Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Memory.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2008-2009 Benoit Jacob <[email protected]>
6 // Copyright (C) 2009 Kenneth Riddile <[email protected]>
7 // Copyright (C) 2010 Hauke Heibel <[email protected]>
8 // Copyright (C) 2010 Thomas Capricelli <[email protected]>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 
15 /*****************************************************************************
16 *** Platform checks for aligned malloc functions ***
17 *****************************************************************************/
18 
19 #ifndef EIGEN_MEMORY_H
20 #define EIGEN_MEMORY_H
21 
22 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
23 
24 // Try to determine automatically if malloc is already aligned.
25 
26 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
27 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
28 // This is true at least since glibc 2.8.
29 // This leaves the question how to detect 64-bit. According to this document,
30 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
31 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
32 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
33 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
34  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
35  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
36 #else
37  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
38 #endif
39 
40 // FreeBSD 6 seems to have 16-byte aligned malloc
41 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
42 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
43 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
44 #if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
45  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
46 #else
47  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
48 #endif
49 
50 #if defined(__APPLE__) \
51  || defined(_WIN64) \
52  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
53  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
54  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
55 #else
56  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
57 #endif
58 
59 #endif
60 
61 // See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
62 // It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
63 // Currently, let's include it only on unix systems:
64 #if defined(__unix__) || defined(__unix)
65  #include <unistd.h>
66  #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
67  #define EIGEN_HAS_POSIX_MEMALIGN 1
68  #endif
69 #endif
70 
71 #ifndef EIGEN_HAS_POSIX_MEMALIGN
72  #define EIGEN_HAS_POSIX_MEMALIGN 0
73 #endif
74 
75 #ifdef EIGEN_VECTORIZE_SSE
76  #define EIGEN_HAS_MM_MALLOC 1
77 #else
78  #define EIGEN_HAS_MM_MALLOC 0
79 #endif
80 
81 namespace Eigen {
82 
83 namespace internal {
84 
85 inline void throw_std_bad_alloc()
86 {
87  #ifdef EIGEN_EXCEPTIONS
88  throw std::bad_alloc();
89  #else
90  std::size_t huge = -1;
91  new int[huge];
92  #endif
93 }
94 
95 /*****************************************************************************
96 *** Implementation of handmade aligned functions ***
97 *****************************************************************************/
98 
99 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
100 
104 inline void* handmade_aligned_malloc(std::size_t size)
105 {
106  void *original = std::malloc(size+16);
107  if (original == 0) return 0;
108  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
109  *(reinterpret_cast<void**>(aligned) - 1) = original;
110  return aligned;
111 }
112 
114 inline void handmade_aligned_free(void *ptr)
115 {
116  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
117 }
118 
124 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
125 {
126  if (ptr == 0) return handmade_aligned_malloc(size);
127  void *original = *(reinterpret_cast<void**>(ptr) - 1);
128  std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
129  original = std::realloc(original,size+16);
130  if (original == 0) return 0;
131  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
132  void *previous_aligned = static_cast<char *>(original)+previous_offset;
133  if(aligned!=previous_aligned)
134  std::memmove(aligned, previous_aligned, size);
135 
136  *(reinterpret_cast<void**>(aligned) - 1) = original;
137  return aligned;
138 }
139 
140 /*****************************************************************************
141 *** Implementation of generic aligned realloc (when no realloc can be used)***
142 *****************************************************************************/
143 
144 void* aligned_malloc(std::size_t size);
145 void aligned_free(void *ptr);
146 
152 inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
153 {
154  if (ptr==0)
155  return aligned_malloc(size);
156 
157  if (size==0)
158  {
159  aligned_free(ptr);
160  return 0;
161  }
162 
163  void* newptr = aligned_malloc(size);
164  if (newptr == 0)
165  {
