goldman

achs

Ecllpse Collections by Example

Christian Glencross

BUILD

Introductions — EclipseCon Europe 2015 o

. JavaOne 2014~M &0

. #_/_Hzé@ .‘ \ v
* tw32:GS Collections and Java 8: Functional, Fluent, Friendly, and Fun
w3 :Banking on OpenJDK: How Goldman Sachs Is Using and Contributing to OpenJDK

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

0|(|Illﬂll

al \\/hat 1Is GS Collections?

* QOpen source Java collections framework developed in
Goldman Sachs
— Inspired by Smalltalk Collections Framework
— In development since 2004
— Hosted on GitHub w/ Apache 2.0 License in January 2012
* github.com/goldmansachs/gs-collections
« GS Collections Kata
— Internal training developed in 2007
— Taught to > 2,000 GS Java developers

— Hosted on GitHub w/ Apache 2.0 License in January 2012
« github.com/goldmansachs/gs-collections-kata

https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata

oldman
achs

Trending positively

Spring Reactor includes GS Collections as a dependency

RELEASES
Reactor 1.1.0.RELEASE now available
RELEASES ﬂ JON BRISBIN MAY 06, 2014

The Reactor team is pleased to announce that some significant updates to the Reactor
framework are now available in the 1.1.0.RELEASE version of Reactor’s flexible, asynchronous,
fast data framework. This version includes numerous bug fixes and rewrites of key
components to make them faster and, maybe more importantly, more efficient in terms of
memory usage. Reactor 1.1 now includes the fantastic gs-collections library from Goldman
Sachs [1] which provides a very fluent API for dealing with maps and collections of all kinds. o4
Oct2014
quote from: https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available

Awesome Java

A curated list of awesome Java frameworks, libraries and software.

High Performance

Everything about high performance computation, from collections to specific libran

+1000

Agrona - Data structures and utility methods that are common in high-perform
Disruptor - Inter-thread messaging library.

fastutil - Fast and compact type-specific collections

GS Collections - Collection framework inspired by Smalltalk.
« HPPC - Primitive collections. [%00
Javolution - Library for real-time and embedded systems

+ JCTools - Concurrency tools currently missing from the JOK
Koloboke - Hash sets and hash maps

« Trove - Primitive collections.

Mov2014

) goldmansachs/gs-collections

A supplement or replacement for the Java Collections Framework.

Monthly Maven central downloads have risen since JavaOne 2014

Downloads Over the Last 12 Months For com.goldmansachs:gs-collections

Dec2014 Jan2015 Feb2015 Mar2015 Aprziis May2015 Jun2015 Jul2015 Aug2015 Sep2015

In the Top 300 Java GitHub projects based on number of stars

1. Choosing a Collection Library in Java

B rorks @ stars

News

150 B engneering datarank.com
2. Java performance tips
@ java
3. Large HashMap Overview: JDK, FastUtil,
100 Goldman Sachs, HPPC, Koloboke, Trove
avs
4. GS Collections by Example — Part 2
B www.infog.com
50 5. GS Collections by Example
www.infoq.com
6. Time — memory tradeoff with the example of Java
Maps

s — ¥

https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available
https://spring.io/blog/2014/05/06/reactor-1-1-0-release-now-available

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

What is Eclipse Collections? s

* Eclipse Collections 7.0 = eclipse
— Project @ Eclipse Foundation
— Feature set is the same as GS Collections 7.0
— Packages renamed
e com.gs -> org.eclipse
— Released under dual licenses

» Eclipse Public License 1.0
» Eclipse Distribution License 1.0 (BSD)

* Eclipse Collections is open for contributions!

— Drop by the Goldman Sachs booth in the EclipseCon exhibitor hall to find out more!

