Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
GeneralMatrixVector.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
11 #define EIGEN_GENERAL_MATRIX_VECTOR_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 /* Optimized col-major matrix * vector product:
18  * This algorithm processes 4 columns at onces that allows to both reduce
19  * the number of load/stores of the result by a factor 4 and to reduce
20  * the instruction dependency. Moreover, we know that all bands have the
21  * same alignment pattern.
22  *
23  * Mixing type logic: C += alpha * A * B
24  * | A | B |alpha| comments
25  * |real |cplx |cplx | no vectorization
26  * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
27  * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
28  * |cplx |real |real | optimal case, vectorization possible via real-cplx mul
29  */
30 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
31 struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
32 {
33 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
34 
35 enum {
36  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
37  && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
38  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
39  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
40  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
41 };
42 
43 typedef typename packet_traits<LhsScalar>::type _LhsPacket;
44 typedef typename packet_traits<RhsScalar>::type _RhsPacket;
45 typedef typename packet_traits<ResScalar>::type _ResPacket;
46 
47 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
48 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
49 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
50 
51 EIGEN_DONT_INLINE static void run(
52  Index rows, Index cols,
53  const LhsScalar* lhs, Index lhsStride,
54  const RhsScalar* rhs, Index rhsIncr,
55  ResScalar* res, Index resIncr, RhsScalar alpha);
56 };
57 
58 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
59 EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
60  Index rows, Index cols,
61  const LhsScalar* lhs, Index lhsStride,
62  const RhsScalar* rhs, Index rhsIncr,
63  ResScalar* res, Index resIncr, RhsScalar alpha)
64 {
65  EIGEN_UNUSED_VARIABLE(resIncr)
66  eigen_internal_assert(resIncr==1);
67  #ifdef _EIGEN_ACCUMULATE_PACKETS
68  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
69  #endif
70  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
71  pstore(&res[j], \
72  padd(pload<ResPacket>(&res[j]), \
73  padd( \
74  padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]), ptmp0), \
75  pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]), ptmp1)), \
76  padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]), ptmp2), \
77  pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]), ptmp3)) )))
78 
79  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
80  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
81  if(ConjugateRhs)
82  alpha = numext::conj(alpha);
83 
84  enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
85  const Index columnsAtOnce = 4;
86  const Index peels = 2;
87  const Index LhsPacketAlignedMask = LhsPacketSize-1;
88  const Index ResPacketAlignedMask = ResPacketSize-1;
89 // const Index PeelAlignedMask = ResPacketSize*peels-1;
90  const Index size = rows;
91 
92  // How many coeffs of the result do we have to skip to be aligned.
93  // Here we assume data are at least aligned on the base scalar type.
94  Index alignedStart = internal::first_aligned(res,size);
95  Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
96  const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
97 
98  const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
99  Index alignmentPattern = alignmentStep==0 ? AllAligned
100  : alignmentStep==(LhsPacketSize/2) ? EvenAligned
101  : FirstAligned;
102 
103  // we cannot assume the first element is aligned because of sub-matrices
104  const Index lhsAlignmentOffset = internal::first_aligned(lhs,size);
105 
106  // find how many columns do we have to skip to be aligned with the result (if possible)
107  Index skipColumns = 0;
108  // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
109  if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
110  {
111  alignedSize = 0;
112  alignedStart = 0;
113  }
114  else if (LhsPacketSize>1)
115  {
116  eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
117 
118  while (skipColumns<LhsPacketSize &&
119  alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
120  ++skipColumns;
121  if (skipColumns==LhsPacketSize)
122  {
123  // nothing can be aligned, no need to skip any column
124  alignmentPattern = NoneAligned;
125  skipColumns = 0;
126  }
127  else
128  {
129  skipColumns = (std::min)(skipColumns,cols);
130  // note that the skiped columns are processed later.
