 ** string that encodes the select. But if the Select structure must live 00839 ** longer than its input string (for example when it is used to describe 00840 ** a VIEW) we have to make a copy of the input string so that the nodes 00841 ** of the expression tree will have something to point to. zSelect is used 00842 ** to hold that copy. 00843 ** 00844 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 00845 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 00846 ** limit and nOffset to the value of the offset (or 0 if there is not 00847 ** offset). But later on, nLimit and nOffset become the memory locations 00848 ** in the VDBE that record the limit and offset counters. 00849 */ 00850 struct Select { 00851 ExprList *pEList; /* The fields of the result */ 00852 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 00853 u8 isDistinct; /* True if the DISTINCT keyword is present */ 00854 SrcList *pSrc; /* The FROM clause */ 00855 Expr *pWhere; /* The WHERE clause */ 00856 ExprList *pGroupBy; /* The GROUP BY clause */ 00857 Expr *pHaving; /* The HAVING clause */ 00858 ExprList *pOrderBy; /* The ORDER BY clause */ 00859 Select *pPrior; /* Prior select in a compound select statement */ 00860 int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */ 00861 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 00862 char *zSelect; /* Complete text of the SELECT command */ 00863 }; 00864 00865 /* 00866 ** The results of a select can be distributed in several ways. 00867 */ 00868 #define SRT_Callback 1 /* Invoke a callback with each row of result */ 00869 #define SRT_Mem 2 /* Store result in a memory cell */ 00870 #define SRT_Set 3 /* Store result as unique keys in a table */ 00871 #define SRT_Union 5 /* Store result as keys in a table */ 00872 #define SRT_Except 6 /* Remove result from a UNION table */ 00873 #define SRT_Table 7 /* Store result as data with a unique key */ 00874 #define SRT_TempTable 8 /* Store result in a trasient table */ 00875 #define SRT_Discard 9 /* Do not save the results anywhere */ 00876 #define SRT_Sorter 10 /* Store results in the sorter */ 00877 #define SRT_Subroutine 11 /* Call a subroutine to handle results */ 00878 00879 /* 00880 ** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)") 00881 ** we have to do some additional analysis of expressions. An instance 00882 ** of the following structure holds information about a single subexpression 00883 ** somewhere in the SELECT statement. An array of these structures holds 00884 ** all the information we need to generate code for aggregate 00885 ** expressions. 00886 ** 00887 ** Note that when analyzing a SELECT containing aggregates, both 00888 ** non-aggregate field variables and aggregate functions are stored 00889 ** in the AggExpr array of the Parser structure. 00890 ** 00891 ** The pExpr field points to an expression that is part of either the 00892 ** field list, the GROUP BY clause, the HAVING clause or the ORDER BY 00893 ** clause. The expression will be freed when those clauses are cleaned 00894 ** up. Do not try to delete the expression attached to AggExpr.pExpr. 00895 ** 00896 ** If AggExpr.pExpr==0, that means the expression is "count(*)". 00897 */ 00898 struct AggExpr { 00899 int isAgg; /* if TRUE contains an aggregate function */ 00900 Expr *pExpr; /* The expression */ 00901 FuncDef *pFunc; /* Information about the aggregate function */ 00902 }; 00903 00904 /* 00905 ** An SQL parser context. A copy of this structure is passed through 00906 ** the parser and down into all the parser action routine in order to 00907 ** carry around information that is global to the entire parse. 