166  #ifdef EIGEN_HAS_ERRNO
167  errno = ENOMEM; // according to the standard
168  #endif
169  return 0;
170  }
171 
172  if (ptr != 0)
173  {
174  std::memcpy(newptr, ptr, (std::min)(size,old_size));
175  aligned_free(ptr);
176  }
177 
178  return newptr;
179 }
180 
181 /*****************************************************************************
182 *** Implementation of portable aligned versions of malloc/free/realloc ***
183 *****************************************************************************/
184 
185 #ifdef EIGEN_NO_MALLOC
186 inline void check_that_malloc_is_allowed()
187 {
188  eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
189 }
190 #elif defined EIGEN_RUNTIME_NO_MALLOC
191 inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
192 {
193  static bool value = true;
194  if (update == 1)
195  value = new_value;
196  return value;
197 }
198 inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
199 inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
200 inline void check_that_malloc_is_allowed()
201 {
202  eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
203 }
204 #else
205 inline void check_that_malloc_is_allowed()
206 {}
207 #endif
208 
212 inline void* aligned_malloc(size_t size)
213 {
214  check_that_malloc_is_allowed();
215 
216  void *result;
217  #if !EIGEN_ALIGN
218  result = std::malloc(size);
219  #elif EIGEN_MALLOC_ALREADY_ALIGNED
220  result = std::malloc(size);
221  #elif EIGEN_HAS_POSIX_MEMALIGN
222  if(posix_memalign(&result, 16, size)) result = 0;
223  #elif EIGEN_HAS_MM_MALLOC
224  result = _mm_malloc(size, 16);
225  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
226  result = _aligned_malloc(size, 16);
227  #else
228  result = handmade_aligned_malloc(size);
229  #endif
230 
231  if(!result && size)
232  throw_std_bad_alloc();
233 
234  return result;
235 }
236 
238 inline void aligned_free(void *ptr)
239 {
240  #if !EIGEN_ALIGN
241  std::free(ptr);
242  #elif EIGEN_MALLOC_ALREADY_ALIGNED
243  std::free(ptr);
244  #elif EIGEN_HAS_POSIX_MEMALIGN
245  std::free(ptr);
246  #elif EIGEN_HAS_MM_MALLOC
247  _mm_free(ptr);
248  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
249  _aligned_free(ptr);
250  #else
251  handmade_aligned_free(ptr);
252  #endif
253 }
254 
260 inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
261 {
262  EIGEN_UNUSED_VARIABLE(old_size);
263 
264  void *result;
265 #if !EIGEN_ALIGN
266  result = std::realloc(ptr,new_size);
267 #elif EIGEN_MALLOC_ALREADY_ALIGNED
268  result = std::realloc(ptr,new_size);
269 #elif EIGEN_HAS_POSIX_MEMALIGN
270  result = generic_aligned_realloc(ptr,new_size,old_size);
271 #elif EIGEN_HAS_MM_MALLOC
272  // The defined(_mm_free) is just here to verify that this MSVC version
273  // implements _mm_malloc/_mm_free based on the corresponding _aligned_
274  // functions. This may not always be the case and we just try to be safe.
275  #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
276  result = _aligned_realloc(ptr,new_size,16);
277  #else
278  result = generic_aligned_realloc(ptr,new_size,old_size);
279  #endif
280 #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
281  result = _aligned_realloc(ptr,new_size,16);
282 #else
283  result = handmade_aligned_realloc(ptr,new_size,old_size);
284 #endif
285 
286  if (!result && new_size)
287  throw_std_bad_alloc();
288 
289  return result;
290 }
291 
292 /*****************************************************************************
293 *** Implementation of conditionally aligned functions ***
294 *****************************************************************************/
295 
299 template<bool Align> inline void* conditional_aligned_malloc(size_t size)
300 {
301  return aligned_malloc(size);
302 }
303 
304 template<> inline void* conditional_aligned_malloc<false>(size_t size)
305 {
306  check_that_malloc_is_allowed();
307 
308  void *result = std::malloc(size);
309  if(!result && size)
310  throw_std_bad_alloc();
311  return result;
312 }
313 
315 template<bool Align> inline void conditional_aligned_free(void *ptr)
316 {
317  aligned_free(ptr);
318 }
319 
320 template<> inline void conditional_aligned_free<false>(void *ptr)
321 {
322  std::free(ptr);
323 }
324 
325 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
326 {
327  return aligned_realloc(ptr, new_size, old_size);
328 }
329 
330 template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
331 {
332  return std::realloc(ptr, new_size);
333 }
334 
335 /*****************************************************************************
336 *** Construction/destruction of array elements ***
337 *****************************************************************************/
338 
342 template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
343 {
344  for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
345  return ptr;
346 }
347 
351 template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
352 {
353  // always destruct an array starting from the end.
