
TECHNOLOGY

DIVISION

1

Eclipse Collections by Example

GS.com/Engineering

Fall, 2015

Christian Glencross

TECHNOLOGY

DIVISION

2

Introductions – EclipseCon Europe 2015

TECHNOLOGY

DIVISION

3

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

4

What is GS Collections?

• Open source Java collections framework developed in
Goldman Sachs

– Inspired by Smalltalk Collections Framework

– In development since 2004

– Hosted on GitHub w/ Apache 2.0 License in January 2012

• github.com/goldmansachs/gs-collections

• GS Collections Kata

– Internal training developed in 2007

– Taught to > 2,000 GS Java developers

– Hosted on GitHub w/ Apache 2.0 License in January 2012

• github.com/goldmansachs/gs-collections-kata

https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata

TECHNOLOGY

DIVISION

5

Trending positively
Monthly Maven central downloads have risen since JavaOne 2014 Spring Reactor includes GS Collections as a dependency

quote from: https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available

In the Top 300 Java GitHub projects based on number of stars

https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available

TECHNOLOGY

DIVISION

6

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

7

What is Eclipse Collections?
• Eclipse Collections 7.0

– Project @ Eclipse Foundation

– Feature set is the same as GS Collections 7.0

– Packages renamed

• com.gs -> org.eclipse

– Released under dual licenses

• Eclipse Public License 1.0

• Eclipse Distribution License 1.0 (BSD)

• Eclipse Collections is open for contributions!
– Drop by the Goldman Sachs booth in the EclipseCon exhibitor hall to find out more!

TECHNOLOGY

DIVISION

8

Eclipse Collections Features

Eclipse Collections 7.0

 Eager & Lazy, Serial & Parallel
 Memory efficient containers
 Primitive containers (all 8)

 Immutable containers
 More container types

 More iteration patterns
 “With” method patterns
 “target” method patterns

 Covariant return types
 Java 5+ compatible

Java 8 Streams
- Functional APIs
- Lazy only
- Single use
- Serial & Parallel
- Primitive streams

(3 types)
- Extensible

Collectors

Eclipse Collections has Streams…
And much much more!

And you can contribute too!!!

TECHNOLOGY

DIVISION

9

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

10

Comparing Sets

0

10

20

30

40

50

60

Si
ze

 (
M

b
)

Elements

JDK HashSet

GSC UnifiedSet

Trove
THashSet

TECHNOLOGY

DIVISION

11

Comparing Maps

0

5

10

15

20

25

30

35

40

45

Si
ze

 (
M

b
)

Elements

JDK HashMap

GSC
UnifiedMap

Trove
THashMap

TECHNOLOGY

DIVISION

12

Why Primitive Collections?

0

5

10

15

20

25

Si
ze

 (
M

b
)

Elements

JDK ArrayList

GSC
IntArrayList

Trove
TIntArrayList

TECHNOLOGY

DIVISION

13

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

14

Hobson’s Choice

• “A Hobson's choice is a free choice in which

only one option is actually offered.”

– Wikipedia

“You get what you get
and you don’t get upset!”

TECHNOLOGY

DIVISION

15

Hobson’s Choice - Iteration Patterns

• Lazy or Eager?

– Java Collections Framework = Eager

– Streams = Lazy

– Eclipse Collections = You choose

Assert.assertEquals(Integer.valueOf(1),
 Collections.min(Lists.mutable.with(1, 2, 3)));

Assert.assertEquals(1,
 Lists.mutable.with(1, 2, 3).stream().mapToInt(i -> i).min().getAsInt());

Assert.assertEquals(1, IntLists.mutable.with(1, 2, 3).min());
Assert.assertEquals(1, IntLists.mutable.with(1, 2, 3).asLazy().min());

TECHNOLOGY

DIVISION

16

Hobson’s Choice - Map

Type Eclipse Collections JDK Collections

Bag Bag<T> Use Map<T, Integer or Long>

Multimap Multimap<K, V> Use Map<K, Collection<V>>

BiMap BiMap<K, V> Use two maps.

Partition PartitionIterable<T> Use Map<Boolean, Collection<T>>

Pair Pair<T1, T2> Use Map.Entry<T1, T2>

When your only tool is a Map, everything is either a key, a value or null.