131  }
132 
133  eigen_internal_assert( (alignmentPattern==NoneAligned)
134  || (skipColumns + columnsAtOnce >= cols)
135  || LhsPacketSize > size
136  || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
137  }
138  else if(Vectorizable)
139  {
140  alignedStart = 0;
141  alignedSize = size;
142  alignmentPattern = AllAligned;
143  }
144 
145  Index offset1 = (FirstAligned && alignmentStep==1?3:1);
146  Index offset3 = (FirstAligned && alignmentStep==1?1:3);
147 
148  Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
149  for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
150  {
151  RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
152  ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
153  ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
154  ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
155 
156  // this helps a lot generating better binary code
157  const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
158  *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
159 
160  if (Vectorizable)
161  {
162  /* explicit vectorization */
163  // process initial unaligned coeffs
164  for (Index j=0; j<alignedStart; ++j)
165  {
166  res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
167  res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
168  res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
169  res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
170  }
171 
172  if (alignedSize>alignedStart)
173  {
174  switch(alignmentPattern)
175  {
176  case AllAligned:
177  for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
178  _EIGEN_ACCUMULATE_PACKETS(d,d,d);
179  break;
180  case EvenAligned:
181  for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
182  _EIGEN_ACCUMULATE_PACKETS(d,du,d);
183  break;
184  case FirstAligned:
185  {
186  Index j = alignedStart;
187  if(peels>1)
188  {
189  LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
190  ResPacket T0, T1;
191 
192  A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
193  A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
194  A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
195 
196  for (; j<peeledSize; j+=peels*ResPacketSize)
197  {
198  A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
199  A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
200  A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
201 
202  A00 = pload<LhsPacket>(&lhs0[j]);
203  A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
204  T0 = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
205  T1 = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
206 
207  T0 = pcj.pmadd(A01, ptmp1, T0);
208  A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
209  T0 = pcj.pmadd(A02, ptmp2, T0);
210  A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
211  T0 = pcj.pmadd(A03, ptmp3, T0);
212  pstore(&res[j],T0);
213  A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
214  T1 = pcj.pmadd(A11, ptmp1, T1);
215  T1 = pcj.pmadd(A12, ptmp2, T1);
216  T1 = pcj.pmadd(A13, ptmp3, T1);
217  pstore(&res[j+ResPacketSize],T1);
218  }
219  }
220  for (; j<alignedSize; j+=ResPacketSize)
221  _EIGEN_ACCUMULATE_PACKETS(d,du,du);
222  break;
223  }
224  default:
225  for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
226  _EIGEN_ACCUMULATE_PACKETS(du,du,du);
227  break;
228  }
229  }
230  } // end explicit vectorization
231 
232  /* process remaining coeffs (or all if there is no explicit vectorization) */
233  for (Index j=alignedSize; j<size; ++j)
234  {
235  res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
236  res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
237  res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
238  res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
239  }
240  }
241 
242  // process remaining first and last columns (at most columnsAtOnce-1)
243  Index end = cols;
244  Index start = columnBound;
245  do
246  {
247  for (Index k=start; k<end; ++k)
248  {
249  RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
250  const LhsScalar* lhs0 = lhs + k*lhsStride;
251 
252  if (Vectorizable)
253  {
254  /* explicit vectorization */
255  // process first unaligned result's coeffs
256  for (Index j=0; j<alignedStart; ++j)
257  res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
258  // process aligned result's coeffs
259  if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
260  for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
261  pstore(&res[i], pcj.pmadd(pload<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
262  else
263  for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
264  pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
265  }
266 
267  // process remaining scalars (or all if no explicit vectorization)
268  for (Index i=alignedSize; i<size; ++i)
269  res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
270  }
271  if (skipColumns)
272  {
273  start = 0;
274  end = skipColumns;
275  skipColumns = 0;
276  }
277  else
278  break;
279  } while(Vectorizable);
280  #undef _EIGEN_ACCUMULATE_PACKETS
281 }
282 
283 /* Optimized row-major matrix * vector product:
284  * This algorithm processes 4 rows at onces that allows to both reduce
285  * the number of load/stores of the result by a factor 4 and to reduce
286  * the instruction dependency. Moreover, we know that all bands have the
287  * same alignment pattern.