354  if(ptr)
355  while(size) ptr[--size].~T();
356 }
357 
358 /*****************************************************************************
359 *** Implementation of aligned new/delete-like functions ***
360 *****************************************************************************/
361 
362 template<typename T>
363 EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
364 {
365  if(size > size_t(-1) / sizeof(T))
366  throw_std_bad_alloc();
367 }
368 
373 template<typename T> inline T* aligned_new(size_t size)
374 {
375  check_size_for_overflow<T>(size);
376  T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
377  return construct_elements_of_array(result, size);
378 }
379 
380 template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
381 {
382  check_size_for_overflow<T>(size);
383  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
384  return construct_elements_of_array(result, size);
385 }
386 
390 template<typename T> inline void aligned_delete(T *ptr, size_t size)
391 {
392  destruct_elements_of_array<T>(ptr, size);
393  aligned_free(ptr);
394 }
395 
399 template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
400 {
401  destruct_elements_of_array<T>(ptr, size);
402  conditional_aligned_free<Align>(ptr);
403 }
404 
405 template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
406 {
407  check_size_for_overflow<T>(new_size);
408  check_size_for_overflow<T>(old_size);
409  if(new_size < old_size)
410  destruct_elements_of_array(pts+new_size, old_size-new_size);
411  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
412  if(new_size > old_size)
413  construct_elements_of_array(result+old_size, new_size-old_size);
414  return result;
415 }
416 
417 
418 template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
419 {
420  if(size==0)
421  return 0; // short-cut. Also fixes Bug 884
422  check_size_for_overflow<T>(size);
423  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
424  if(NumTraits<T>::RequireInitialization)
425  construct_elements_of_array(result, size);
426  return result;
427 }
428 
429 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
430 {
431  check_size_for_overflow<T>(new_size);
432  check_size_for_overflow<T>(old_size);
433  if(NumTraits<T>::RequireInitialization && (new_size < old_size))
434  destruct_elements_of_array(pts+new_size, old_size-new_size);
435  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
436  if(NumTraits<T>::RequireInitialization && (new_size > old_size))
437  construct_elements_of_array(result+old_size, new_size-old_size);
438  return result;
439 }
440 
441 template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
442 {
443  if(NumTraits<T>::RequireInitialization)
444  destruct_elements_of_array<T>(ptr, size);
445  conditional_aligned_free<Align>(ptr);
446 }
447 
448 /****************************************************************************/
449 
466 template<typename Scalar, typename Index>
467 static inline Index first_aligned(const Scalar* array, Index size)
468 {
469  static const Index PacketSize = packet_traits<Scalar>::size;
470  static const Index PacketAlignedMask = PacketSize-1;
471 
472  if(PacketSize==1)
473  {
474  // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
475  // of the array have the same alignment.
476  return 0;
477  }
478  else if(size_t(array) & (sizeof(Scalar)-1))
479  {
480  // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
481  // Consequently, no element of the array is well aligned.
482  return size;
483  }
484  else
485  {
486  return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
487  & PacketAlignedMask, size);
488  }
489 }
490 
493 template<typename Index>
494 inline static Index first_multiple(Index size, Index base)
495 {
496  return ((size+base-1)/base)*base;
497 }
498 
499 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
500 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
501 template<typename T, bool UseMemcpy> struct smart_copy_helper;
502 
503 template<typename T> void smart_copy(const T* start, const T* end, T* target)
504 {
505  smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
506 }
507 
508 template<typename T> struct smart_copy_helper<T,true> {
509  static inline void run(const T* start, const T* end, T* target)
510  { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
511 };
512 
513 template<typename T> struct smart_copy_helper<T,false> {
514  static inline void run(const T* start, const T* end, T* target)
515  { std::copy(start, end, target); }
516 };
517 
518 
519 /*****************************************************************************
520 *** Implementation of runtime stack allocation (falling back to malloc) ***
521 *****************************************************************************/
522 
523 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
524 // to the appropriate stack allocation function
525 #ifndef EIGEN_ALLOCA
526  #if (defined __linux__) || (defined __APPLE__) || (defined alloca)
527  #define EIGEN_ALLOCA alloca
528  #elif defined(_MSC_VER)
529  #define EIGEN_ALLOCA _alloca
530  #endif
531 #endif
532 
533 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
534 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
535 template<typename T> class aligned_stack_memory_handler
536 {
537  public:
538  /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
539  * Note that \a ptr can be 0 regardless of the other parameters.
540  * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
541  * In this case, the buffer elements will also be destructed when this handler will be destructed.