TECHNOLOGY

DIVISION

17

Hobson’s Choice - Primitives

Type Eclipse Collections JDK Collections

Primitive List Yes Boxed

Primitive Set Yes Boxed

Primitive Map Yes Boxed

Primitive Stack Yes Boxed

Primitive Bag Yes Map and Boxed

Primitive Lazy / Stream Yes (all 8 primitives) Int, Long, Double only

TECHNOLOGY

DIVISION

18

Hobson’s Choice - Parallel
Stream<Address> addresses =

 people.parallelStream()

 .map(Person::getAddress);

ParallelListIterable<Address> addresses =

 people.asParallel(executor, batchSize)

 .collect(Person::getAddress);

http://www.infoq.com/presentations/java-streams-scala-parallel-collections

http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections

TECHNOLOGY

DIVISION

19

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

20

Eclipse Collections by Example

Powered by Astah

public boolean hasPet(PetType petType)
{
 return this.pets.anySatisfy(pet -> pet.getType().equals(petType));
}

TECHNOLOGY

DIVISION

21

Setup
private MutableList<Person> people;

@Before
public void setUp() throws Exception
{
 this.people = Lists.mutable.with(
 new Person("Mary", "Smith").addPet(PetType.CAT, "Tabby", 2),
 new Person("Bob", "Smith")
 .addPet(PetType.CAT, "Dolly", 3)
 .addPet(PetType.DOG, "Spot", 2),
 new Person("Ted", "Smith").addPet(PetType.DOG, "Spike", 4),
 new Person("Jake", "Snake").addPet(PetType.SNAKE, "Serpy", 1),
 new Person("Barry", "Bird").addPet(PetType.BIRD, "Tweety", 2),
 new Person("Terry", "Turtle").addPet(PetType.TURTLE, "Speedy", 1),
 new Person("Harry", "Hamster")
 .addPet(PetType.HAMSTER, "Fuzzy", 1)
 .addPet(PetType.HAMSTER, "Wuzzy", 1)
);
}

TECHNOLOGY

DIVISION

22

Do any people have cats?

boolean result =
 this.people.stream().anyMatch(person -> person.hasPet(PetType.CAT));

boolean result =
 this.people.anySatisfy(person -> person.hasPet(PetType.CAT));

boolean resultMethodRef =
 this.people.anySatisfyWith(Person::hasPet, PetType.CAT);

ea
ge

r

boolean result =
 this.people.asLazy().anySatisfy(person -> person.hasPet(PetType.CAT));

boolean resultMethodRef =
 this.people.asLazy().anySatisfyWith(Person::hasPet, PetType.CAT);

as
La

zy

st
re

am

TECHNOLOGY

DIVISION

23

How many people have cats?

long result =
 this.people.stream().filter(person -> person.hasPet(PetType.CAT)).count();

int result =
 this.people.count(person -> person.hasPet(PetType.CAT));

int resultMethodRef =
 this.people.countWith(Person::hasPet, PetType.CAT);

ea
ge

r

int result =
 this.people.asLazy().count(person -> person.hasPet(PetType.CAT));

int resultMethodRef =
 this.people.asLazy().countWith(Person::hasPet, PetType.CAT);

as
La

zy

st
re

am

TECHNOLOGY

DIVISION

24

How does “count” stack up?

ea
ge

r
as

La
zy

st
re

am

this.people.stream().filter(person -> person.hasPet(PetType.CAT)).count();

this.people.countWith(Person::hasPet, PetType.CAT);

this.people.asLazy().countWith(Person::hasPet, PetType.CAT);

TECHNOLOGY

DIVISION

25

Who has cats?
ea

ge
r

as
La

zy

st
re

am

MutableList<Person> peopleWithCats =
 this.people.select(person -> person.hasPet(PetType.CAT));

MutableList<Person> peopleWithCatsMethodRef =
 this.people.selectWith(Person::hasPet, PetType.CAT);

List<Person> peopleWithCats =
 this.people.stream().filter(person -> person.hasPet(PetType.CAT))
 .collect(Collectors.toList());

MutableList<Person> peopleWithCats =
 this.people.asLazy().select(person -> person.hasPet(PetType.CAT)).toList();

MutableList<Person> peopleWithCatsMethodRef =
 this.people.asLazy().selectWith(Person::hasPet, PetType.CAT).toList();

// select: descriptive API

TECHNOLOGY

DIVISION

26

Who doesn’t have cats?
ea

ge
r

as
La

zy

st
re

am

MutableList<Person> peopleWithoutCats =
 this.people.reject(person -> person.hasPet(PetType.CAT));

MutableList<Person> peopleWithoutCatsMethodRef =
 this.people.rejectWith(Person::hasPet, PetType.CAT);

List<Person> peopleWithoutCats =
 this.people.stream().filter(person -> !person.hasPet(PetType.CAT))
 .collect(Collectors.toList());

MutableList<Person> peopleWithoutCats =
 this.people.asLazy().reject(person -> person.hasPet(PetType.CAT)).toList();

MutableList<Person> peopleWithoutCatsMethodRef =
 this.people.asLazy().rejectWith(Person::hasPet, PetType.CAT).toList();

// not!

