Testing Xtext Languages

Lorenzo Bettini

Dipartimento di Informatica, Universita di Torino, Italy
itemis GmbH, Zurich, Switzerland

EclipseCon Europe 2015

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 1/43

Wrong Workflow

e Modify the language
@ Start an Eclipse runtime instance

@ Manually check that “everything” works in the editor

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 2/43

http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Wrong Workflow

e Modify the language
@ Start an Eclipse runtime instance

@ Manually check that “everything” works in the editor

Write tests instead!

The example for this talk

http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 2/43

http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Example DSL: simple expressions

Write simple variables and expressions and generate Java code

File Edit Source Refactor Navigate Search Project Run Window Help

SR ViR HTO U H OSSP ® ey

B [y Resource | & Java

[# Package Explorer 2 a - Myexpds! 52 s
B % = int i = © // variable declaratio [

j=1+1// arithmetic exp

bool b = i <= 0 || false // c

¥ & myexpdslproj

and boolean expr

ML b // outputs the value to the screen B
X string s = "this is b: " + b // string concatenation
¥ (& src-gen b & (j < i) // this should be false .
v 8 expressions "is A<b 2"+ [("A" < "b")
v [1) Myjava B
YO My [Myjava 82 .
@ evall) : voi 7 package expressions;

o
1 =
@SuppressWarnings("all")
public class My {
public void eval() {

int i =0;

int j = (i+1);

boolean b = ((i <= 0) || false);

System.out.println("" + b);

string s = (“"this is b: " + b);

System.out.println("" + (b && (j < 1)));

System.out.println("" + ("is A< b ? " + ("A".compareTo("b") < @)))

» 5 JRE System Library [Jav

My.expds| - myexpdslprojsrc

renzo Betti

Xtext Languages EclipseCon Europe 2015 3/43

Initial Grammar

grammar org.eclipsecon.expdsl.Expressions with org.eclipse.xtext.common.Terminals

generate expressions "http://www.eclipsecon.org/expdsl/Expressions"

ExpressionsModel:
elements += AbstractElement*;

AbstractElement:
Variable | Expression ;

Variable:
declaredType=Type name=ID '=' expression=Expression;

Type:
{IntType} 'int' |
{BoolType} 'bool';

Expression:
{IntConstant} value=INT |
{StringConstant} value=STRING |
{BoolConstant} value=('true'|'false') |
{variableRef} variable=[Variable];

Lorenzo Bettini Testing Xtext Languages

EclipseCon Europe 2015 4/43

Initial Problems: “left recursion”

{IntConstant} value=INT |
{StringConstant} value=STRING |
{BoolConstant} value=("true'|'false’) |
{VvariableRef} variable=[Variable] |

[x] {Plus} left=Expression '+' right=Expression

g Problems &

2 errors, 0 warnings, 0 others

Description

¥ @ Errors (2 items)

@ The rule 'Expression’ is left recursive.

@ This rule call is part of a left recursive call graph

o Apply Left Factoring technique
@ But let's start testing right away!
@ To check that we get associativity/priority right

Lorenzo Bett Testing Xtext Languages EclipseCon Europe 2015 5/43

Projects Structure

o Xtext already generates a testing project
e With injector providers (headless and Ul tests)

F3 Package Explorer &2 =2 Plug-ins =]
b [org.eclipsecon.expds| [ece
¥ (5 org.eclipsecon.expdsl.tests |

& src

¥ (& src-gen
* &8 org.eclipsecon.expds|
» [4] ExpressionsinjectorProvider.java

_* [4] ExpressionsUilnjectorProvider.java

= xtend-gen

b @ |RE System Library [):
» @ Plug-in Dependencies
b & META-INF
i build. properties
j org.eclipsecon.expdsl.tests.launch

» (5 org.eclipsecon.expdsl.ui [ecefra

Lorenzo Bettini Testing Xtext Languages

/

injector providers

launch configuration

EclipseCon Europe 2015

6/43

Junit tests

@ Most parts can be tested as Junit tests (no Ul required)
@ This is much faster!

