11 #ifndef EIGEN_EIGENSOLVER_H
12 #define EIGEN_EIGENSOLVER_H
14 #include "./RealSchur.h"
72 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74 Options = MatrixType::Options,
75 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
80 typedef typename MatrixType::Scalar
Scalar;
82 typedef typename MatrixType::Index Index;
113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
122 : m_eivec(size, size),
124 m_isInitialized(false),
125 m_eigenvectorsOk(false),
147 : m_eivec(matrix.rows(), matrix.cols()),
148 m_eivalues(matrix.cols()),
149 m_isInitialized(false),
150 m_eigenvectorsOk(false),
151 m_realSchur(matrix.cols()),
152 m_matT(matrix.rows(), matrix.cols()),
155 compute(matrix, computeEigenvectors);
200 eigen_assert(m_isInitialized &&
"EigenSolver is not initialized.");
201 eigen_assert(m_eigenvectorsOk &&
"The eigenvectors have not been computed together with the eigenvalues.");
245 eigen_assert(m_isInitialized &&
"EigenSolver is not initialized.");
280 eigen_assert(m_isInitialized &&
"EigenSolver is not initialized.");
281 return m_realSchur.
info();
298 void doComputeEigenvectors();
302 static void check_template_parameters()
304 EIGEN_STATIC_ASSERT_NON_INTEGER(
Scalar);
310 bool m_isInitialized;
311 bool m_eigenvectorsOk;
312 RealSchur<MatrixType> m_realSchur;
315 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
316 ColumnVectorType m_tmp;
319 template<
typename MatrixType>
322 eigen_assert(m_isInitialized &&
"EigenSolver is not initialized.");
323 Index n = m_eivalues.rows();
325 for (Index i=0; i<n; ++i)
327 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
328 matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
331 matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
332 -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
339 template<
typename MatrixType>
342 eigen_assert(m_isInitialized &&
"EigenSolver is not initialized.");
343 eigen_assert(m_eigenvectorsOk &&
"The eigenvectors have not been computed together with the eigenvalues.");
344 Index n = m_eivec.cols();
346 for (Index j=0; j<n; ++j)
348 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
351 matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
352 matV.col(j).normalize();
357 for (Index i=0; i<n; ++i)
359 matV.coeffRef(i,j) =
ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
360 matV.coeffRef(i,j+1) =
ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
362 matV.col(j).normalize();
363 matV.col(j+1).normalize();
370 template<
typename MatrixType>
374 check_template_parameters();
378 eigen_assert(matrix.cols() == matrix.rows());
381 m_realSchur.compute(matrix, computeEigenvectors);
383 if (m_realSchur.info() ==
Success)
385 m_matT = m_realSchur.matrixT();
386 if (computeEigenvectors)
387 m_eivec = m_realSchur.matrixU();
390 m_eivalues.resize(matrix.cols());
392 while (i < matrix.cols())
394 if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) ==
Scalar(0))
396 m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
401 Scalar p =
Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
402 Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
403 m_eivalues.coeffRef(i) =
ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
404 m_eivalues.coeffRef(i+1) =
ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
410 if (computeEigenvectors)
411 doComputeEigenvectors();
414 m_isInitialized =
true;
415 m_eigenvectorsOk = computeEigenvectors;
421 template<
typename Scalar>
422 std::complex<Scalar> cdiv(
const Scalar& xr,
const Scalar& xi,
const Scalar& yr,
const Scalar& yi)
426 if (abs(yr) > abs(yi))
430 return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
436 return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
441 template<
typename MatrixType>
442 void EigenSolver<MatrixType>::doComputeEigenvectors()
445 const Index size = m_eivec.cols();
446 const Scalar eps = NumTraits<Scalar>::epsilon();
450 for (Index j = 0; j < size; ++j)
452 norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
461 for (Index n = size-1; n >= 0; n--)
463 Scalar p = m_eivalues.coeff(n).real();
464 Scalar q = m_eivalues.coeff(n).imag();
469 Scalar lastr(0), lastw(0);
472 m_matT.coeffRef(n,n) = 1.0;
473 for (Index i = n-1; i >= 0; i--)
475 Scalar w = m_matT.coeff(i,i) - p;
476 Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
478 if (m_eivalues.coeff(i).imag() < 0.0)
486 if (m_eivalues.coeff(i).imag() == 0.0)
489 m_matT.coeffRef(i,n) = -r / w;
491 m_matT.coeffRef(i,n) = -r / (eps * norm);