// detect: descriptive API

TECHNOLOGY

DIVISION

27

Partition people with/without cats
ea

ge
r

as
La

zy

st
re

am

PartitionMutableList<Person> catsAndNoCats =
 this.people.partition(person -> person.hasPet(PetType.CAT));

Map<Boolean, List<Person>> catsAndNoCats =
 this.people.stream().collect(
 Collectors.partitioningBy(person -> person.hasPet(PetType.CAT)));

PartitionMutableList<Person> catsAndNoCatsMethodRef =
 this.people.partitionWith(Person::hasPet, PetType.CAT);

PartitionIterable<Person> catsAndNoCats =
 this.people.asLazy().partition(person -> person.hasPet(PetType.CAT));

PartitionIterable<Person> catsAndNoCatsMethodRef =
 this.people.asLazy().partitionWith(Person::hasPet, PetType.CAT);

// PartitionIterable supports getSelected() and getRejected()

TECHNOLOGY

DIVISION

28

Get the names of Bob’s pets
ea

ge
r

st
re

am

Person person =
 this.people.stream()
 .filter(each -> each.named("Bob Smith"))
 .findFirst().get();

Assert.assertEquals("Dolly & Spot",
 person.getPets()
 .stream()
 .map(Pet::getName)
 .collect(Collectors.joining(" & ")));

Person person =
 this.people.detectWith(Person::named, "Bob Smith");

Assert.assertEquals("Dolly & Spot",
 person.getPets()
 .collect(Pet::getName)
 .makeString(" & "));

TECHNOLOGY

DIVISION

29

Get the set of all pet types
ea

ge
r

st
re

am
 Set<PetType> allPetTypes =

 this.people.stream()
 .flatMap(person -> person.getPetTypes().stream())
 .collect(Collectors.toSet());

as
La

zy

MutableSet<PetType> allPetTypesTarget =
 this.people.flatCollect(Person::getPetTypes, Sets.mutable.empty());

MutableSet<PetType> allPetTypes =
 this.people.asLazy().flatCollect(Person::getPetTypes).toSet();

MutableSet<PetType> allPetTypesTarget =
 this.people.asLazy().flatCollect(Person::getPetTypes, Sets.mutable.empty());

MutableSet<PetType> allPetTypes =
 this.people.flatCollect(Person::getPetTypes).toSet(); // copies and iterates twice

// Better performance with target collection

TECHNOLOGY

DIVISION

30

Group people by their last name
ea

ge
r

st
re

am

Map<String, List<Person>> byLastName =
 this.people.stream().collect(
 Collectors.groupingBy(Person::getLastName));

Map<String, MutableBag<Person>> byLastNameTargetBag =
 this.people.stream().collect(
 Collectors.groupingBy(Person::getLastName,
 Collectors.toCollection(Bags.mutable::empty)));

MutableListMultimap<String, Person> byLastName =
 this.people.groupBy(Person::getLastName);

MutableBagMultimap<String, Person> byLastNameTargetBagMultimap =
 this.people.groupBy(Person::getLastName, Multimaps.mutable.bag.empty());

// Multimap

// Native target collection handling

// Interop with Eclipse Collections Bag

TECHNOLOGY

DIVISION

31

Get the age statistics of pets
as

La
zy

st

re
am

List<Integer> agesList = this.people.stream()
 .flatMap(person -> person.getPets().stream())
 .map(Pet::getAge)
 .collect(Collectors.toList());
IntSummaryStatistics stats = agesList.stream().collect(Collectors.summarizingInt(i -> i));

Assert.assertEquals(stats.getMin(), agesList.stream().mapToInt(i -> i).min().getAsInt());
Assert.assertEquals(stats.getMax(), agesList.stream().mapToInt(i -> i).max().getAsInt());
Assert.assertEquals(stats.getSum(), agesList.stream().mapToInt(i -> i).sum());

IntList agesList = this.people.asLazy()
 .flatCollect(Person::getPets)
 .collectInt(Pet::getAge)
 .toList();
IntSummaryStatistics stats = new IntSummaryStatistics();
agesList.each(stats::accept);