Eclipse Collections Features s

Eclipse Collections 7.0

YOu g
"‘ '“v Colle)

= Eager & Lazy, Serial & Parallel
= Memory efficient containers
= Primitive containers (all 8)

= |mmutable containers

= More container types

= More iteration patterns

Java 8 Streams
- Functional APIs
- Lazy only
- Single use
- Serial & Parallel
- Primitive streams

Mike Duigoy
Stuart Marks
Paul Sandoz
Don Raab
AND YOU!

(3 types) = “With” method patterns ¢ JavaOne
- Extensible “ ” s v
= “target” method patterns
Collectors

= Covariant return types

= Java 5+ compatible Eclipse Collections has Streams...

And much much more!

And you can contribute too!!!

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

oldman
Sachs

Size (Mb)

60

50

40

30

20

10

Comparing Sets

e=om=] DK HashSet

e GSC UnifiedSet

@m0 Trove
THashSet

Elements

oldman

gl Comparing Maps

45
40

emome |DK HashMap
35
30 UnifiedMap
25 e=c==Trove

THashMap

Size (Mb)

20

15
10
5
0
o Z o 3 2 S IS > & 9
%, %, 2, 2, 2, %, %, 2, 2, "%,
2] £ £ % % %)) K2 %,

Elements

oldman
Sachs

Size (Mb)

25

20

15

10

Why Primitive Collections?

e=om= DK ArraylList

IntArraylList

e=omeTrove
TIintArraylList

Elements

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

Oldﬂlﬂﬂ

M Hobson’s Choice Ve

 “A Hobson's choice is a free choice in which
only one option is actually offered.”

— Wikipedia

“You get what you get
and you don’t get upset!”

Oldﬂlﬂﬂ

pl Hobson's Choice - Iteration Patterns -«

* Lazy or Eager?
—Java Collections Framework = Eager

Assert.assertEquals(Integer.valueOf(1),
Collections.min(Lists.mutable.with(1, 2, 3)));

—Streams = Lazy

Assert.assertEquals(1,
Lists.mutable.with(1, 2, 3).stream().mapToInt(i -> i).min().getAsInt());

— Eclipse Collections = You choose

Assert.assertEquals(1l, IntLists.mutable.with(1, 2, 3).min());
Assert.assertEquals(1l, IntLists.mutable.with(1, 2, 3).asLazy().min());

Hobson’s Choice - Map

Eclipse Collections | JDK Collections

Bag Bag<T> Use Map<T, Integer or Long>
Multimap Multimap<K, V> Use Map<K, Collection<V>>
BiMap BiMap<K, V> Use two maps.

Partition Partitionlterable<T> Use Map<Boolean, Collection<T>>
Pair Pair<T1, T2> Use Map.Entry<T1, T2>

When your only tool is a Map, everything is either a key, a value or null.

Olﬂllldll

&l Hobson’s Choice - Primitives .

Primitive List Yes Boxed
Primitive Set Yes Boxed
Primitive Map Yes Boxed
Primitive Stack Yes Boxed
Primitive Bag Yes Map and Boxed

Primitive Lazy / Stream Yes (all 8 primitives) Int, Long, Double only

oldman

Ml Hobson's Choice - Parallel .

Stream<Address> addresses =

people.parallelStream()
.map(Person: :getAddress)

ParallellListIterable<Address> addresses =
people.asParallel(executor, batchSize)
.collect(Person: :getAddress)

http://www.infog.com/presentations/java-streams-scala-parallel-collections

http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
 Hobson's Choice
* Eclipse Collections Examples
 To Use or Reuse?
 More Features

oldman
achs

Eclipse Collections by Example o

pkg

Person

- firstName : String
- lastName : String

- Person(firstName : String, lastName : String)
+ getFirsthName() : String .

| et asamal] eiing public boolean hasPet(PetType petType)
+named(name : String) : boolean {

+hasPet(petType : PetType) : boolean —> return this.pets.anySatisfy(pet -> pet.getType().equals(petType));
+ getPets() : MutableList<Pet>

+ getPetTypes() : MutableBag<PetType> }

+ addPet(petType : PetType, name : String, age : int) : Person
+ getNumberOfPets() : int