[0 Problems ‘2] Target Platform State E) Console |gu Junit 2
Finished after 1.184 seconds

Runs: 17/17 B Errors: 0

g’jtestVamab\eReference (0.230 5)
g'—_.ltestCDmparlson (0.004 s}

£l testNot (0.005 s)

gE] testPlusWithParenthesis (0.004 s)

EEl testAndOr (0.004 s)

geltestMinus (0.004 s)

gl testPlus (0.002 s)
g'—_ltEstEDoleanCDnstantExpressmn (0.003 s)
¢l testVariableExpression (0.002 s)

gEl testPrecedences (0.005 s)

gel testPlusMulPrecedence (0.002 s)

el testEqualityAndComparison (0.003 s)
&l testParenthesis (0.002 s)

£l testNotWithParentheses (0.002 s}

gE testMulOrDiv (0.004 s)
g'—;ltestStrmgConstantExpresswon (0.006 s)
el testSimpleExpression (0.002 s)

renzo Bettini Testing Xtext La EclipseCon Europe 2015

Typical TestCase (Xtend

@ Run with XtextRunner
@ InjectWith the generated injector provider

@ Inject Xtext testing utility classes

package org.eclipsecon.expdsl.tests
import static extension org.junit.Assert.*

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(ExpressionsInjectorProvider))
class ExpressionsParserTest {

@Inject extension ParseHelper<ExpressionsModel>
@Inject extension ValidationTestHelper

@Test
def void testSimpleExpression() {
"10".parse.assertNoErrors

}

Lorenzo Bett Testing Xtext Languages

EclipseCon Europe 2015

8/43

Testing the Parser

@ Tests that the program is parsed without syntax errors
@ Test that the AST is created as expected:

e expected associativity
e expected operator precedence

@ ParseHelper: parses a string and returns the AST

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 9/43

Testing the Parser

@ Tests that the program is parsed without syntax errors
@ Test that the AST is created as expected:

e expected associativity
e expected operator precedence

@ ParseHelper: parses a string and returns the AST

Additional Benefits

o After parsing, the “real” language developer's job starts:
o Validate the AST, generate code, etc.
@ So it's better that the AST is created the way you expect it

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 9/43

Testing the Parser

@ Given the AST we create a string representation that
highlights precedence/associativity

@ Check that it is as expected

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 10/43

Testing the Parser

@ Given the AST we create a string representation that
highlights precedence/associativity

@ Check that it is as expected

def String stringRepr(Expression e) {
switch (e) {
Plus: "(" + e.left.stringRepr+ " + " + e.right.stringRepr + ")"
// other cases (omissis)
Not: "!(" + e.expression.stringRepr ")"
IntConstant: "" + e.value

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015

10/43

Testing the Parser

@Test def void testPlusMulPrecedence() {
"10 + 5 * 2 - 5/ 1".assertRepr("((10 + (5 * 2)) - (5 / 1)")
}
@Test def void testComparison() {
"10 <= 5 < 2 > 5".assertReprNoValidation("(((10 <= 5) < 2) > 5)")
}
@Test def void testEqualityAndComparison() {
"true == 5 <= 2".assertRepr("(true == (5 <= 2))")
}
@Test def void testAndOr() {
"true || false & 1 < 0".assertRepr("(true || (false && (1 < 0)))")
}

def assertRepr(CharSequence input, CharSequence expected) {
input.parse => [
expected.assertEquals(
(elements. last as Expression).stringRepr

)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 20

Validation

@ We want to avoid forward variable references

int 1 = j // This should be an error!
int j =0

Lorenzo Bett Testing Xtext Languages EclipseCon Europe 2

Validation

@ We want to avoid forward variable references

int 1 = j // This should be an error!
int j =0

@ Let's write a utility class, ExpressionsModelUtils, that

e Given any element
e returns the list of variables declared before that element
o (we have to walk in the AST model)

@ Let's test such class separately

@ i.e., before writing the validator itself

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 12/43

Testing Forward References

@RunWith(typeof (XtextRunner))
@Injectwith(typeof (ExpressionsInjectorProvider))
class ExpressionsModelUtilTest {

@Inject extension ParseHelper<ExpressionsModel>
@Inject extension ExpressionsModelutil|