495 Scalar x = m_matT.coeff(i,i+1);
496 Scalar y = m_matT.coeff(i+1,i);
497 Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
498 Scalar t = (x * lastr - lastw * r) / denom;
499 m_matT.coeffRef(i,n) = t;
500 if (abs(x) > abs(lastw))
501 m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
503 m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
507 Scalar t = abs(m_matT.coeff(i,n));
508 if ((eps * t) * t > Scalar(1))
509 m_matT.col(n).tail(size-i) /= t;
513 else if (q < Scalar(0) && n > 0)
515 Scalar lastra(0), lastsa(0), lastw(0);
519 if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
521 m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
522 m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
526 std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
527 m_matT.coeffRef(n-1,n-1) = numext::real(cc);
528 m_matT.coeffRef(n-1,n) = numext::imag(cc);
530 m_matT.coeffRef(n,n-1) = 0.0;
531 m_matT.coeffRef(n,n) = 1.0;
532 for (Index i = n-2; i >= 0; i--)
534 Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
535 Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
536 Scalar w = m_matT.coeff(i,i) - p;
538 if (m_eivalues.coeff(i).imag() < 0.0)
547 if (m_eivalues.coeff(i).imag() == RealScalar(0))
549 std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
550 m_matT.coeffRef(i,n-1) = numext::real(cc);
551 m_matT.coeffRef(i,n) = numext::imag(cc);
556 Scalar x = m_matT.coeff(i,i+1);
557 Scalar y = m_matT.coeff(i+1,i);
558 Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
559 Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
560 if ((vr == 0.0) && (vi == 0.0))
561 vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
563 std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
564 m_matT.coeffRef(i,n-1) = numext::real(cc);
565 m_matT.coeffRef(i,n) = numext::imag(cc);
566 if (abs(x) > (abs(lastw) + abs(q)))
568 m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
569 m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
573 cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
574 m_matT.coeffRef(i+1,n-1) = numext::real(cc);
575 m_matT.coeffRef(i+1,n) = numext::imag(cc);
581 Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
582 if ((eps * t) * t > Scalar(1))
583 m_matT.block(i, n-1, size-i, 2) /= t;
593 eigen_assert(0 &&
"Internal bug in EigenSolver");
598 for (Index j = size-1; j >= 0; j--)
600 m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
601 m_eivec.col(j) = m_tmp;
607 #endif // EIGEN_EIGENSOLVER_H
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition: EigenSolver.h:69
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: RealSchur.h:193
EigenSolver(const MatrixType &matrix, bool computeEigenvectors=true)
Constructor; computes eigendecomposition of given matrix.
Definition: EigenSolver.h:146
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType.
Definition: EigenSolver.h:80
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > EigenvalueType
Type for vector of eigenvalues as returned by eigenvalues().
Definition: EigenSolver.h:97
MatrixType pseudoEigenvalueMatrix() const
Returns the block-diagonal matrix in the pseudo-eigendecomposition.
Definition: EigenSolver.h:320
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: EigenSolver.h:243
Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime > EigenvectorsType
Type for matrix of eigenvectors as returned by eigenvectors().
Definition: EigenSolver.h:104
EigenvectorsType eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: EigenSolver.h:340
const MatrixType & pseudoEigenvectors() const
Returns the pseudo-eigenvectors of given matrix.
Definition: EigenSolver.h:198
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: EigenSolver.h:292
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: RealSchur.h:211
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: RealSchur.h:204
EigenSolver(Index size)
Default constructor with memory preallocation.
Definition: EigenSolver.h:121
EigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: EigenSolver.h:285
Definition: Constants.h:376
Computes eigenvalues and eigenvectors of general matrices.
Definition: EigenSolver.h:64
ComputationInfo
Definition: Constants.h:374
std::complex< RealScalar > ComplexScalar
Complex scalar type for MatrixType.
Definition: EigenSolver.h:90
EigenSolver & compute(const MatrixType &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Definition: EigenSolver.h:372
EigenSolver()
Default constructor.
Definition: EigenSolver.h:113