288  *
289  * Mixing type logic:
290  * - alpha is always a complex (or converted to a complex)
291  * - no vectorization
292  */
293 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
294 struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
295 {
296 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
297 
298 enum {
299  Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
300  && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
301  LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
302  RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
303  ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
304 };
305 
306 typedef typename packet_traits<LhsScalar>::type _LhsPacket;
307 typedef typename packet_traits<RhsScalar>::type _RhsPacket;
308 typedef typename packet_traits<ResScalar>::type _ResPacket;
309 
310 typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
311 typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
312 typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
313 
314 EIGEN_DONT_INLINE static void run(
315  Index rows, Index cols,
316  const LhsScalar* lhs, Index lhsStride,
317  const RhsScalar* rhs, Index rhsIncr,
318  ResScalar* res, Index resIncr,
319  ResScalar alpha);
320 };
321 
322 template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
323 EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>::run(
324  Index rows, Index cols,
325  const LhsScalar* lhs, Index lhsStride,
326  const RhsScalar* rhs, Index rhsIncr,
327  ResScalar* res, Index resIncr,
328  ResScalar alpha)
329 {
330  EIGEN_UNUSED_VARIABLE(rhsIncr);
331  eigen_internal_assert(rhsIncr==1);
332  #ifdef _EIGEN_ACCUMULATE_PACKETS
333  #error _EIGEN_ACCUMULATE_PACKETS has already been defined
334  #endif
335 
336  #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
337  RhsPacket b = pload<RhsPacket>(&rhs[j]); \
338  ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
339  ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
340  ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
341  ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
342 
343  conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
344  conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
345 
346  enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
347  const Index rowsAtOnce = 4;
348  const Index peels = 2;
349  const Index RhsPacketAlignedMask = RhsPacketSize-1;
350  const Index LhsPacketAlignedMask = LhsPacketSize-1;
351 // const Index PeelAlignedMask = RhsPacketSize*peels-1;
352  const Index depth = cols;
353 
354  // How many coeffs of the result do we have to skip to be aligned.
355  // Here we assume data are at least aligned on the base scalar type
356  // if that's not the case then vectorization is discarded, see below.
357  Index alignedStart = internal::first_aligned(rhs, depth);
358  Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
359  const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
360 
361  const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
362  Index alignmentPattern = alignmentStep==0 ? AllAligned
363  : alignmentStep==(LhsPacketSize/2) ? EvenAligned
364  : FirstAligned;
365 
366  // we cannot assume the first element is aligned because of sub-matrices
367  const Index lhsAlignmentOffset = internal::first_aligned(lhs,depth);
368 
369  // find how many rows do we have to skip to be aligned with rhs (if possible)
370  Index skipRows = 0;
371  // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
372  if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
373  {
374  alignedSize = 0;
375  alignedStart = 0;
376  }
377  else if (LhsPacketSize>1)
378  {
379  eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth<LhsPacketSize);
380 
381  while (skipRows<LhsPacketSize &&
382  alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
383  ++skipRows;
384  if (skipRows==LhsPacketSize)
385  {
386  // nothing can be aligned, no need to skip any column
387  alignmentPattern = NoneAligned;
388  skipRows = 0;
389  }
390  else
391  {
392  skipRows = (std::min)(skipRows,Index(rows));
393  // note that the skiped columns are processed later.
394  }
395  eigen_internal_assert( alignmentPattern==NoneAligned
396  || LhsPacketSize==1
397  || (skipRows + rowsAtOnce >= rows)
398  || LhsPacketSize > depth
399  || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
400  }
401  else if(Vectorizable)
402  {
403  alignedStart = 0;
404  alignedSize = depth;
405  alignmentPattern = AllAligned;
406  }
407 
408  Index offset1 = (FirstAligned && alignmentStep==1?3:1);
409  Index offset3 = (FirstAligned && alignmentStep==1?1:3);
410 
411  Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
412  for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
413  {
414  EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
415  ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
416 
417  // this helps the compiler generating good binary code
418  const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
419  *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
420 
421  if (Vectorizable)
422  {
423  /* explicit vectorization */
424  ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
425  ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
426 
427  // process initial unaligned coeffs
428  // FIXME this loop get vectorized by the compiler !