@Test def void variablesBeforevariable() {

true /7 18)
inti=#8 /7 (1)
i+ 10 /7 (2)
int j =1 //(3)
i+] 1/ 14)
t't.parse => [

assertVariablesDefinedBefore(o,
assertVariablesDefinedBefore(1,
assertVariablesDefinedBefore(2z,
assertVariablesDefinedBefore(3,
assertVariablesDefinedBefore(4,

}
def void assertVariablesDefinedBefore(ExpressionsModel model,
int elemIndex, CharSequence expectedvars) {
expectedVars.assertEquals(
model.elements.get(elemIndex) .variablesDefinedBefore.
map[name].join(",")
}

lipseCon Europe 13/43

Testing Xtext Languages

Let's “code coverage” right away (Eclemma/Jacoco

Create, manage, and run configurations
Coverage of a JUnit test run |

X B3~ Name: org.eclipsecon.expdsl.tests

€ ||| E Test | @ Coverage ™ = Arguments | ¥; Classpath | @ JRE | 52 Source| 2
» £ Eclipse Application Analysis scope:
[T Java Application
¥ Ju Junit

& org.eclipsecon.expdsl - src

(® org.eclipsecon.expds| - src-gen

org.eclipsecon.expds! - xtend-gen

org.eclipsecon.expdsl.tests - src

org.eclipsecon.expdsl.tests - src-gen

(® org.eclipsecon.expdsl.tests - xtend-gen

& org.eclipsecon.expdsl.tests - com.google.guava_15.0.0.v201403281430.j
org.eclipsecon.expdsl.tests - com.google.inject_3.0.0.v201312141243 jar
org.eclipsecon.expdsl.tests - javax.annotation_1.2.0.v201401042248 jar
org.eclipsecon.expdsl.tests - javax.inject_1.0.0.v20091030.jar
org.eclipsecon.expdsl.tests - junit.jar

org.eclipsecon.expdsl.tests - org.antirruntime_3.2.0.v201101311130.jar
org.eclipsecon.expdsl.tests - org.apache.commons.cli_1.2.0.v201404270%
org.eclipsecon.expdsl.tests - org.apache.log4j_1.2.15.v201012070815.jar

Ju org.example.expressions.tests

» Ju JUnit Plug-in Test
@ 05Gi Framework
& SWTBot Test

[FRrar]

£ 21 B B 21 By B B

Select Al Deselect All

Filter matched 11 of 11 items

| Coverage | Close

Xtext Languages pseCon Europe 20 14/43

Let's “code coverage” right away (Eclemma/Jacoco

e Even if it's generated Java code (by Xtend)

1) Expr

Utiljava 5%

@s

pul

pr Util.xtend

Utiestxtend B G

uppresswarnings("all")

blic class ExpressionsModelUtil {

public List<variable> varlahlEsDefmedBefurE(fxnal AbstractElement e) {
List<variable> xblockexpression = null

Expressionshodel container0fType = EcoreUtil2,<Expressionsiodel>getContaine
final EList<AbstractElement> allElements = containerOfType.getElements();
final Functionl<AbstractElement, Boolean> function = mew Functionl<Abstract
@0verride
public Boolean apply(final AbstractElement it) {
return Boolean,value0f(EcoreUtil.isAncestor(it, €));
}

final AbstractElement containingElement = TterableExtensions.<AbstractElemen
int index0f = allElements.index0f(containingElement);
List<AbstractElement> subList = allElements.subList(e, indexof);

_xblockexpression = EcoreUtil2.<Variablestypeselect(_subList, Variable.class

return _xblockexpression;

[Coverage 3

org.eclipsecon. expdsl.tests (jun 18, 2015 3:40:06 PM)

Element Coverage Covered Instructio | Missed Instruction
¥ & org.eclipsecon. expds! 1000 % 60} 0
¥ (@ xtend-gen 1000 % 60 0
> i org.eclipsecon.expdsl.scoping 100.0 % EH 0

