
Testing Xtext Languages

Lorenzo Bettini

Dipartimento di Informatica, Università di Torino, Italy
itemis GmbH, Zurich, Switzerland

EclipseCon Europe 2015

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 1/43

Wrong Workflow

Modify the language
Start an Eclipse runtime instance
Manually check that “everything” works in the editor

Write tests instead!

The example for this talk
http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 2/43

http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Wrong Workflow

Modify the language
Start an Eclipse runtime instance
Manually check that “everything” works in the editor

Write tests instead!

The example for this talk
http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 2/43

http://github.com/LorenzoBettini/ecefrance2015-xtext-example

Example DSL: simple expressions
Write simple variables and expressions and generate Java code

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 3/43

Initial Grammar

grammar org.eclipsecon.expdsl.Expressions with org.eclipse.xtext.common.Terminals

generate expressions "http://www.eclipsecon.org/expdsl/Expressions"

ExpressionsModel:
elements += AbstractElement*;

AbstractElement:
Variable | Expression ;

Variable:
declaredType=Type name=ID '=' expression=Expression;

Type:
{IntType} 'int' |
{BoolType} 'bool';

Expression:
{IntConstant} value=INT |
{StringConstant} value=STRING |
{BoolConstant} value=('true'|'false') |
{VariableRef} variable=[Variable];

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 4/43

Initial Problems: “left recursion”

Solution
Apply Left Factoring technique
But let’s start testing right away!
To check that we get associativity/priority right

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 5/43

Projects Structure

Xtext already generates a testing project
With injector providers (headless and UI tests)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 6/43

Junit tests

Most parts can be tested as Junit tests (no UI required)
This is much faster!

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 7/43

Typical TestCase (Xtend)

Run with XtextRunner
InjectWith the generated injector provider
Inject Xtext testing utility classes

package org.eclipsecon.expdsl.tests

import static extension org.junit.Assert.*

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(ExpressionsInjectorProvider))
class ExpressionsParserTest {

@Inject extension ParseHelper<ExpressionsModel>
@Inject extension ValidationTestHelper

@Test
def void testSimpleExpression() {

"10".parse.assertNoErrors
}

}

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 8/43

Testing the Parser

Tests that the program is parsed without syntax errors
Test that the AST is created as expected:

expected associativity
expected operator precedence

ParseHelper: parses a string and returns the AST

Additional Benefits
After parsing, the “real” language developer’s job starts:
Validate the AST, generate code, etc.
So it’s better that the AST is created the way you expect it

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 9/43

Testing the Parser

Tests that the program is parsed without syntax errors
Test that the AST is created as expected:

expected associativity
expected operator precedence

ParseHelper: parses a string and returns the AST

Additional Benefits
After parsing, the “real” language developer’s job starts:
Validate the AST, generate code, etc.
So it’s better that the AST is created the way you expect it

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 9/43

Testing the Parser

Given the AST we create a string representation that
highlights precedence/associativity
Check that it is as expected

def String stringRepr(Expression e) {
switch (e) {

Plus: "(" + e.left.stringRepr+ " + " + e.right.stringRepr + ")"
// other cases (omissis)
Not: "!(" + e.expression.stringRepr ")"
IntConstant: "" + e.value

}
}

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 10/43

Testing the Parser

Given the AST we create a string representation that
highlights precedence/associativity
Check that it is as expected

def String stringRepr(Expression e) {
switch (e) {

Plus: "(" + e.left.stringRepr+ " + " + e.right.stringRepr + ")"
// other cases (omissis)
Not: "!(" + e.expression.stringRepr ")"
IntConstant: "" + e.value

}
}

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 10/43

Testing the Parser

@Test def void testPlusMulPrecedence() {
"10 + 5 * 2 - 5 / 1".assertRepr("((10 + (5 * 2)) - (5 / 1))")

}
@Test def void testComparison() {

"10 <= 5 < 2 > 5".assertReprNoValidation("(((10 <= 5) < 2) > 5)")
}
@Test def void testEqualityAndComparison() {

"true == 5 <= 2".assertRepr("(true == (5 <= 2))")
}
@Test def void testAndOr() {

"true || false && 1 < 0".assertRepr("(true || (false && (1 < 0)))")
}

def assertRepr(CharSequence input, CharSequence expected) {
input.parse => [

expected.assertEquals(
(elements.last as Expression).stringRepr

)
]

}

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 11/43

Validation

We want to avoid forward variable references
int i = j // This should be an error!
int j = 0

Let’s write a utility class, ExpressionsModelUtils, that
Given any element
returns the list of variables declared before that element
(we have to walk in the AST model)

Let’s test such class separately
i.e., before writing the validator itself

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 12/43

Validation

We want to avoid forward variable references
int i = j // This should be an error!
int j = 0

Let’s write a utility class, ExpressionsModelUtils, that
Given any element
returns the list of variables declared before that element
(we have to walk in the AST model)

Let’s test such class separately
i.e., before writing the validator itself

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 12/43

Testing Forward References

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 13/43

Let’s “code coverage” right away (Eclemma/Jacoco)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 14/43