1
<<crepte>>

1

<<enum=>
Pet PetType

& namg_. String + CAT : PetType
-age:int | 5| £DOG Peflype

+ Pet(type : PetType, name : String, age : int) + HAMSTER : PetType
+ getType() : PetType 1 1 + TURTLE : PetType

+ getName() : String +BIRD : PetType
+getAge() : int + SNAKE : PetType

Powered by Astah

Setup

private MutablelList<Person> people;

@Before
public void setUp() throws Exception
{
this.people = Lists.mutable.with(
new Person("Mary", "Smith").addPet(PetType.CAT, "Tabby", 2),
new Person("Bob", "Smith")
.addPet(PetType.CAT, "Dolly", 3)
.addPet(PetType.DOG, "Spot", 2),
new Person("Ted", "Smith").addPet(PetType.DOG, "Spike", 4),
new Person("Jake", "Snake").addPet(PetType.SNAKE, "Serpy", 1),
new Person("Barry", "Bird").addPet(PetType.BIRD, "Tweety", 2),
new Person("Terry", "Turtle").addPet(PetType.TURTLE, "Speedy", 1),
new Person("Harry", "Hamster")
.addPet (PetType.HAMSTER, "Fuzzy", 1)
.addPet (PetType.HAMSTER, "Wuzzy", 1)

)5

oldman

sl Do any people have cats? P

% boolean result =
_g this.people.stream().anyMatch(person -> person.hasPet(PetType.CAT));
(%]
o .anySatisfy(person -> person.hasPet(.));
a0
(©
v boolean resultMethodRef =
this.people.anySatisfyWith(Person::hasPet, PetType.CAT);
> .asLazy().anySatisfy(person -> person.hasPet(.));
S
—
(%)
©

boolean resultMethodRef =
this.people.asLazy().anySatisfyWith(Person: :hasPet, PetType.CAT);

oldman

il How many people have cats? =

% long result =
_g this.people.stream().filter(person -> person.hasPet(PetType.CAT)).count();
(%)
- .count(person -> person.hasPet(.CAT));
a0
(©
v int resultMethodRef =
this.people.countWith(Person: :hasPet, PetType.CAT);
> .asLazy().count(person -> person.hasPet(.CAT));
S
—
(%)
©

int resultMethodRef =
this.people.asLazy().countWith(Person::hasPet, PetType.CAT);

oldman

sl How does “count” stack up?

45 Debug &7 | il Servers

4 4 Thread [main] (Suspended (breakpoint at line 899 in PersonAndPetKataTestSPerson))

|= PersonfndPetKataTestSPerson.hasPet(PersonAndPetKataTestSPetType) line: 599 |
PersonAndPetkataTest.lambdaS15(PersonAndPetKataTestiPerson, PersonAndPetiataTestSPetType) line: not available
1597655940.accept(Object, Object) line: not available
IntemnalArraylterate.countWith (T[], int, Predicate2<? super T,? super P=, P] line: 640
FastList<T=.countWith(Predicate2<? super T,7 super P>, P) line: 1169
PersonAndPetKataTest.howManyPeopleHavelCats() line: 177

eager

45 Debug 22 il
PR Thread [rmain] (Suspended (breakpoint at line 639 in PersonAndPetkataTestSPerson))
= PersonAndPetKataTestSPerson hasPet(PersonAndPetKataTestSPetType) line: 639
PersonAndPetKataTest.lambdaS17 (PersonAndPetKataTestSPerson) line: 193 this.people.countWith (Person: :hasPet, PetType. CAT) 5
521081105 test{Object) line: not available