00908 */ 00909 struct Parse { 00910 sqlite *db; /* The main database structure */ 00911 int rc; /* Return code from execution */ 00912 char *zErrMsg; /* An error message */ 00913 Token sErrToken; /* The token at which the error occurred */ 00914 Token sFirstToken; /* The first token parsed */ 00915 Token sLastToken; /* The last token parsed */ 00916 const char *zTail; /* All SQL text past the last semicolon parsed */ 00917 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 00918 Vdbe *pVdbe; /* An engine for executing database bytecode */ 00919 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 00920 u8 explain; /* True if the EXPLAIN flag is found on the query */ 00921 u8 nameClash; /* A permanent table name clashes with temp table name */ 00922 u8 useAgg; /* If true, extract field values from the aggregator 00923 ** while generating expressions. Normally false */ 00924 int nErr; /* Number of errors seen */ 00925 int nTab; /* Number of previously allocated VDBE cursors */ 00926 int nMem; /* Number of memory cells used so far */ 00927 int nSet; /* Number of sets used so far */ 00928 int nAgg; /* Number of aggregate expressions */ 00929 int nVar; /* Number of '?' variables seen in the SQL so far */ 00930 AggExpr *aAgg; /* An array of aggregate expressions */ 00931 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 00932 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 00933 TriggerStack *trigStack; /* Trigger actions being coded */ 00934 }; 00935 00936 /* 00937 ** An instance of the following structure can be declared on a stack and used 00938 ** to save the Parse.zAuthContext value so that it can be restored later. 00939 */ 00940 struct AuthContext { 00941 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 00942 Parse *pParse; /* The Parse structure */ 00943 }; 00944 00945 /* 00946 ** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete 00947 */ 00948 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ 00949 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ 00950 #define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */ 00951 00952 /* 00953 * Each trigger present in the database schema is stored as an instance of 00954 * struct Trigger. 00955 * 00956 * Pointers to instances of struct Trigger are stored in two ways. 00957 * 1. In the "trigHash" hash table (part of the sqlite* that represents the 00958 * database). This allows Trigger structures to be retrieved by name. 00959 * 2. All triggers associated with a single table form a linked list, using the 00960 * pNext member of struct Trigger. A pointer to the first element of the 00961 * linked list is stored as the "pTrigger" member of the associated 00962 * struct Table. 00963 * 00964 * The "step_list" member points to the first element of a linked list 00965 * containing the SQL statements specified as the trigger program. 00966 */ 00967 struct Trigger { 00968 char *name; /* The name of the trigger */ 00969 char *table; /* The table or view to which the trigger applies */ 00970 u8 iDb; /* Database containing this trigger */ 00971 u8 iTabDb; /* Database containing Trigger.table */ 00972 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 00973 u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */ 00974 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ 00975 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 00976 the <column-list> is stored here */ 00977 int foreach; /* One of TK_ROW or TK_STATEMENT */ 00978 Token nameToken; /* Token containing zName. Use during parsing only */ 00979 00980 TriggerStep *step_list; /* Link list of trigger program steps */ 00981 Trigger *pNext; /* Next trigger associated with the table */ 00982 }; 00983 00984 /* 00985 * An instance of struct TriggerStep is used to store a single SQL statement 00986 * that is a part of a trigger-program. 00987 * 00988 * Instances of struct TriggerStep are stored in a singly linked list (linked 00989 * using the "pNext" member) referenced by the "step_list" member of the 00990 * associated struct Trigger instance. The first element of the linked list is 00991 * the first step of the trigger-program. 00992 * 00993 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 00994 * "SELECT" statement. The meanings of the other members is determined by the 00995 * value of "op" as follows: 00996 * 00997 * (op == TK_INSERT) 00998 * orconf -> stores the ON CONFLICT algorithm 00999 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 01000 * this stores a pointer to the SELECT statement. Otherwise NULL. 01001 * target -> A token holding the name of the table to insert into. 01002 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 01003 * this stores values to be inserted. Otherwise NULL. 01004 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 01005 * statement, then this stores the column-names to be 01006 * inserted into. 01007 * 01008 * (op == TK_DELETE) 01009 * target -> A token holding the name of the table to delete from. 01010 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 01011 * Otherwise NULL. 01012 * 01013 * (op == TK_UPDATE) 01014 * target -> A token holding the name of the table to update rows of. 01015 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 01016 * Otherwise NULL. 01017 * pExprList -> A list of the columns to update and the expressions to update 01018 * them to. See sqliteUpdate() documentation of "pChanges" 01019 * argument. 