542  * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
543  **/
544  aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
545  : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
546  {
547  if(NumTraits<T>::RequireInitialization && m_ptr)
548  Eigen::internal::construct_elements_of_array(m_ptr, size);
549  }
550  ~aligned_stack_memory_handler()
551  {
552  if(NumTraits<T>::RequireInitialization && m_ptr)
553  Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
554  if(m_deallocate)
555  Eigen::internal::aligned_free(m_ptr);
556  }
557  protected:
558  T* m_ptr;
559  size_t m_size;
560  bool m_deallocate;
561 };
562 
563 } // end namespace internal
564 
580 #ifdef EIGEN_ALLOCA
581 
582  #if defined(__arm__) || defined(_WIN32)
583  #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
584  #else
585  #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
586  #endif
587 
588  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
589  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
590  TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
591  : reinterpret_cast<TYPE*>( \
592  (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
593  : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
594  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
595 
596 #else
597 
598  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
599  Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
600  TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
601  Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
602 
603 #endif
604 
605 
606 /*****************************************************************************
607 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
608 *****************************************************************************/
609 
610 #if EIGEN_ALIGN
611  #ifdef EIGEN_EXCEPTIONS
612  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
613  void* operator new(size_t size, const std::nothrow_t&) throw() { \
614  try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
615  catch (...) { return 0; } \
616  }
617  #else
618  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
619  void* operator new(size_t size, const std::nothrow_t&) throw() { \
620  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
621  }
622  #endif
623 
624  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
625  void *operator new(size_t size) { \
626  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
627  } \
628  void *operator new[](size_t size) { \
629  return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
630  } \
631  void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
632  void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
633  void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
634  void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
635  /* in-place new and delete. since (at least afaik) there is no actual */ \
636  /* memory allocated we can safely let the default implementation handle */ \
637  /* this particular case. */ \
638  static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
639  static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
640  void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
641  void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
642  /* nothrow-new (returns zero instead of std::bad_alloc) */ \
643  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
644  void operator delete(void *ptr, const std::nothrow_t&) throw() { \
645  Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
646  } \
647  typedef void eigen_aligned_operator_new_marker_type;
648 #else
649  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
650 #endif
651 
652 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
653 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
654  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
655 
656 /****************************************************************************/
657 
674 template<class T>
676 {
677 public:
678  typedef size_t size_type;
679  typedef std::ptrdiff_t difference_type;
680  typedef T* pointer;
681  typedef const T* const_pointer;
682  typedef T& reference;
683  typedef const T& const_reference;
684  typedef T value_type;
685 
686  template<class U>
687  struct rebind
688  {
689  typedef aligned_allocator<U> other;
690  };
691 
692  pointer address( reference value ) const
693  {
694  return &value;
695  }
696 
697  const_pointer address( const_reference value ) const
698  {
699  return &value;
700  }
701 
703  {
704  }
705 
707  {
708  }
709 
710  template<class U>
712  {
713  }
714 
716  {
717  }
718 
719  size_type max_size() const
720  {
721  return (std::numeric_limits<size_type>::max)();
722  }
723 
724  pointer allocate( size_type num, const void* hint = 0 )
725  {
726  EIGEN_UNUSED_VARIABLE(hint);
727  internal::check_size_for_overflow<T>(num);
728  return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
729  }
730 
731  void construct( pointer p, const T& value )
732  {
733  ::new( p ) T( value );
734  }
735 
736  void destroy( pointer p )
737  {
738  p->~T();
739  }
740 
741  void deallocate( pointer p, size_type /*num*/ )
742  {
743  internal::aligned_free( p );
744  }
745 
746  bool operator!=(const aligned_allocator<T>& ) const
747  { return false; }
748 
749  bool operator==(const aligned_allocator<T>& ) const
750  { return true; }
751 };
752 
753 //---------- Cache sizes ----------
754 
755 #if !defined(EIGEN_NO_CPUID)
756 # if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
757 # if defined(__PIC__) && defined(__i386__)
758  // Case for x86 with PIC
759 # define EIGEN_CPUID(abcd,func,id) \
760  __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
761 # elif defined(__PIC__) && defined(__x86_64__)
762  // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
763  // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
764 # define EIGEN_CPUID(abcd,func,id) \
765  __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
766 # else
767  // Case for x86_64 or x86 w/o PIC
768 # define EIGEN_CPUID(abcd,func,id) \
769  __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
770 # endif
771 # elif defined(_MSC_VER)
772 # if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
773 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
774 # endif
775 # endif
776 #endif
777 
778 namespace internal {
779 
780 #ifdef EIGEN_CPUID
781 
782 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
783 {
784  return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
785 }
786 
787 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
788 {
789  int abcd[4];
790  l1 = l2 = l3 = 0;
791  int cache_id = 0;
792  int cache_type = 0;
793  do {
794  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
795  EIGEN_CPUID(abcd,0x4,cache_id);
796  cache_type = (abcd[0] & 0x0F) >> 0;
797  if(cache_type==1||cache_type==3) // data or unified cache
798  {
799  int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
800  int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
