Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
GeneralMatrixMatrix.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
11 #define EIGEN_GENERAL_MATRIX_MATRIX_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
18 
19 /* Specialization for a row-major destination matrix => simple transposition of the product */
20 template<
21  typename Index,
22  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
23  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
24 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
25 {
26  typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
27  static EIGEN_STRONG_INLINE void run(
28  Index rows, Index cols, Index depth,
29  const LhsScalar* lhs, Index lhsStride,
30  const RhsScalar* rhs, Index rhsStride,
31  ResScalar* res, Index resStride,
32  ResScalar alpha,
33  level3_blocking<RhsScalar,LhsScalar>& blocking,
34  GemmParallelInfo<Index>* info = 0)
35  {
36  // transpose the product such that the result is column major
37  general_matrix_matrix_product<Index,
38  RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
39  LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
40  ColMajor>
41  ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
42  }
43 };
44 
45 /* Specialization for a col-major destination matrix
46  * => Blocking algorithm following Goto's paper */
47 template<
48  typename Index,
49  typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
50  typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
51 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
52 {
53 
54 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
55 static void run(Index rows, Index cols, Index depth,
56  const LhsScalar* _lhs, Index lhsStride,
57  const RhsScalar* _rhs, Index rhsStride,
58  ResScalar* res, Index resStride,
59  ResScalar alpha,
60  level3_blocking<LhsScalar,RhsScalar>& blocking,
61  GemmParallelInfo<Index>* info = 0)
62 {
63  const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
64  const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
65 
66  typedef gebp_traits<LhsScalar,RhsScalar> Traits;
67 
68  Index kc = blocking.kc(); // cache block size along the K direction
69  Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
70  //Index nc = blocking.nc(); // cache block size along the N direction
71 
72  gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
73  gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
74  gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
75 
76 #ifdef EIGEN_HAS_OPENMP
77  if(info)
78  {
79  // this is the parallel version!
80  Index tid = omp_get_thread_num();
81  Index threads = omp_get_num_threads();
82 
83  std::size_t sizeA = kc*mc;
84  std::size_t sizeW = kc*Traits::WorkSpaceFactor;
85  ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
86  ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
87 
88  RhsScalar* blockB = blocking.blockB();
89  eigen_internal_assert(blockB!=0);
90 
91  // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
92  for(Index k=0; k<depth; k+=kc)
93  {
94  const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
95 
96  // In order to reduce the chance that a thread has to wait for the other,
97  // let's start by packing A'.
98  pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
99 
100  // Pack B_k to B' in a parallel fashion:
101  // each thread packs the sub block B_k,j to B'_j where j is the thread id.
102 
103  // However, before copying to B'_j, we have to make sure that no other thread is still using it,
104  // i.e., we test that info[tid].users equals 0.
105  // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
106  while(info[tid].users!=0) {}
107  info[tid].users += threads;
108 
109  pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
110 
111  // Notify the other threads that the part B'_j is ready to go.
112  info[tid].sync = k;
113 
114  // Computes C_i += A' * B' per B'_j
115  for(Index shift=0; shift<threads; ++shift)
116  {
117  Index j = (tid+shift)%threads;
118 
119  // At this point we have to make sure that B'_j has been updated by the thread j,
120  // we use testAndSetOrdered to mimic a volatile access.
121  // However, no need to wait for the B' part which has been updated by the current thread!
122  if(shift>0)
123  while(info[j].sync!=k) {}
124 
125  gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
126  }
127 
128  // Then keep going as usual with the remaining A'
129  for(Index i=mc; i<rows; i+=mc)
130  {
131  const Index actual_mc = (std::min)(i+mc,rows)-i;
132 
133  // pack A_i,k to A'
134  pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
135 
136  // C_i += A' * B'
137  gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
138  }
139 
140  // Release all the sub blocks B'_j of B' for the current thread,
141  // i.e., we simply decrement the number of users by 1
142  for(Index j=0; j<threads; ++j)
143  {
144  #pragma omp atomic
145  info[j].users -= 1;
146  }
147  }
148  }
149  else
150 #endif // EIGEN_HAS_OPENMP
151  {
152  EIGEN_UNUSED_VARIABLE(info);
153 
154  // this is the sequential version!
155  std::size_t sizeA = kc*mc;
156  std::size_t sizeB = kc*cols;
157  std::size_t sizeW = kc*Traits::WorkSpaceFactor;
158 
159  ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
160  ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
161  ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
162 
163  // For each horizontal panel of the rhs, and corresponding panel of the lhs...
164  // (==GEMM_VAR1)
165  for(Index k2=0; k2<depth; k2+=kc)
166  {
167  const Index actual_kc = (std::min)(k2+kc,depth)-k2;
168 
169  // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
170  // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
171  // Note that this panel will be read as many times as the number of blocks in the lhs's
172  // vertical panel which is, in practice, a very low number.
173  pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
174 
175  // For each mc x kc block of the lhs's vertical panel...