01020 * 01021 */ 01022 struct TriggerStep { 01023 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 01024 int orconf; /* OE_Rollback etc. */ 01025 Trigger *pTrig; /* The trigger that this step is a part of */ 01026 01027 Select *pSelect; /* Valid for SELECT and sometimes 01028 INSERT steps (when pExprList == 0) */ 01029 Token target; /* Valid for DELETE, UPDATE, INSERT steps */ 01030 Expr *pWhere; /* Valid for DELETE, UPDATE steps */ 01031 ExprList *pExprList; /* Valid for UPDATE statements and sometimes 01032 INSERT steps (when pSelect == 0) */ 01033 IdList *pIdList; /* Valid for INSERT statements only */ 01034 01035 TriggerStep * pNext; /* Next in the link-list */ 01036 }; 01037 01038 /* 01039 * An instance of struct TriggerStack stores information required during code 01040 * generation of a single trigger program. While the trigger program is being 01041 * coded, its associated TriggerStack instance is pointed to by the 01042 * "pTriggerStack" member of the Parse structure. 01043 * 01044 * The pTab member points to the table that triggers are being coded on. The 01045 * newIdx member contains the index of the vdbe cursor that points at the temp 01046 * table that stores the new.* references. If new.* references are not valid 01047 * for the trigger being coded (for example an ON DELETE trigger), then newIdx 01048 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. 01049 * 01050 * The ON CONFLICT policy to be used for the trigger program steps is stored 01051 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 01052 * specified for individual triggers steps is used. 01053 * 01054 * struct TriggerStack has a "pNext" member, to allow linked lists to be 01055 * constructed. When coding nested triggers (triggers fired by other triggers) 01056 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 01057 * pointer. Once the nested trigger has been coded, the pNext value is restored 01058 * to the pTriggerStack member of the Parse stucture and coding of the parent 01059 * trigger continues. 01060 * 01061 * Before a nested trigger is coded, the linked list pointed to by the 01062 * pTriggerStack is scanned to ensure that the trigger is not about to be coded 01063 * recursively. If this condition is detected, the nested trigger is not coded. 01064 */ 01065 struct TriggerStack { 01066 Table *pTab; /* Table that triggers are currently being coded on */ 01067 int newIdx; /* Index of vdbe cursor to "new" temp table */ 01068 int oldIdx; /* Index of vdbe cursor to "old" temp table */ 01069 int orconf; /* Current orconf policy */ 01070 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ 01071 Trigger *pTrigger; /* The trigger currently being coded */ 01072 TriggerStack *pNext; /* Next trigger down on the trigger stack */ 01073 }; 01074 01075 /* 01076 ** The following structure contains information used by the sqliteFix... 01077 ** routines as they walk the parse tree to make database references 01078 ** explicit. 01079 */ 01080 typedef struct DbFixer DbFixer; 01081 struct DbFixer { 01082 Parse *pParse; /* The parsing context. Error messages written here */ 01083 const char *zDb; /* Make sure all objects are contained in this database */ 01084 const char *zType; /* Type of the container - used for error messages */ 01085 const Token *pName; /* Name of the container - used for error messages */ 01086 }; 01087 01088 /* 01089 * This global flag is set for performance testing of triggers. When it is set 01090 * SQLite will perform the overhead of building new and old trigger references 01091 * even when no triggers exist 01092 */ 01093 extern int always_code_trigger_setup; 01094 01095 /* 01096 ** Internal function prototypes 01097 */ 01098 