429  for (Index j=0; j<alignedStart; ++j)
430  {
431  RhsScalar b = rhs[j];
432  tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
433  tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
434  }
435 
436  if (alignedSize>alignedStart)
437  {
438  switch(alignmentPattern)
439  {
440  case AllAligned:
441  for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
442  _EIGEN_ACCUMULATE_PACKETS(d,d,d);
443  break;
444  case EvenAligned:
445  for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
446  _EIGEN_ACCUMULATE_PACKETS(d,du,d);
447  break;
448  case FirstAligned:
449  {
450  Index j = alignedStart;
451  if (peels>1)
452  {
453  /* Here we proccess 4 rows with with two peeled iterations to hide
454  * the overhead of unaligned loads. Moreover unaligned loads are handled
455  * using special shift/move operations between the two aligned packets
456  * overlaping the desired unaligned packet. This is *much* more efficient
457  * than basic unaligned loads.
458  */
459  LhsPacket A01, A02, A03, A11, A12, A13;
460  A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
461  A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
462  A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
463 
464  for (; j<peeledSize; j+=peels*RhsPacketSize)
465  {
466  RhsPacket b = pload<RhsPacket>(&rhs[j]);
467  A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
468  A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
469  A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
470 
471  ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
472  ptmp1 = pcj.pmadd(A01, b, ptmp1);
473  A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
474  ptmp2 = pcj.pmadd(A02, b, ptmp2);
475  A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
476  ptmp3 = pcj.pmadd(A03, b, ptmp3);
477  A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
478 
479  b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
480  ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
481  ptmp1 = pcj.pmadd(A11, b, ptmp1);
482  ptmp2 = pcj.pmadd(A12, b, ptmp2);
483  ptmp3 = pcj.pmadd(A13, b, ptmp3);
484  }
485  }
486  for (; j<alignedSize; j+=RhsPacketSize)
487  _EIGEN_ACCUMULATE_PACKETS(d,du,du);
488  break;
489  }
490  default:
491  for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
492  _EIGEN_ACCUMULATE_PACKETS(du,du,du);
493  break;
494  }
495  tmp0 += predux(ptmp0);
496  tmp1 += predux(ptmp1);
497  tmp2 += predux(ptmp2);
498  tmp3 += predux(ptmp3);
499  }
500  } // end explicit vectorization
501 
502  // process remaining coeffs (or all if no explicit vectorization)
503  // FIXME this loop get vectorized by the compiler !
504  for (Index j=alignedSize; j<depth; ++j)
505  {
506  RhsScalar b = rhs[j];
507  tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
508  tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
509  }
510  res[i*resIncr] += alpha*tmp0;
511  res[(i+offset1)*resIncr] += alpha*tmp1;
512  res[(i+2)*resIncr] += alpha*tmp2;
513  res[(i+offset3)*resIncr] += alpha*tmp3;
514  }
515 
516  // process remaining first and last rows (at most columnsAtOnce-1)
517  Index end = rows;
518  Index start = rowBound;
519  do
520  {
521  for (Index i=start; i<end; ++i)
522  {
523  EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
524  ResPacket ptmp0 = pset1<ResPacket>(tmp0);
525  const LhsScalar* lhs0 = lhs + i*lhsStride;
526  // process first unaligned result's coeffs
527  // FIXME this loop get vectorized by the compiler !
528  for (Index j=0; j<alignedStart; ++j)
529  tmp0 += cj.pmul(lhs0[j], rhs[j]);
530 
531  if (alignedSize>alignedStart)
532  {
533  // process aligned rhs coeffs
534  if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
535  for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
536  ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
537  else
538  for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
539  ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
540  tmp0 += predux(ptmp0);
541  }
542 
543  // process remaining scalars
544  // FIXME this loop get vectorized by the compiler !
545  for (Index j=alignedSize; j<depth; ++j)
546  tmp0 += cj.pmul(lhs0[j], rhs[j]);
547  res[i*resIncr] += alpha*tmp0;
548  }
549  if (skipRows)
550  {
551  start = 0;
552  end = skipRows;
553  skipRows = 0;
554  }
555  else
556  break;
557  } while(Vectorizable);
558 
559  #undef _EIGEN_ACCUMULATE_PACKETS
560 }
561 
562 } // end namespace internal
563 
564 } // end namespace Eigen
565 
566 #endif // EIGEN_GENERAL_MATRIX_VECTOR_H
Definition: Constants.h:264
Definition: Constants.h:266