~ £ org.eclipsecon.expdsl.uti 1000 % 54} 0

¥ [3] ExpressionsModelutil java 1000 % 54 0

v @ ExpressionsModelUtil 1000 % 39] 0

* @ variablesDefinedBefore(AbstractElement) | EH100.0 % 36} 0

» i org.eclipsecon.expdsl.validation 100.0 % 3 o

Testing Xtext Languages

clipseCon Europe 2

15/43

Now we can write the Validator

class ExpressionsValidator extends AbstractExpressionsValidator {
public static val FORWARD REFERENCE = "org.eclipsecon.expdsl.ForwardReference”;
@Inject extension ExpressionsModelUtil

@Check
def void checkForwardReference(VariableRef varRef) {
val variable = varRef.getVariable()
if (!varRef.variablesDefinedBefore.contains(variable)) {
error("variable forward reference not allowed: '"
+ variable.name + """,
VARIABLE REF__VARIABLE, // where to put the error marker
FORWARD REFERENCE

orenzo Bettini Testing Xtext Languages EclipseCon Europe 201 16/43

Testing the Validator

@ And now we test that such error is correctly generated
o On the expected element of the program

@ We use the utility class ValidationTestHelper
@ We can do that headlessly:
e There's no need to run the workbench

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 17/43

Testing the Validator

@ We use the utility class ValidationTestHelper

Lorenzo Bettini

@RunwWith(typeof (XtextRunner))
@InjectWith(typeof(ExpressionsInjectorProvider))
class ExpressionsValidatorTest ﬂ

Inject extension ParseHelper<ExpressionsModel=

@I
dInject extension ValidationTestHelper

@Test
def void testForwardReference() {
val input = '*’
int i = j
int j = 10

input.parse.asserterror(
// type of the element with error
ExpressionsPackage.Literals.VARIABLE REF,
// error code
ExpressionsValidator.FORWARD REFERENCE,
input.index0f("j"}), // offset of expected error
1, // length of the region with error
// expected error message
"variable forward reference not allowed: 'j'"

Testing Xtext Languages EclipseCon Europe 20

Type System & Type Checking

@ Check that expressions are correct with respect to types

e subexpressions of a multiplication are integer

e in a variable declaration, initialization expression can be
assigned to the variable declared type

o ..

Implement the type system and test it

Implement type checking in the validator, using the type
system, and test it

@ (not shown here: please have a look at the code)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 19/43

Code Generation

o For each expdsl file we generate:

o A Java class with the same name of the expdsl file in the
package expressions
e With an eval() method
o For each variable declaration we generate a Java variable
declaration
@ For each standalone expression we generate a
System.out.println

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 20/43

Testing the Compiler

@ Add the dependency org.eclipse.xtext.xbase. junit
@ Add the dependency org.eclipse. jdt.core
@ Use CompilationTestHelper

@ Small pitfall: use a custom injector provider for missing Google
Guice bindings expected by Xbase classes (see the code)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 21/43

Testing the generated Java code is as expected

Lorenzo Bettini

@RunwWith(typeof (XtextRunner)
@Injectwith(typeof(ExpressionsInjectorProviderCustom))
class ExpressionsCompilerTest {

@Rule @Inject public TemporaryFolder temporaryFolder
@Inject extension CompilationTestHelper
@Inject extension ReflectExtensions

@Test def void testGeneratedlavaCode() {

int 1 =
int j=1+1
i=ae|] (j <1i)

''* assertCompilesTo(

]
i

package expressions;

@SuppressWarnings{"all")
public class MyFile {
public void eval() {

int 1 = 8;
int j = (1 +1);
System.out.println("" + ({i > 8) || (j < i)));
H
H
)
}

Testing Xtext Languages

EclipseCon Europe 20

Testing the generated Java code is correct Java code

@Test def void testCorrectlavaCode() {

inti=290
int j =1i+1
bool b =1 <=0
b

string s = "this is b: " + b

b Il (j<i)

§ < "a"

't compile]
// this will compile the generated Java code
compiledClass

@ The test will fail if the generated Java code contains Java
errors.