int sqliteStrICmp(const char *, const char *); 01099 int sqliteStrNICmp(const char *, const char *, int); 01100 int sqliteHashNoCase(const char *, int); 01101 int sqliteIsNumber(const char*); 01102 int sqliteCompare(const char *, const char *); 01103 int sqliteSortCompare(const char *, const char *); 01104 void sqliteRealToSortable(double r, char *); 01105 #ifdef MEMORY_DEBUG 01106 void *sqliteMalloc_(int,int,char*,int); 01107 void sqliteFree_(void*,char*,int); 01108 void *sqliteRealloc_(void*,int,char*,int); 01109 char *sqliteStrDup_(const char*,char*,int); 01110 char *sqliteStrNDup_(const char*, int,char*,int); 01111 void sqliteCheckMemory(void*,int); 01112 #else 01113 void *sqliteMalloc(int); 01114 void *sqliteMallocRaw(int); 01115 void sqliteFree(void*); 01116 void *sqliteRealloc(void*,int); 01117 char *sqliteStrDup(const char*); 01118 char *sqliteStrNDup(const char*, int); 01119 # define sqliteCheckMemory(a,b) 01120 #endif 01121 char *sqliteMPrintf(const char*, ...); 01122 char *sqliteVMPrintf(const char*, va_list); 01123 void sqliteSetString(char **, ...); 01124 void sqliteSetNString(char **, ...); 01125 void sqliteErrorMsg(Parse*, const char*, ...); 01126 void sqliteDequote(char*); 01127 int sqliteKeywordCode(const char*, int); 01128 int sqliteRunParser(Parse*, const char*, char **); 01129 void sqliteExec(Parse*); 01130 Expr *sqliteExpr(int, Expr*, Expr*, Token*); 01131 void sqliteExprSpan(Expr*,Token*,Token*); 01132 Expr *sqliteExprFunction(ExprList*, Token*); 01133 void sqliteExprDelete(Expr*); 01134 ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); 01135 void sqliteExprListDelete(ExprList*); 01136 int sqliteInit(sqlite*, char**); 01137 void sqlitePragma(Parse*,Token*,Token*,int); 01138 void sqliteResetInternalSchema(sqlite*, int); 01139 void sqliteBeginParse(Parse*,int); 01140 void sqliteRollbackInternalChanges(sqlite*); 01141 void sqliteCommitInternalChanges(sqlite*); 01142 Table *sqliteResultSetOfSelect(Parse*,char*,Select*); 01143 void sqliteOpenMasterTable(Vdbe *v, int); 01144 void sqliteStartTable(Parse*,Token*,Token*,int,int); 01145 void sqliteAddColumn(Parse*,Token*); 01146 void sqliteAddNotNull(Parse*, int); 01147 void sqliteAddPrimaryKey(Parse*, IdList*, int); 01148 void sqliteAddColumnType(Parse*,Token*,Token*); 01149 void sqliteAddDefaultValue(Parse*,Token*,int); 01150 int sqliteCollateType(const char*, int); 01151 void sqliteAddCollateType(Parse*, int); 01152 void sqliteEndTable(Parse*,Token*,Select*); 01153 void sqliteCreateView(Parse*,Token*,Token*,Select*,int); 01154 int sqliteViewGetColumnNames(Parse*,Table*); 01155 void sqliteDropTable(Parse*, Token*, int); 01156 void sqliteDeleteTable(sqlite*, Table*); 01157 void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 01158 IdList *sqliteIdListAppend(IdList*, Token*); 01159 int sqliteIdListIndex(IdList*,const char*); 01160 SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*); 01161 void sqliteSrcListAddAlias(SrcList*, Token*); 01162 void sqliteSrcListAssignCursors(Parse*, SrcList*); 01163 void sqliteIdListDelete(IdList*); 01164 void sqliteSrcListDelete(SrcList*); 01165 void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*); 01166 void sqliteDropIndex(Parse*, SrcList*); 01167 void sqliteAddKeyType(Vdbe*, ExprList*); 01168 void sqliteAddIdxKeyType(Vdbe*, Index*); 01169 int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*); 01170 Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, 01171 int,int,int); 01172 void sqliteSelectDelete(Select*); 01173 void sqliteSelectUnbind(Select*); 01174 Table *sqliteSrcListLookup(Parse*, SrcList*); 01175 int sqliteIsReadOnly(Parse*, Table*, int); 01176 void sqliteDeleteFrom(Parse*, SrcList*, Expr*); 01177 void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int); 01178 WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**); 01179 void sqliteWhereEnd(WhereInfo*); 01180 void sqliteExprCode(Parse*, Expr*); 01181 int sqliteExprCodeExprList(Parse*, ExprList*, int); 01182 void sqliteExprIfTrue(Parse*, Expr*, int, int); 01183 void sqliteExprIfFalse(Parse*, Expr*, int, int); 01184 Table *sqliteFindTable(sqlite*,const char*, const char*); 01185 Table *sqliteLocateTable(Parse*,const char*, const char*); 01186 Index *sqliteFindIndex(sqlite*,const