ReduceOpsid(ReduceOpsiReduceOp<T,R 5) evaluateSequential (PipelineHelper< T, Spliterator<P_IN>) line: 708
ReferencePipelineS5(AbstractPipeline<E_IN E_OUT,5>).evaluate(Terminal Op<E_OUT,R>) line: 234
ReferencePipeline$3(LongPipeline<E_IN>).reduce(long, LongBinaryOperater) line: 438
ReferencePipeline$5(LongPipeline<E IN>).sum() line: 396
ReferencePipeline$2(ReferencePipeline<P_IN,P_OUT>).count() line: 526
PersonAndPetkataTest.howManyPeopleHaveCatsUsingStreams() line: 193

PersonAndPetKataTestSPerson.hasPet(PersonAndPetiataTestSPetType) line: 639 |
PersonAndPetKataTest.lambda$16{PersonAndPetkataTestSPerson, PersonAndPetkataTestSPetType) line: not available
497358413, accept{Object, Object) line: not available

PredicatesiBindPredicate2 < T,P» accept(T) line: 1480

CountProcedure<T> value(T) line: 45

FastList<T=.each(Procedure<? super T>] line: 557

FastList< T (AbstractRichlterable=T>).forEach(Procedure<? super T>] line: 550
Iterate.forBach(lterable<T>, Procedure<? super T=) line: 120

LazylterableAdapter<T> .each(Procedure<? super T>) line: 50

LazylterableAdapter<T= (AbstractRichlterable«<T=) forkach(Procedure<? super T>) line: 550
LazylterableAdapter<T: (AbstractRichlterable<T»).count{Predicate«<? super T>) line: 447
LazylterableAdapter<T> (AbstractRichlterable=<T>).countWith(Predicate2 < 7 super T,7 super P>, P) line: 453
PersonAndPetKataTest. howManyP eopleHaveCats() line: 185

E ReferencePipeline$281 . accept(P_OUT) line: 174
Mutablelterator=T> (Tterator< E>) forEachRemaining(Consumer<7? super E») line: 116
(¢o) SpliteratorsSlteratorSpliterator<T> forEachRemaining(Consumer<? super T>) line: 1801
q) ReferencePipeline$5(AbstractPipeline<E_IN,E_OUT,S=).copylnto(Sink<P_IN=, Spliterator<P_IN=>] line: 512 7{4; Debug 7 | 47k Servers
| - ReferencePipelineS5(AbstractPipeline<E_IN,E_OUT, 5>)wrapAndCopylnto(S, Spliterator<P_IMN=>) line: 502 4 % Thread [main] (Suspended (breakpoint at line 639 in PersonAndPetKataTestSPerson))
" =

aslLazy

this.people.stream().filter(person -> person.hasPet(PetType.CAT)).count();

this.people.asLazy().countWith(Person::hasPet, PetType.CAT);

Who has cats? v

% List<Person> peopleWithCats =

_g this.people.stream().filter(person -> person.hasPet(PetType.CAT))

v .collect(Collectors.toList());

| -

[

o

v MutablelList<Person> peopleWithCatsMethodRef =
this.people.selectWith(Person::hasPet, PetType.CAT); //select: descriptive API

>

N

©

—

(%)

©

MutablelList<Person> peopleWithCatsMethodRef =
this.people.asLazy().selectWith(Person::hasPet, PetType.CAT).toList();

Who doesn't have cats” v

% List<Person> peopleWithoutCats = // not!

_g this.people.stream().filter(person -> !person.hasPet(PetType.CAT))

v .collect(Collectors.toList());

| -

[

o

v MutablelList<Person> peopleWithoutCatsMethodRef =
this.people.rejectWith(Person: :hasPet, PetType.CAT); //detect: descriptive AP

>

N

©

—

(%)

©

MutablelList<Person> peopleWithoutCatsMethodRef =
this.people.asLazy().rejectWith(Person::hasPet, PetType.CAT).toList();

oldman

Al Partition people with/without cats =

Map<Boolean, List<Person>> catsAndNoCats =
this.people.stream().collect(
Collectors.partitioningBy(person -> person.hasPet(PetType.CAT)));

stream

< > =
.partition(person -> person.hasPet(.));