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 23/43

Testing the generated Java executes correctly

Lorenzo Bettini

@rest def veoid testExecutelavaCode() {

inti=1#8
int j=1i+1
bool b =1 <=8
b // this should be true
string s = "this is b: " + b
b & (j < i) // this should be false
"is A<b?" + ("A" < "b")
*r L compilel
val out = new ByteArrayOutputStream()
val backup = System.out
System.setOut (new PrintStream(out))
try {
// instantiate the compiled Java class
val obj = it.compiledClass.newInstance
obj.invoke('eval"®
} finally {
System.setOut (backup)

true

false

is A< Db 7 true

*'' . toString.assertEquals(out.toString)

Testing Xtext Languages

EclipseCon Europe 20

Testing Ul

@ The content assist
@ The integration with the workbench

@ The outline

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 25/43

Testing the Content Assist

@ Add the dependency org.eclipse.xtext.common.types.ui
@ Use as base class

o.e.x.xbase.junit.ui.AbstractContentAssistTest

@ Inject your test case with ExpressionsUiInjectorProvider

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015

26/43

Testing the Content Assist

(]

Add the dependency org.eclipse.xtext.common.types.ui

Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest

Inject your test case with ExpressionsUiInjectorProvider

This must be run as a “Junit Plug-in Test”
Set memory arguments in the launch configuration:
-Xms256m -Xmx1024m -XX:MaxPermSize=256m

Lorenzo Bettini

Testing Xtext Languages EclipseCon Europe 2015

Testing the Content Assist

@ Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 27/43

Testing the Content Assist

Lorenzo Bett

@ Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest

@RunWith (typeof (XtextRunner))
@InjectWith(typeof (ExpressionsUiInjectorProvider))
class ExpressionsContentAssistTest extends AbstractContentAssistTest ﬂ

@Test
def void testVariableReference() {

newBuilder.append("int 1 = 18 1+").assertProposal('i")
}

@Test
def void testProposals() {
newBuilder.append("int 1 = 18 1+").
assertText('!', '"value"', *(', '+', '1', 'false', 'i', 'true’

Testing Xtext Languages EclipseCon Europe 2

Tweaking the Content Assist

gE| *My.expdsl 23
string s = ""
int i =0 *|

@ intj=1

w

"Value" - STRING
1 - Value

= |

=]

1= false

=true

@ Don't propose forward references (e.g., i and j)

@ Don't propose references of the wrong type (e.g., s)

Lorenzo Bettini

Testing Xtext Languages

EclipseCon Europe 2015

28/43

Testing the modified Content Assist

Lorenzo Bettini

@rest

def void testForwardVariableReference() {
// specify cursor position with <|>
newBuilder.append("<|> int i = 18 ").assertNoProposalAtCursor({"i")
// 1 must not be present in proposals, before its definition

}

@rest
def void testForwardVariableReferencez() {
// specify the cursor character explicitly
newBuilder.append("int k=8 int j=1 1+ int i =18 ").
Iy -
assertTextAtCursorPosition("+", 1,
r,otewaluett, (v, '+, '1v, tfalser, ‘i, k', ‘true’
// 1 must not be present in proposals, before its definition
/f but j and k must be there
}

@Test
def void testProposeOnlyIntegerVariablesInMultiplication() {
newBuilder.append("string s='a' int k=0 int j=1 1* ").
i -

assertTextAtCursorPosition("*", 1,
“1t, 'value"', (', '*', '1', ‘false’, 'j', 'k', 'true’
// s must not be present in proposals: it has the wrong type

Testing Xtext Languages EclipseCon Europe 20

Testing the Workbench Integration

@ How is my DSL integrated with the workbench?

@ Does a correct file lead to the generation of a Java file into
src-gen folder?

@ Does everything compile fine?
o We use
@ 0.e.x.junit4.ui.AbstractWorkbenchTest as the base
class
o utility methods from JavaProjectSetupUtil and
IResourcesSetupUtil

e methods for accessing programmatically the workbench (from
0.e.core. resources)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015

30/43

Testing the Workbench Integration

import static org.eclipse.xtext.junit4.ui.util.JavaProjectSetupUtil.+*
import static extension org.eclipse.xtext.junit4.ui.util.IResourcesSetupUtil.*

class ExpressionsWorkbenchIntegrationTest extends AbstractWorkbenchTest {
val TEST_PROJECT = "mytestproject"”

