18 #ifndef EIGEN_BDCSVD_H
19 #define EIGEN_BDCSVD_H
21 #define EPSILON 0.0000000000000001
37 template<
typename _MatrixType>
46 typedef _MatrixType MatrixType;
47 typedef typename MatrixType::Scalar Scalar;
48 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
49 typedef typename MatrixType::Index Index;
51 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
52 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
53 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
54 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
55 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
56 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
57 MatrixOptions = MatrixType::Options
60 typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
61 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
63 typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
64 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
66 typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
67 typedef typename internal::plain_row_type<MatrixType>::type RowType;
68 typedef typename internal::plain_col_type<MatrixType>::type ColType;
69 typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
70 typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
71 typedef Matrix<RealScalar, Dynamic, 1> VectorType;
90 BDCSVD(Index rows, Index cols,
unsigned int computationOptions = 0)
94 allocate(rows, cols, computationOptions);
107 BDCSVD(
const MatrixType& matrix,
unsigned int computationOptions = 0)
111 compute(matrix, computationOptions);
127 SVDBase<MatrixType>&
compute(
const MatrixType& matrix,
unsigned int computationOptions);
137 return compute(matrix, this->m_computationOptions);
140 void setSwitchSize(
int s)
142 eigen_assert(s>3 &&
"BDCSVD the size of the algo switch has to be greater than 4");
156 template<
typename Rhs>
157 inline const internal::solve_retval<BDCSVD, Rhs>
158 solve(
const MatrixBase<Rhs>& b)
const
160 eigen_assert(this->m_isInitialized &&
"BDCSVD is not initialized.");
162 "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
163 return internal::solve_retval<BDCSVD, Rhs>(*
this, b.derived());
167 const MatrixUType& matrixU()
const
169 eigen_assert(this->m_isInitialized &&
"SVD is not initialized.");
171 eigen_assert(this->
computeV() &&
"This SVD decomposition didn't compute U. Did you ask for it?");
172 return this->m_matrixV;
176 eigen_assert(this->
computeU() &&
"This SVD decomposition didn't compute U. Did you ask for it?");
177 return this->m_matrixU;
183 const MatrixVType& matrixV()
const
185 eigen_assert(this->m_isInitialized &&
"SVD is not initialized.");
187 eigen_assert(this->
computeU() &&
"This SVD decomposition didn't compute V. Did you ask for it?");
188 return this->m_matrixU;
192 eigen_assert(this->
computeV() &&
"This SVD decomposition didn't compute V. Did you ask for it?");
193 return this->m_matrixV;
198 void allocate(Index rows, Index cols,
unsigned int computationOptions);
199 void divide (Index firstCol, Index lastCol, Index firstRowW,
200 Index firstColW, Index shift);
201 void deflation43(Index firstCol, Index shift, Index i, Index size);
202 void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
203 void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
204 void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
207 MatrixXr m_naiveU, m_naiveV;
211 bool isTranspose, compU, compV;
217 template<
typename MatrixType>
218 void BDCSVD<MatrixType>::allocate(Index rows, Index cols,
unsigned int computationOptions)
220 isTranspose = (cols > rows);
221 if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions))
return;
222 m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
224 compU = this->computeU();
225 compV = this->computeV();
229 compV = this->computeU();
230 compU = this->computeV();
232 if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
233 else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
235 if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
241 if (this->computeU()||this->computeV()){
242 aux = this->m_computeFullU;
243 this->m_computeFullU = this->m_computeFullV;
244 this->m_computeFullV = aux;
245 aux = this->m_computeThinU;
246 this->m_computeThinU = this->m_computeThinV;
247 this->m_computeThinV = aux;
254 SVDBase<Matrix<int, Dynamic, Dynamic> >&
255 BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(
const MatrixType& matrix,
unsigned int computationOptions) {
256 allocate(matrix.rows(), matrix.cols(), computationOptions);
257 this->m_nonzeroSingularValues = 0;
258 m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
259 for (
int i=0; i<this->m_diagSize; i++) {
260 this->m_singularValues.coeffRef(i) = 0;
262 if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
263 if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
264 this->m_isInitialized =
true;
270 template<
typename MatrixType>
274 allocate(matrix.rows(), matrix.cols(), computationOptions);
279 if (isTranspose) copy = matrix.adjoint();
282 internal::UpperBidiagonalization<MatrixX > bid(copy);
287 temp = bid.bidiagonal().toDenseMatrix().transpose();
288 m_computed.setZero();
289 for (
int i=0; i<this->m_diagSize - 1; i++) {
290 m_computed(i, i) = temp(i, i);
291 m_computed(i + 1, i) = temp(i + 1, i);
293 m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