char*, const char*); 01187 void sqliteUnlinkAndDeleteIndex(sqlite*,Index*); 01188 void sqliteCopy(Parse*, SrcList*, Token*, Token*, int); 01189 void sqliteVacuum(Parse*, Token*); 01190 int sqliteRunVacuum(char**, sqlite*); 01191 int sqliteGlobCompare(const unsigned char*,const unsigned char*); 01192 int sqliteLikeCompare(const unsigned char*,const unsigned char*); 01193 char *sqliteTableNameFromToken(Token*); 01194 int sqliteExprCheck(Parse*, Expr*, int, int*); 01195 int sqliteExprType(Expr*); 01196 int sqliteExprCompare(Expr*, Expr*); 01197 int sqliteFuncId(Token*); 01198 int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*); 01199 int sqliteExprAnalyzeAggregates(Parse*, Expr*); 01200 Vdbe *sqliteGetVdbe(Parse*); 01201 void sqliteRandomness(int, void*); 01202 void sqliteRollbackAll(sqlite*); 01203 void sqliteCodeVerifySchema(Parse*, int); 01204 void sqliteBeginTransaction(Parse*, int); 01205 void sqliteCommitTransaction(Parse*); 01206 void sqliteRollbackTransaction(Parse*); 01207 int sqliteExprIsConstant(Expr*); 01208 int sqliteExprIsInteger(Expr*, int*); 01209 int sqliteIsRowid(const char*); 01210 void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int); 01211 void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*); 01212 void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int); 01213 void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int); 01214 int sqliteOpenTableAndIndices(Parse*, Table*, int); 01215 void sqliteBeginWriteOperation(Parse*, int, int); 01216 void sqliteEndWriteOperation(Parse*); 01217 Expr *sqliteExprDup(Expr*); 01218 void sqliteTokenCopy(Token*, Token*); 01219 ExprList *sqliteExprListDup(ExprList*); 01220 SrcList *sqliteSrcListDup(SrcList*); 01221 IdList *sqliteIdListDup(IdList*); 01222 Select *sqliteSelectDup(Select*); 01223 FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int); 01224 void sqliteRegisterBuiltinFunctions(sqlite*); 01225 void sqliteRegisterDateTimeFunctions(sqlite*); 01226 int sqliteSafetyOn(sqlite*); 01227 int sqliteSafetyOff(sqlite*); 01228 int sqliteSafetyCheck(sqlite*); 01229 void sqliteChangeCookie(sqlite*, Vdbe*); 01230 void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int); 01231 void sqliteFinishTrigger(Parse*, TriggerStep*, Token*); 01232 void sqliteDropTrigger(Parse*, SrcList*); 01233 void sqliteDropTriggerPtr(Parse*, Trigger*, int); 01234 int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*); 01235 int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 01236 int, int); 01237 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 01238 void sqliteDeleteTriggerStep(TriggerStep*); 01239 TriggerStep *sqliteTriggerSelectStep(Select*); 01240 TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int); 01241 TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int); 01242 TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*); 01243 void sqliteDeleteTrigger(Trigger*); 01244 int sqliteJoinType(Parse*, Token*, Token*, Token*); 01245 void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int); 01246 void sqliteDeferForeignKey(Parse*, int); 01247 #ifndef SQLITE_OMIT_AUTHORIZATION 01248 void sqliteAuthRead(Parse*,Expr*,SrcList*); 01249 int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*); 01250 void sqliteAuthContextPush(Parse*, AuthContext*, const char*); 01251 void sqliteAuthContextPop(AuthContext*); 01252 #else 01253 # define sqliteAuthRead(a,b,c) 01254 # define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK 01255 # define sqliteAuthContextPush(a,b,c) 01256 # define sqliteAuthContextPop(a) ((void)(a)) 01257 #endif 01258 void sqliteAttach(Parse*, Token*, Token*, Token*); 01259 void sqliteDetach(Parse*, Token*); 01260 int sqliteBtreeFactory(const sqlite *db, const char *zFilename, 01261 int mode, int nPg, Btree **ppBtree); 01262 int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*); 01263 int sqliteFixSrcList(DbFixer*, SrcList*); 01264 int sqliteFixSelect(DbFixer*, Select*); 01265 int sqliteFixExpr(DbFixer*, Expr*); 01266 int sqliteFixExprList(DbFixer*, ExprList*); 01267 int sqliteFixTriggerStep(DbFixer*, TriggerStep*); 01268 double sqliteAtoF(const char *z, const char **); 01269 char *sqlite_snprintf(int,char*,const char*,...); 01270 int sqliteFitsIn32Bits(const char *);