@Before
override void setUp() {
super.setUp
createjavaProject (TEST_PROJECT) => [
project.addNature (XtextProjectHelper.NATURE ID)
1
}

def void checkProgram(String contents, int expectedErrors) {
createFile(TEST PROJECT + "/src/test.expdsl”, contents)
waltForBuild();
val markers = root.findMarkers(IMarker.PROBLEM, true, IResource.DEPTH INFINITE)
assertequals(expectedErrors, markers.size)

i

@Test
def void testvalidProgram() {
checkProgram("int 1 = ", 0)

}

@Test
def void testNotvalidProgram() {
checkProgram("foo", 1) // expect one error: unresolved variable reference

renzo Bettini Testing Xtext Languages ipseCon Europe 2!

31/43

Outline

= My.expds| 52 = B g=outline

int i = @ // variable declarations
Z int j=1[1 // arithmetic expressions

bool b = i <= 0 || false // comparisons and b
b // outputs the value to the screen
string s = "this is b: " + b // string concat

b & (j < i) // this should be false
vis Aeb 7"+ ["A" < "b")

renzo Bettini Xtext Languages ipseCon Europe 2!

Outline

My.expds| £ = B g=outline
= 0 // variable declarations

Z int j=1[1 // arithmetic expressions

bool b = i <= 0 || false // comparisons and b

b // outputs the value to the screen

string s = "this is b: " + b // string concat

b & (j < i) // this should be false

"is A< b 7"+ ("A" < "b")

Let's customize it like that

|Z My.expdsl 23 = 0 8= Outline 52
i =0 // variable declarations

ZF intfl=1+1// arithmetic expressions

bool b = i <= 0 || false // comparisons and b

b // outputs the value to the screen

string s = "this is b: " + b // string concat

b & (j < i) // this should be false

"is A<b 7"+ ("A" < "b")

g

expression
string s

expression
= expression

renzo Bettini Xtext Languages ipseCon Europe 2!

Testing the Outline

See the code for AbstractOutlineWorkbenchTest

@RunWith(typeof(XtextRunner))
@Injectwith(typeof(ExpressionsUiInjectorProvider))
class ExpressionsOutlineTest extends AbstractOutlineWorkbenchTest {|

override protected getEditorId() {
ExpressionsActivator.0RG_ECLIPSECON EXPDSL EXPRESSIONS

@Test
def void testOutlineOfExpDslFile() {

inti=a
string s = "a"
s+ 1
bool b = false
"' assertAlllabels(

test

int i

string s

expression

bool b

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2

Required Time for Junit tests

[# Package Explorer | gu Junit 52 | % Plug-ins 2 4l B @ E - = =0
Finished after 2.244 seconds

Runs: 7272 B Errors: 0 B Failures: 0

b i org.eclipsecon.expdsl.tests.ExpressionsTypeConformanceComputerTest [Runner: |Unit 4] (0.317 s)
Tm org.eclipsecon.expdsl.tests. ExpressionsCompilerTest [Runner: JUnit 4] (0.919 s)
Fii] org.eclipsecon.expdsl.tests.ExpressionsModelUtilTest [Runner: |Unit 4] (0.018 s)
fi org.eclipsecon.expdsl.tests. ExpressionsParserTest [Runner: |Unit 4] (0.051 s)

Fiij org.eclipsecon.expdsl.tests.ExpressionsSmokeTest [Runner: |Unit 4] (0.002 s)

Fii] org.eclipsecon.expdsl.tests.ExpressionsTypeProviderTest [Runner: |Unit 4] (0.074 s)
fii1 org.eclipsecon.expdsl.tests.ExpressionsTypeUtilsTest [Runner: JUnit 41 (0.001 s)

fil org.eclipsecon.expdsl.tests.ExpressionsWalidatorTest [Runner: |Unit 41 (0.024 s)