PartitionMutableList<Person> catsAndNoCatsMethodRef =
this.people.partitionWith(Person::hasPet, PetType.CAT);

eager

// Partitionlterable supports getSelected() and getRejected()

< > =
.asLazy().partition(person -> person.hasPet(.));

aslLazy

PartitionIterable<Person> catsAndNoCatsMethodRef =
this.people.asLazy().partitionWith(Person::hasPet, PetType.CAT);

Get the names of Bob’s pets A

Person person =
this.people.stream()
.filter(each -> each.named("Bob Smith"))
.findFirst().get();

stream

Assert.assertEquals("Dolly & Spot",
person.getPets()
.stream()
.map(Pet::getName)
.collect(Collectors.joining(" & ")));

Person person =
this.people.detectWith(Person::named, "Bob Smith");

Assert.assertEquals("Dolly & Spot",
person.getPets()
.collect(Pet::getName)
.makeString(" & "));

eager

Get the set of all pet types A

Set<PetType> allPetTypes =

% this.people.stream()

_g .flatMap(person -> person.getPetTypes().stream())

n .collect(Collectors.toSet());

| -

gJo // copies and iterates twice
©

v

MutableSet<PetType> allPetTypesTarget =
this.people.flatCollect(Person: :getPetTypes, Sets.mutable.empty());

// Better performance with target collection

MutableSet<PetType> allPetTypes =
this.people.asLazy().flatCollect(Person::getPetTypes).toSet();

aslLazy

Group people by their last name =

Map<String, List<Person>> byLastName =
this.people.stream().collect(

c Collectors.groupingBy(Person::getLastName));
(©
_g Map<String, MutableBag<Person>> bylLastNameTargetBag =
v this.people.stream().collect(
Collectors.groupingBy(Person::getLastName,
Collectors.toCollection(Bags.mutable: :empty)));
// Interop with Eclipse Collections Bag
MutablelListMultimap<String, Person> bylLastName =
5 this.people.groupBy(Person::getLastName); // Multimap
(o)
©
v

MutableBagMultimap<String, Person> bylLastNameTargetBagMultimap =
this.people.groupBy(Person::getLastName, Multimaps.mutable.bag.empty());

// Native target collection handling

Get the age statistics of pets A

List<Integer> ageslList = this.people.stream()
.flatMap(person -> person.getPets().stream())
.map(Pet: :getAge)

% .collect(Collectors.toList());

) IntSummaryStatistics stats = agesList.stream().collect(Collectors.summarizingInt(i -> i));

)

@ Assert.assertEquals(stats.getMin(), agesList.stream().mapToInt(i -> i).min().getAsInt());
Assert.assertEquals(stats.getMax(), agesList.stream().mapToInt(i -> i).max().getAsInt());
Assert.assertEquals(stats.getSum(), agesList.stream().mapToInt(i -> i).sum());

IntList ageslList = this.people.asLazy() // Primitive collection type
.flatCollect(Person::getPets)
.collectInt(Pet::getAge) // collect method available for all 8 primitive types
> .toList();

:% IntSummaryStatistics stats = new IntSummaryStatistics();

- ageslList.each(stats::accept);

©

Assert.assertEquals(stats.getMin(), agesList.min()); // Native support for statistics APIs
Assert.assertEquals(stats.getMax(), agesList.max());
Assert.assertEquals(stats.getSum(), agesList.sum());

Counts by pet age Ve

Map<Integer, Long> counts = Collections.unmodifiableMap(// Unmodifiable => throws at runtime mutation
this.people.stream()
.flatMap(person -> person.getPets().stream())
.collect(Collectors.groupingBy(Pet: :getAge,
Collectors.counting())));

=
©
Q
| -
)
wn

Assert.assertEquals(Long.valueOf(4), counts.get(1l));
Assert.assertEquals(Long.valueOf(3), counts.get(2));
Assert.assertNull(counts.get(5));

Verify.assertThrows (UnsupportedOperationException.class, () -> counts.put(5, OL));