801  int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
802  int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
803  int sets = (abcd[2]); // C[31:0]
804 
805  int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
806 
807  switch(cache_level)
808  {
809  case 1: l1 = cache_size; break;
810  case 2: l2 = cache_size; break;
811  case 3: l3 = cache_size; break;
812  default: break;
813  }
814  }
815  cache_id++;
816  } while(cache_type>0 && cache_id<16);
817 }
818 
819 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
820 {
821  int abcd[4];
822  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
823  l1 = l2 = l3 = 0;
824  EIGEN_CPUID(abcd,0x00000002,0);
825  unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
826  bool check_for_p2_core2 = false;
827  for(int i=0; i<14; ++i)
828  {
829  switch(bytes[i])
830  {
831  case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
832  case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
833  case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
834  case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
835  case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
836  case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
837  case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
838  case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
839  case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
840  case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
841  case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
842  case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
843  case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
844  case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
845  case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
846  case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
847  case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
848  case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
849  case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
850  case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
851  case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
852  case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
853  case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
854  case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
855  case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
856  case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
857  case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
858  case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
859  case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
860  case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
861  case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
862  case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
863  case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
864  case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
865  case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
866  case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
867  case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
868  case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
869  case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
870  case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
871  case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
872  case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
873  case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
874  case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
875  case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
876  case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
877  case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
878  case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
879  case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
880  case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
881  case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
882  case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
883  case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
884  case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
885  case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
886  case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
887  case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
888 
889  default: break;
890  }
891  }
892  if(check_for_p2_core2 && l2 == l3)
893  l3 = 0;
894  l1 *= 1024;
895  l2 *= 1024;
896  l3 *= 1024;
897 }
898 
899 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
900 {
901  if(max_std_funcs>=4)
902  queryCacheSizes_intel_direct(l1,l2,l3);
903  else
904  queryCacheSizes_intel_codes(l1,l2,l3);
905 }
906 
907 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
908 {
909  int abcd[4];
910  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
911  EIGEN_CPUID(abcd,0x80000005,0);
912  l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
913  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
914  EIGEN_CPUID(abcd,0x80000006,0);
915  l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
916  l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
917 }
918 #endif
919 
922 inline void queryCacheSizes(int& l1, int& l2, int& l3)
923 {
924  #ifdef EIGEN_CPUID
925  int abcd[4];
926  const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
927  const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
928  const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
929 
930  // identify the CPU vendor
931  EIGEN_CPUID(abcd,0x0,0);
932  int max_std_funcs = abcd[1];
933  if(cpuid_is_vendor(abcd,GenuineIntel))
934  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
935  else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
936  queryCacheSizes_amd(l1,l2,l3);
937  else
938  // by default let's use Intel's API
939  queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
940 
941  // here is the list of other vendors:
942 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
943 // ||cpuid_is_vendor(abcd,"CyrixInstead")
944 // ||cpuid_is_vendor(abcd,"CentaurHauls")
945 // ||cpuid_is_vendor(abcd,"GenuineTMx86")
946 // ||cpuid_is_vendor(abcd,"TransmetaCPU")
947 // ||cpuid_is_vendor(abcd,"RiseRiseRise")
948 // ||cpuid_is_vendor(abcd,"Geode by NSC")
949 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
950 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
951 // ||cpuid_is_vendor(abcd,"NexGenDriven")
952  #else
953  l1 = l2 = l3 = -1;
954  #endif
955 }
956 
959 inline int queryL1CacheSize()
960 {
961  int l1(-1), l2, l3;
962  queryCacheSizes(l1,l2,l3);
963  return l1;
964 }
965 
968 inline int queryTopLevelCacheSize()
969 {
970  int l1, l2(-1), l3(-1);
971  queryCacheSizes(l1,l2,l3);
972  return (std::max)(l2,l3);
973 }
974 
975 } // end namespace internal
976 
977 } // end namespace Eigen
978 
979 #endif // EIGEN_MEMORY_H
STL compatible allocator to use with with 16 byte aligned types.
Definition: Memory.h:675