¥ vV ¥V ¥ ¥V V¥V

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 34/43

Required Time for Junit Plug-in tests

[# Package Explorer |gu Junit 32 | & Plug-ins 2 &1 B EH oy ¥ =
g P 4] =% Plug [
Finished after 17.081 seconds
Runs: 8/8 B Errors: 0 B Failures: 0
P g org.eclipsecon.expdsl.ui.tests.ExpressionsWorkbenchintegrationTest [Runner: |Unit 4] (12.939 s)
¥ g org.eclipsecon.expdsl.ui.tests.ExpressionsContentAssistTest [Runner: |Unit 4

® i org.eclipsecon.expdsl.ui.tests.ExpressionsOutlineTest [Runner: |Unit 4] (3.791

Testing Xtext Languages

lipseCon Europe

35/43

Headless Build - No Ul

-org.eclipse.tycho</groupId>
Id>tycho-surefire pLuan fartifactl
S{tvcho version}< sion>

re-use the configuration for arglLine
jacoco rﬁelT --=
ine>${tycho.testArgLine} ${memoryArgs}</argLine>
aes>
lude>**/expdsl/tests/*Test. java</include>
</includes
</configuration=

>test</goal>

orenzo Bettini Testing Xtext Languages EclipseCon Europe

Headless Build - No Ul

] i>org.eclipse. tycho /group
l_ru tId>tycho-surefire pLuan
-S{tvcho version}- sion>

-.L"L’.\.'._.' >
no UL --3
>default-test</id=>

5 >1ntegrdtlnn test</phase>

re-use the contliguration for arglLine

r jacoco agent -->
"'eﬁs{tycho testArgLine} ${memoryArgs}</argLine>
udes>

clude>**/expdsl/tests/*Test. java</include>

Or use maven-surefire-plugin if you experience problems with
the classloader.

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2

Headless Build - Ul

<id>TychoSurefirePluginUiTest</1
<phase>integration-test</phase>
<Contliguration>

s>true</uselIHarnesss>
UIThread>true</useUIThread=
ine=%{tycho.testArgLine} ${memoryArgs}</argLine=
ides>
ide>**/expdsl/ui/tests/*Test.java</include>
fincludes>

iguration>

<goal>test</goal>
</goal
ecution>

EclipseCon Europe

Testing Xtext Languages

orenzo Bettini

Testing other aspects

@ If some aspects are not covered by Xtext testing framework

@ you can have a look at Xtext sources

@ and get some inspiration...
o This is what | did for the outline tests

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015

Other Testing Frameworks

e Xpect: http://www.xpect-tests.org
o SWTBot, RCP Testing Tool, Jubula for functional tests

ana Java - org, i Pect.iests) sre/org/ 1ests testl.dmodel xt - Eclipse Platform
. W e QR Gei(™ T T Q, Guick Access ' Resource @Java 45D
18 Package Explorer g JUnit £ a® 2|9 + =0 testl.dmodel.xt 53 =o

/% KPECT_SETUP org.domainmodel.tests.validotion.DMVolidationTest END_SETUP *+/

Finished after 1.247 seconds

funs: 212 @ Emors: 0 B s 0

uroged
& with o lowercase” et "Propertyl”

/7 ¥PEET warnings

¥ fijorg.domainmage. tests.validation. DMvalidatonTes:
Fropertyl : String

¥ EiJtest1 dmodel.xt

t valid =
ranecus i

put '%' expecting '}'T ot "K"

= Failure Trace

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 39/43

http://www.xpect-tests.org

Use Cl, e.g., Jenkins

\@ Jen @ LorenzoBettini | log out

2

Jenkins Xtext xtext-ecefrance-example-gerrit-t EFRESH

Back to Dashboard Maven project xtext-ecefrance-example-gerrit-tycho

O Status
(add description

= Changes
;