294 divide(0, this->m_diagSize - 1, 0, 0, 0);
297 for (
int i=0; i<this->m_diagSize; i++) {
298 RealScalar a = abs(m_computed.coeff(i, i));
299 this->m_singularValues.coeffRef(i) = a;
301 this->m_nonzeroSingularValues = i;
304 else if (i == this->m_diagSize - 1)
306 this->m_nonzeroSingularValues = i + 1;
310 copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
311 this->m_isInitialized =
true;
316 template<
typename MatrixType>
318 if (this->computeU()){
319 MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
320 temp.real() = naiveU;
321 if (this->m_computeThinU){
322 this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
323 this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
324 temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
325 this->m_matrixU = householderU * this->m_matrixU ;
329 this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
330 this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
331 this->m_matrixU = householderU * this->m_matrixU ;
334 if (this->computeV()){
335 MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
336 temp.real() = naiveV;
337 if (this->m_computeThinV){
338 this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
339 this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
340 temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
341 this->m_matrixV = householderV * this->m_matrixV ;
345 this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
346 this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
347 this->m_matrixV = householderV * this->m_matrixV;
362 template<
typename MatrixType>
363 void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
364 Index firstColW, Index shift)
370 const Index n = lastCol - firstCol + 1;
375 RealScalar lambda, phi, c0, s0;
380 JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
381 ComputeFullU | (ComputeFullV * compV)) ;
382 if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
385 m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
386 m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
388 if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
389 m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
390 for (
int i=0; i<n; i++)
392 m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
397 alphaK = m_computed(firstCol + k, firstCol + k);
398 betaK = m_computed(firstCol + k + 1, firstCol + k);
402 divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
403 divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
406 lambda = m_naiveU(firstCol + k, firstCol + k);
407 phi = m_naiveU(firstCol + k + 1, lastCol + 1);
411 lambda = m_naiveU(1, firstCol + k);
412 phi = m_naiveU(0, lastCol + 1);
414 r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
415 + abs(betaK * phi) * abs(betaK * phi));
418 l = m_naiveU.row(firstCol + k).segment(firstCol, k);
419 f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
423 l = m_naiveU.row(1).segment(firstCol, k);
424 f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
426 if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
434 c0 = alphaK * lambda / r0;
435 s0 = betaK * phi / r0;
439 MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
441 for (Index i = firstCol + k - 1; i >= firstCol; i--)
443 m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
446 m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
448 m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
450 m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
451 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
453 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
457 RealScalar q1 = (m_naiveU(0, firstCol + k));
459 for (Index i = firstCol + k - 1; i >= firstCol; i--)
461 m_naiveU(0, i + 1) = m_naiveU(0, i);
464 m_naiveU(0, firstCol) = (q1 * c0);
466 m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
468 m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
470 m_naiveU(1, lastCol + 1) *= c0;
471 m_naiveU.row(1).segment(firstCol + 1, k).setZero();
472 m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
474 m_computed(firstCol + shift, firstCol + shift) = r0;
475 m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
476 m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
483 deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
486 JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
487 ComputeFullU | (ComputeFullV * compV)) ;
488 if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
489 else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
491 if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
492 m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
493 for (
int i=0; i<n; i++)
494 m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
504 template <
typename MatrixType>
505 void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
509 RealScalar c = m_computed(firstCol + shift, firstCol + shift);
510 RealScalar s = m_computed(i, firstCol + shift);
511 RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
518 m_computed(firstCol + shift, firstCol + shift) = r;
519 m_computed(i, firstCol + shift) = 0;
520 m_computed(i, i) = 0;
522 m_naiveU.col(firstCol).segment(firstCol,size) =
523 c * m_naiveU.col(firstCol).segment(firstCol, size) -
524 s * m_naiveU.col(i).segment(firstCol, size) ;