176  // (==GEPP_VAR1)
177  for(Index i2=0; i2<rows; i2+=mc)
178  {
179  const Index actual_mc = (std::min)(i2+mc,rows)-i2;
180 
181  // We pack the lhs's block into a sequential chunk of memory (L1 caching)
182  // Note that this block will be read a very high number of times, which is equal to the number of
183  // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
184  pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
185 
186  // Everything is packed, we can now call the block * panel kernel:
187  gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
188  }
189  }
190  }
191 }
192 
193 };
194 
195 /*********************************************************************************
196 * Specialization of GeneralProduct<> for "large" GEMM, i.e.,
197 * implementation of the high level wrapper to general_matrix_matrix_product
198 **********************************************************************************/
199 
200 template<typename Lhs, typename Rhs>
201 struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
202  : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
203 {};
204 
205 template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
206 struct gemm_functor
207 {
208  gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha,
209  BlockingType& blocking)
210  : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
211  {}
212 
213  void initParallelSession() const
214  {
215  m_blocking.allocateB();
216  }
217 
218  void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
219  {
220  if(cols==-1)
221  cols = m_rhs.cols();
222 
223  Gemm::run(rows, cols, m_lhs.cols(),
224  /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
225  /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
226  (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
227  m_actualAlpha, m_blocking, info);
228  }
229 
230  protected:
231  const Lhs& m_lhs;
232  const Rhs& m_rhs;
233  Dest& m_dest;
234  Scalar m_actualAlpha;
235  BlockingType& m_blocking;
236 };
237 
238 template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
239 bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
240 
241 template<typename _LhsScalar, typename _RhsScalar>
242 class level3_blocking
243 {
244  typedef _LhsScalar LhsScalar;
245  typedef _RhsScalar RhsScalar;
246 
247  protected:
248  LhsScalar* m_blockA;
249  RhsScalar* m_blockB;
250  RhsScalar* m_blockW;
251 
252  DenseIndex m_mc;
253  DenseIndex m_nc;
254  DenseIndex m_kc;
255 
256  public:
257 
258  level3_blocking()
259  : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
260  {}
261 
262  inline DenseIndex mc() const { return m_mc; }
263  inline DenseIndex nc() const { return m_nc; }
264  inline DenseIndex kc() const { return m_kc; }
265 
266  inline LhsScalar* blockA() { return m_blockA; }
267  inline RhsScalar* blockB() { return m_blockB; }
268  inline RhsScalar* blockW() { return m_blockW; }
269 };
270 
271 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
272 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
273  : public level3_blocking<
274  typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
275  typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
276 {
277  enum {
278  Transpose = StorageOrder==RowMajor,
279  ActualRows = Transpose ? MaxCols : MaxRows,
280  ActualCols = Transpose ? MaxRows : MaxCols
281  };
282  typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
283  typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
284  typedef gebp_traits<LhsScalar,RhsScalar> Traits;
285  enum {
286  SizeA = ActualRows * MaxDepth,
287  SizeB = ActualCols * MaxDepth,
288  SizeW = MaxDepth * Traits::WorkSpaceFactor
289  };
290 
291  EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
292  EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
293  EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
294 
295  public:
296 
297  gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
298  {
299  this->m_mc = ActualRows;
300  this->m_nc = ActualCols;
301  this->m_kc = MaxDepth;
302  this->m_blockA = m_staticA;
303  this->m_blockB = m_staticB;
304  this->m_blockW = m_staticW;
305  }
306 
307  inline void allocateA() {}
308  inline void allocateB() {}
309  inline void allocateW() {}
310  inline void allocateAll() {}
311 };
312 
313 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
314 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
315  : public level3_blocking<
316  typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
317  typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
318 {
319  enum {
320  Transpose = StorageOrder==RowMajor
321  };
322  typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
323  typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
324  typedef gebp_traits<LhsScalar,RhsScalar> Traits;
325 
326  DenseIndex m_sizeA;
327  DenseIndex m_sizeB;
328  DenseIndex m_sizeW;
329 
330  public:
331 
332  gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
333  {
334  this->m_mc = Transpose ? cols : rows;
335  this->m_nc = Transpose ? rows : cols;
336  this->m_kc = depth;
337 
338  computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
339  m_sizeA = this->m_mc * this->m_kc;
340  m_sizeB = this->m_kc * this->m_nc;
341  m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
342  }
343 
344  void allocateA()
345  {
346  if(this->m_blockA==0)
347  this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
348  }
349 
350  void allocateB()
351  {
352  if(this->m_blockB==0)
353  this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
354  }
355 
356  void allocateW()
357  {
358  if(this->m_blockW==0)
359  this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
360  }
361 
362  void allocateAll()
363  {
364  allocateA();
365  allocateB();
366  allocateW();
367  }
368 
369  ~gemm_blocking_space()
370  {
371  aligned_delete(this->m_blockA, m_sizeA);
372  aligned_delete(this->m_blockB, m_sizeB);
373  aligned_delete(this->m_blockW, m_sizeW);
374  }
375 };
376 
377 } // end namespace internal
378 
379 template<typename Lhs, typename Rhs>
380 class GeneralProduct<Lhs, Rhs, GemmProduct>
381  : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
382 {
383  enum {
384  MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
385  };
386  public:
387  EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
388 
389  typedef typename Lhs::Scalar LhsScalar;
390  typedef typename Rhs::Scalar RhsScalar;
391  typedef Scalar ResScalar;
392 
393  GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
394  {
395 #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG))
396  typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
397  EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
398 #endif
399  }
400 
401  template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
402  {
403  eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
404  if(m_lhs.cols()==0 || m_lhs.rows()==0 || m_rhs.cols()==0)
405  return;
406 
407  typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
408  typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
409 
410  Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
411  * RhsBlasTraits::extractScalarFactor(m_rhs);
412 
413  typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
414  Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
415 
416  typedef internal::gemm_functor<
417  Scalar, Index,
418  internal::general_matrix_matrix_product<
419  Index,
420  LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
421  RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
422  (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
423  _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
424 
425  BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
426 
427  internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
428  }
429 };
430 
431 } // end namespace Eigen
432 
433 #endif // EIGEN_GENERAL_MATRIX_MATRIX_H
const int Dynamic
Definition: Constants.h:21
Definition: Constants.h:264
Definition: Constants.h:266
const unsigned int RowMajorBit
Definition: Constants.h:53