Let’s “code coverage” right away (Eclemma/Jacoco)

Even if it’s generated Java code (by Xtend)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 15/43

Now we can write the Validator

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 16/43

Testing the Validator

And now we test that such error is correctly generated
On the expected element of the program

We use the utility class ValidationTestHelper
We can do that headlessly:

There’s no need to run the workbench

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 17/43

Testing the Validator

We use the utility class ValidationTestHelper

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 18/43

Type System & Type Checking

Check that expressions are correct with respect to types
subexpressions of a multiplication are integer
in a variable declaration, initialization expression can be
assigned to the variable declared type
…

Implement the type system and test it
Implement type checking in the validator, using the type
system, and test it
(not shown here: please have a look at the code)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 19/43

Code Generation

For each expdsl file we generate:
A Java class with the same name of the expdsl file in the
package expressions
With an eval() method

For each variable declaration we generate a Java variable
declaration
For each standalone expression we generate a
System.out.println

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 20/43

Testing the Compiler

Add the dependency org.eclipse.xtext.xbase.junit
Add the dependency org.eclipse.jdt.core
Use CompilationTestHelper
Small pitfall: use a custom injector provider for missing Google
Guice bindings expected by Xbase classes (see the code)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 21/43

Testing the generated Java code is as expected

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 22/43

Testing the generated Java code is correct Java code

The test will fail if the generated Java code contains Java
errors.

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 23/43

Testing the generated Java executes correctly

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 24/43

Testing UI

The content assist
The integration with the workbench
The outline

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 25/43

Testing the Content Assist

Add the dependency org.eclipse.xtext.common.types.ui
Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest
Inject your test case with ExpressionsUiInjectorProvider

This must be run as a “Junit Plug-in Test”
Set memory arguments in the launch configuration:
-Xms256m -Xmx1024m -XX:MaxPermSize=256m

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 26/43

Testing the Content Assist

Add the dependency org.eclipse.xtext.common.types.ui
Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest
Inject your test case with ExpressionsUiInjectorProvider

This must be run as a “Junit Plug-in Test”
Set memory arguments in the launch configuration:
-Xms256m -Xmx1024m -XX:MaxPermSize=256m

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 26/43

Testing the Content Assist

Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 27/43

Testing the Content Assist

Use as base class
o.e.x.xbase.junit.ui.AbstractContentAssistTest

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 27/43

Tweaking the Content Assist

Don’t propose forward references (e.g., i and j)
Don’t propose references of the wrong type (e.g., s)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 28/43

Testing the modified Content Assist

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 29/43

Testing the Workbench Integration

How is my DSL integrated with the workbench?
Does a correct file lead to the generation of a Java file into
src-gen folder?
Does everything compile fine?
We use

o.e.x.junit4.ui.AbstractWorkbenchTest as the base
class
utility methods from JavaProjectSetupUtil and
IResourcesSetupUtil
methods for accessing programmatically the workbench (from
o.e.core.resources)

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 30/43

Testing the Workbench Integration

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 31/43

Outline

Let’s customize it like that

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 32/43

Outline

Let’s customize it like that

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 32/43

Testing the Outline
See the code for AbstractOutlineWorkbenchTest

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 33/43

Required Time for Junit tests

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 34/43

Required Time for Junit Plug-in tests

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 35/43

Headless Build - No UI

Or use maven-surefire-plugin if you experience problems with
the classloader.

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 36/43

Headless Build - No UI

Or use maven-surefire-plugin if you experience problems with
the classloader.

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 36/43

Headless Build - UI

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 37/43

Testing other aspects

If some aspects are not covered by Xtext testing framework
you can have a look at Xtext sources
and get some inspiration…

This is what I did for the outline tests

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 38/43

Other Testing Frameworks

Xpect: http://www.xpect-tests.org
SWTBot, RCP Testing Tool, Jubula for functional tests

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 39/43

http://www.xpect-tests.org

Use CI, e.g., Jenkins

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 40/43

Use CI, e.g., Jenkins

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 41/43

…or Travis

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 42/43

Small Advertising O:-)
http://bit.ly/ids50

An entire chapter on testing

Discount codes:
IDS50 - 50% ebook
IDS20 - 20% printed book

Please evaluate this session

Thanks! and Questions?

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-)
http://bit.ly/ids50

An entire chapter on testing

Discount codes:
IDS50 - 50% ebook
IDS20 - 20% printed book

Please evaluate this session

Thanks! and Questions?

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-)
http://bit.ly/ids50

An entire chapter on testing

Discount codes:
IDS50 - 50% ebook
IDS20 - 20% printed book

Please evaluate this session

Thanks! and Questions?

Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

Small Advertising O:-)
http://bit.ly/ids50

An entire chapter on testing

Discount codes:
IDS50 - 50% ebook
IDS20 - 20% printed book

Please evaluate this session

Thanks! and Questions?
Lorenzo Bettini Testing Xtext Languages EclipseCon Europe 2015 43/43

http://bit.ly/ids50