ImmutableIntBag counts =
this.people.asLazy()
.flatCollect(Person: :getPets)
.collectInt(Pet::getAge)
.toBag() // Bag native support
.toImmutable();

// Immutable type => no mutation APIs available

aslLazy

Assert.assertEquals(4, counts.occurrencesOf(1));
Assert.assertEquals(3, counts.occurrencesO0f(2)); o
Assert.assertEquals(©, counts.occurrencesOf(5)); // Bag returns 0 for non-existing occurrence

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

gﬂ""nﬂﬂ

al Use or Reuse? .
e Streams — like lterator

Stream<Integer> stream = Lists.mutable.with(1, 2, 3).stream();
Assert.assertEquals(1, stream.mapToInt(i -> i).min().getAsInt());
Assert.assertEquals(3, stream.mapToInt(i -> i).max().getAsInt()); //throws

java.lang.IllegalStateException: stream has already been operated upon or closed
at java.util.stream.AbstractPipeline.<init>(AbstractPipeline.java:203)
at java.util.stream.IntPipeline.<init>(IntPipeline.java:91)
at java.util.stream.IntPipeline$StatelessOp.<init>(IntPipeline.java:592)
at java.util.stream.ReferencePipeline$4.<init>(ReferencePipeline.java:204)
at java.util.stream.ReferencePipeline.mapToInt (ReferencePipeline.java:203)

* Lazylterable — Iterable

LazyIterable<Integer> lazy = Lists.mutable.with(1, 2, 3).asLazy();
Assert.assertEquals(1, lazy.collectInt(i -> i).min());
Assert.assertEquals(3, lazy.collectInt(i -> i).max());

Agenda

What is GS Collections?
 What is Eclipse Collections?
« JCF and EC Memory Comparisons
« Hobson’s Choice
+ Eclipse Collections Examples
 To Use or Reuse?
* More Features

oldman

al [\ore Features

« "as” methods (O(1) cost) return an adapter to an

existing collection
— asLazy, asUnmodifiable, asSynchronized, asParallel, asReversed

« “to” methods (O(n) cost) return a copy of the
collection

— tolmmutable, toList, toBag, toSortedMap, toArray, toReversed, etc.

« Convenient support for method references that
throw checked exceptions

eclipselList.each(Procedures.throwing(fileWriter: :write));

Resources

Eclipse Collections Proposal

https://projects.eclipse.org/proposals/eclipse-collections

« GS Collections on GitHub
https://github.com/goldmansachs/gs-collections
https://qgithub.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections-kata

 GS Collections Memory Benchmark
http://www.goldmansachs.com/gs-collections/presentations/GSC Memory Tests.pdf

« JavaOne 2014 — GS Collections and Java 8 Presentation
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29 JavaOne GSC.pptx

« Parallel-lazy Performance: Java 8 vs Scala vs GS Collections
http://www.infog.com/presentations/java-streams-scala-parallel-collections

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

https://projects.eclipse.org/proposals/eclipse-collections
https://projects.eclipse.org/proposals/eclipse-collections
https://projects.eclipse.org/proposals/eclipse-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections/wiki
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
https://github.com/goldmansachs/gs-collections-kata
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/GSC_Memory_Tests.pdf
http://www.goldmansachs.com/gs-collections/presentations/NYJUG_March_18_2013_GSCollections.pdf
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.goldmansachs.com/gs-collections/presentations/2014-09-29_JavaOne_GSC.pptx
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections
http://www.infoq.com/presentations/java-streams-scala-parallel-collections

i0ldman
Sachs

we

BUILD

Learn more at GS.com/Engineering

© 2015 Goldman Sachs. This presentation should not be relied upon or considered investment advice. Goldman Sachs does not warrant or guarantee to anyone the accuracy, completeness or efficacy of this
presentation, and recipients should not rely on it except at their own risk. This presentation may not be forwarded or disclosed except with this disclaimer intact.