& Workspace Test Result Trend
{2) Build Now Ewm@ga:e 04
 Delete Maven project - @
. Configure —" Recent Changes g%
= 3 %0
| Modules 20
Latest Test Result (no failures) g
I3 Coverage Trend
10
i
BTG5 trend = Latest Test Resllt (o failures) FoEOF OF F R % ¥ ¥ 4 5 F F F O OF W
. ust show failures) enlarge
Q@ #17 Jun 20 28161 Code Coverage Trend
Q #16 Jun 20, £ 29151 Latest Aqgregated Test 5007
Result (no tests)
@ =0 sun 20, g 20141 400
@ #4 §zo130 i 00
Permalinks ineCovered
@3 20121 —ii
£ + Lestbuld (#17).1dey18hrago > finettissed
@ #2 18, 2018 o112 + Laststable buld (#17) 1day 18hr
ago
@ Jon 19, 2015722 M o114 + Lot suocessful buld (#17). 1 day 18
hrago £ 0% % % 2 fg 3 8 3
@10 o £ 20101 + Last unstable build (#8). 2 days 13 hr F 5 F 3
ago enlarge
@ " 0092 + Last unsuccessful bulld (6). 2 days
15hr ago
#3 Jun 19, 2015 6:28 PM ‘ 2909.1
Xtext Languages EclipseCon Europe 20 40/43

JaCoCo Coverage Report

[loounions jacoco. exec hinany coverage fie

Overall Coverage Summary

name Instruction branch complexity line
100% 100% 100% 100%

T
all ciasses. M:0C: 1841 M:0C:78 M:0C: 103 M:0C:498

Coverage Breakdown by Package

name instruction branch ‘complexity line
M:0C: 160 M:0C:0 M:0C:3 M:0C:54
org eclipsecon expdsl expressions N
100% 0% 100% 100%
M:0C: 898 M:0C:30 M:0C:36 M:0C: 253
org eclipsecon expds! generator ,
100% 100% 100% 100%
m:0c:3 M:0C:0 m:oc:1 m:0c:1
org ecipsecon expdsl
ra.ecls 100% 100% 100%
M:0C:517 M:0C: 36 M:0C:39 M:0C: 126
org ecipsecon expdsL.
. 100% 100% 100% 100%
m:0C:02 M0Ci4 M:0C:6 m:0C: 19
org.edipsecon expdsl.ui contentassis
A 100% 100% 100% 100%
M:0C:38 M:0C:0 M:0C:4 m:0c:9
org.eclipsecon.expdsl uilabeling N N
R 100% 0% 100% 100%
M:0c:7 M:0C:0 M:0C:3 m:oc:3
org.edlipsecon expdsl.uioutin . . X
E— 100% 0% 100% 100%
. M:0C:3 M:0Ci0 M0C:1 M:0C:1
g ecipsecon.expdsluig
org eclipsecon expdsl.ul quickfix T00% o o0 T00%
M:0C:54 M:0Ci0 M:0C:4 M:0C: 12
g ecipsecon expdslu .
cra.ecipsecon xposlull 100% 0% 100% 100%
M:0C:69 M0C:8 M:0C:6 M:0C: 20
g ecl expdsl validat
org eclipsecon expdsl validaton T00% o0% oo To0%

method
100%
M:0C:64

method

M:0C:4

M0C:3

M:0C:4

M:0C:2

clipseCon Europe 20

41/43

..or Travis

.travis.yml

sudo: false
language: java
jdk: oraclejdk?
cache:
directories:
- $HOME/.m2
env: DISPLAY=:99.0

install: true

before_script:
- sh -e Jetc/init.d/xvfb start

script:
- export
- mvn -f org.eclipsecon.expdsl.parent/pom.xml clean verify|

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 42/43

Small Advertising O:-

http://bit.ly/ids50

@ An entire chapter on testing

Implementing Domain-Specific
Languages with Xtext and Xtend

conmanen sens PACKT

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-
http://bit.ly/ids50
@ An entire chapter on testing

Discount codes:

e IDS50 - 50% ebook
@ IDS20 - 20% printed book

Implementing Domain-Specific
Languages with Xtext and Xtend

conmanen sens PACKT

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-
http://bit.ly/ids50
@ An entire chapter on testing

Discount codes:

e IDS50 - 50% ebook
@ IDS20 - 20% printed book

Implementing Domain-Specific
Languages with Xtext and Xtend

conmanen sens PACKT

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-

http://bit.ly/ids50

@ An entire chapter on testing

Discount codes:

e IDS50 - 50% ebook
@ IDS20 - 20% printed book

Please evaluate this session

Implementing Domain-Specific con .

Languages with Xtext and Xtend

conmanen sens PACKT e

Thanks! and Questions?

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

