
Stephan Herrmann

Runtime Specialization

Java has never been so dynamic before

Simply Retail.

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 2

Two Camps

No Ceremony

Freedom

Flexibility

self modifying code

code modifies language

Strict Rules

compiler detects errors

Modularity

separate maintenance

Enforced Boundaries

blame assignment

prevention

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 3

Building Blocks

Boundary inside vs. outside

What I get

lots of existing building blocks to choose from

can compose them into my application

What I don't get

the right to open the box to make changes

Near miss

looks like a good match

but doesn't totally fit

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 4

Near Miss

Adjust requirements to the building block?

not competitive

Drop existing, build your own

expensive

Why do we have the problem?

technical impossibility

rules about boundaries

Envy those who don't have these rules

unlimited adaptation

unanticipated adaptation

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 5

Unanticipated Adaptation

Example:

StopWatch
time
+clear()
+start()
+stop()
tick()

WatchDisplay

+clear()
+start()
+stop()
update()

<

Missing Listener Infrastructure

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 6

Unanticipated Adaptation

Example:

StopWatch
time
+clear()
+start()
+stop()
tick()

WatchDisplay

+clear()
+start()
+stop()
update()

WANTED:
Method Call Interception

infra structure solution

language solution

Missing Listener Infrastructure

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 7

Unanticipated Adaptation

Method call interception in Object Teams:

„callin“ method binding

flavors: before, after, replace

StopWatch
time
+clear()
+start()
+stop()
tick()

WatchDisplay

+clear()
+start()
+stop()
update()

«playedBy»

update ← after tick

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 8

Demo: Stop Watch

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 9

Unanticipated Adaptation

Method call interception in Object Teams:

„callin“ method binding

flavors: before, after, replace

StopWatch
time
+clear()
+start()
+stop()
tick()

WatchDisplay

+clear()
+start()
+stop()
update()

Role
«playedBy»

Base

update ← after tick

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 10

The Role Playing Metaphor

Properties
Dynamism:
roles can come and go
(same base object)

Multiplicities:
one base can play several roles
(different/same role types)

playedBy Relationship

Person
name

Employee
salary

«playedBy»

name=”joe”

joe: Person
:Student

matr=0815

«base»

:Employee
salary=100

«base»

:Employee
salary=2000

«b
as

e»

Employee
salary

Role Base

Person
name

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 11

Summary Role Playing

playedBy

similar to inheritance

connects instances

callin

method call interception

callout

method forwarding

regardless of visibility

protected class WatchDisplay
extends JFrame
playedBy StopWatch {

 update <- after advance;

 void start() -> void start();
 void stop() -> void stop();
 void clear() -> void reset();

}

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 12

Good or Bad?

Moralists

City: boundaries must not be violated!

Fire site: boundaries are bad!

With power comes responsibility

Give developers all the means necessary
● For controlling roles
● In a modular way

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 13

Controlling Roles

Roles depend on context

contexts are reified as Teams

Each team instance can be (de)activated

active team instances contribute to the system state

dispatch considers system state

:Person
phoneNo
getPhoneNo()

 c :Company c :Company

name
hire(Person p)
name
hire(Person p)

:Employee
officePhoneNo
getPhoneNo ← getPhoneNo

«playedBy»

 getPhoneNo()

Off On

if (c.isActive())

 getPhoneNo()

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 14

Controlling Roles (2)

Globally active teams

part of the top-level system definition
● plain application: -Dot.teamconfig=...
● OT/Equinox: extension point aspectBinding

Scope of activation

per-thread

ALL_THREADS

while a certain code block is executing

...

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 15

Demo: Flight Booking

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 16

Integration – Technically

Weave hooks into the byte code

build time

load time

runtime

Execute on a standard JVM

application
● -javaagent:

OT/Equinox
● WeavingHook (OSGi standard)

Stephan Herrmann: Runtime Specialization - EclipseCon Europe 2015 # 17

Phases

Development of building blocks

variability model

extension points

Composition to an application

wire & configure building blocks

unanticipated adaptation

Deployment

more wiring & configuration

Operation

runtime adaptation
 → http://www.eclipse.org/objectteams

New in OT/JNew in OT/J

New in OT/J NeonNew in OT/J Neon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