Assert.assertEquals(stats.getMin(), agesList.min());
Assert.assertEquals(stats.getMax(), agesList.max());
Assert.assertEquals(stats.getSum(), agesList.sum());

// Primitive collection type

// Native support for statistics APIs

// collect method available for all 8 primitive types

TECHNOLOGY

DIVISION

32

Counts by pet age
as

La
zy

st

re
am

ImmutableIntBag counts =
 this.people.asLazy()
 .flatCollect(Person::getPets)
 .collectInt(Pet::getAge)
 .toBag()
 .toImmutable();

Assert.assertEquals(4, counts.occurrencesOf(1));
Assert.assertEquals(3, counts.occurrencesOf(2));
Assert.assertEquals(0, counts.occurrencesOf(5));

Map<Integer, Long> counts = Collections.unmodifiableMap(
 this.people.stream()
 .flatMap(person -> person.getPets().stream())
 .collect(Collectors.groupingBy(Pet::getAge,
 Collectors.counting())));

Assert.assertEquals(Long.valueOf(4), counts.get(1));
Assert.assertEquals(Long.valueOf(3), counts.get(2));
Assert.assertNull(counts.get(5));
Verify.assertThrows(UnsupportedOperationException.class, () -> counts.put(5, 0L));

// Immutable type => no mutation APIs available

// Unmodifiable => throws at runtime mutation

// Bag native support

// Bag returns 0 for non-existing occurrence

TECHNOLOGY

DIVISION

33

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

34

Use or Reuse?

• Streams – like Iterator

• LazyIterable – Iterable

Stream<Integer> stream = Lists.mutable.with(1, 2, 3).stream();
Assert.assertEquals(1, stream.mapToInt(i -> i).min().getAsInt());
Assert.assertEquals(3, stream.mapToInt(i -> i).max().getAsInt());

java.lang.IllegalStateException: stream has already been operated upon or closed
 at java.util.stream.AbstractPipeline.<init>(AbstractPipeline.java:203)
 at java.util.stream.IntPipeline.<init>(IntPipeline.java:91)
 at java.util.stream.IntPipeline$StatelessOp.<init>(IntPipeline.java:592)
 at java.util.stream.ReferencePipeline$4.<init>(ReferencePipeline.java:204)
 at java.util.stream.ReferencePipeline.mapToInt(ReferencePipeline.java:203)

LazyIterable<Integer> lazy = Lists.mutable.with(1, 2, 3).asLazy();
Assert.assertEquals(1, lazy.collectInt(i -> i).min());
Assert.assertEquals(3, lazy.collectInt(i -> i).max());

// throws

TECHNOLOGY

DIVISION

35

Agenda
• What is GS Collections?

• What is Eclipse Collections?

• JCF and EC Memory Comparisons

• Hobson’s Choice

• Eclipse Collections Examples

• To Use or Reuse?

• More Features

TECHNOLOGY

DIVISION

36

More Features
• “as” methods (O(1) cost) return an adapter to an

existing collection
– asLazy, asUnmodifiable, asSynchronized, asParallel, asReversed

• “to” methods (O(n) cost) return a copy of the

collection
– toImmutable, toList, toBag, toSortedMap, toArray, toReversed, etc.

• Convenient support for method references that

throw checked exceptions
eclipseList.each(Procedures.throwing(fileWriter::write));

TECHNOLOGY

DIVISION

37

Resources
• Eclipse Collections Proposal

 https://projects.eclipse.org/proposals/eclipse-collections

• GS Collections on GitHub

https://github.com/goldmansachs/gs-collections

https://github.com/goldmansachs/gs-collections/wiki

https://github.com/goldmansachs/gs-collections-kata

• GS Collections Memory Benchmark
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf

• JavaOne 2014 – GS Collections and Java 8 Presentation
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx

• Parallel-lazy Performance: Java 8 vs Scala vs GS Collections

http://www.infoq.com/presentations/java-streams-scala-parallel-collections

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

https://projects.eclipse.org/proposals/eclipse-collections
https://projects.eclipse.org/proposals/eclipse-collections
https://projects.eclipse.org/proposals/eclipse-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/NYJUG_March_18_2013_GSCollections.pdf
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections

TECHNOLOGY

DIVISION

38

 Learn more at GS.com/Engineering

© 2015 Goldman Sachs. This presentation should not be relied upon or considered investment advice. Goldman Sachs does not warrant or guarantee to anyone the accuracy, completeness or efficacy of this

presentation, and recipients should not rely on it except at their own risk. This presentation may not be forwarded or disclosed except with this disclaimer intact.