526 m_naiveU.col(i).segment(firstCol, size) =
527 (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
528 (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
536 template <
typename MatrixType>
537 void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
542 RealScalar c = m_computed(firstColm, firstColm + j - 1);
543 RealScalar s = m_computed(firstColm, firstColm + i - 1);
544 RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
546 m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
551 m_computed(firstColm + i, firstColm) = r;
552 m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
553 m_computed(firstColm + j, firstColm) = 0;
555 m_naiveU.col(firstColu + i).segment(firstColu, size) =
556 c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
557 s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
559 m_naiveU.col(firstColu + j).segment(firstColu, size) =
560 (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
561 (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
564 m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
565 c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
566 s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
568 m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
569 (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
570 (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
576 template <
typename MatrixType>
577 void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
579 RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
580 const Index length = lastCol + 1 - firstCol;
581 if (m_computed(firstCol + shift, firstCol + shift) < EPS){
582 m_computed(firstCol + shift, firstCol + shift) = EPS;
585 for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
586 if (std::abs(m_computed(i, firstCol + shift)) < EPS){
587 m_computed(i, firstCol + shift) = 0;
592 for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
593 if (m_computed(i, i) < EPS){
594 deflation43(firstCol, shift, i, length);
600 Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
602 Index *permutation =
new Index[length];
604 for (Index p =1; p < length; p++) {
605 if (i> firstCol + shift + k){
608 }
else if (j> lastCol + shift)
615 if (m_computed(i, i) < m_computed(j, j)){
630 Index *realInd =
new Index[length];
631 Index *realCol =
new Index[length];
632 for (
int pos = 0; pos< length; pos++){
633 realCol[pos] = pos + firstCol + shift;
636 const Index Zero = firstCol + shift;
638 for (
int i = 1; i < length - 1; i++){
639 const Index I = i + Zero;
640 const Index realI = realInd[i];
641 const Index j = permutation[length - i] - Zero;
642 const Index J = realCol[j];
645 aux = m_computed(I, I);
646 m_computed(I, I) = m_computed(J, J);
647 m_computed(J, J) = aux;
650 aux = m_computed(I, Zero);
651 m_computed(I, Zero) = m_computed(J, Zero);
652 m_computed(J, Zero) = aux;
656 temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
657 m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
658 m_naiveU.col(J - shift).segment(firstCol, length + 1);
659 m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
663 temp = m_naiveU.col(I - shift).segment(0, 2);
664 m_naiveU.col(I - shift).segment(0, 2) <<
665 m_naiveU.col(J - shift).segment(0, 2);
666 m_naiveU.col(J - shift).segment(0, 2) << temp;
669 const Index CWI = I + firstColW - Zero;
670 const Index CWJ = J + firstColW - Zero;
671 temp = m_naiveV.col(CWI).segment(firstRowW, length);
672 m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
673 m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
679 realInd[J - Zero] = realI;
680 realInd[I - Zero] = j;
682 for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
683 if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
684 deflation44(firstCol ,
693 delete [] permutation;
702 template<
typename _MatrixType,
typename Rhs>
703 struct solve_retval<BDCSVD<_MatrixType>, Rhs>
704 : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
706 typedef BDCSVD<_MatrixType> BDCSVDType;
707 EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
709 template<typename Dest>
void evalTo(Dest& dst)
const
711 eigen_assert(rhs().rows() == dec().rows());
714 Index diagSize = (std::min)(dec().rows(), dec().cols());
715 typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
716 Index nonzeroSingVals = dec().nonzeroSingularValues();
717 invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
718 invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
720 dst = dec().matrixV().leftCols(diagSize)
721 * invertedSingVals.asDiagonal()
722 * dec().matrixU().leftCols(diagSize).adjoint()
bool computeU() const
Definition: SVDBase.h:155
const internal::solve_retval< BDCSVD, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: BDCSVD.h:158
SVDBase< MatrixType > & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: BDCSVD.h:272
BDCSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: BDCSVD.h:107
Mother class of SVD classes algorithms.
Definition: SVDBase.h:46
class Bidiagonal Divide and Conquer SVD
Definition: BDCSVD.h:38
BDCSVD()
Default Constructor.
Definition: BDCSVD.h:78
bool computeV() const
Definition: SVDBase.h:157
BDCSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: BDCSVD.h:90
SVDBase< MatrixType > & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: BDCSVD.h:135