All Classes Namespaces Functions Variables Typedefs Enumerator Groups Pages
JacobiSVD.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_JACOBISVD_H
11 #define EIGEN_JACOBISVD_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 // forward declaration (needed by ICC)
17 // the empty body is required by MSVC
18 template<typename MatrixType, int QRPreconditioner,
19  bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
20 struct svd_precondition_2x2_block_to_be_real {};
21 
22 /*** QR preconditioners (R-SVD)
23  ***
24  *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
25  *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
26  *** JacobiSVD which by itself is only able to work on square matrices.
27  ***/
28 
29 enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
30 
31 template<typename MatrixType, int QRPreconditioner, int Case>
32 struct qr_preconditioner_should_do_anything
33 {
34  enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
35  MatrixType::ColsAtCompileTime != Dynamic &&
36  MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
37  b = MatrixType::RowsAtCompileTime != Dynamic &&
38  MatrixType::ColsAtCompileTime != Dynamic &&
39  MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
40  ret = !( (QRPreconditioner == NoQRPreconditioner) ||
41  (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
42  (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
43  };
44 };
45 
46 template<typename MatrixType, int QRPreconditioner, int Case,
47  bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
48 > struct qr_preconditioner_impl {};
49 
50 template<typename MatrixType, int QRPreconditioner, int Case>
51 class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
52 {
53 public:
54  typedef typename MatrixType::Index Index;
55  void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
56  bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
57  {
58  return false;
59  }
60 };
61 
62 /*** preconditioner using FullPivHouseholderQR ***/
63 
64 template<typename MatrixType>
65 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
66 {
67 public:
68  typedef typename MatrixType::Index Index;
69  typedef typename MatrixType::Scalar Scalar;
70  enum
71  {
72  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
74  };
75  typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
76 
77  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
78  {
79  if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
80  {
81  m_qr.~QRType();
82  ::new (&m_qr) QRType(svd.rows(), svd.cols());
83  }
84  if (svd.m_computeFullU) m_workspace.resize(svd.rows());
85  }
86 
87  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
88  {
89  if(matrix.rows() > matrix.cols())
90  {
91  m_qr.compute(matrix);
92  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
93  if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
94  if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
95  return true;
96  }
97  return false;
98  }
99 private:
100  typedef FullPivHouseholderQR<MatrixType> QRType;
101  QRType m_qr;
102  WorkspaceType m_workspace;
103 };
104 
105 template<typename MatrixType>
106 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
107 {
108 public:
109  typedef typename MatrixType::Index Index;
110  typedef typename MatrixType::Scalar Scalar;
111  enum
112  {
113  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
114  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
115  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
116  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
117  Options = MatrixType::Options
118  };
119  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
120  TransposeTypeWithSameStorageOrder;
121 
122  void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
123  {
124  if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
125  {
126  m_qr.~QRType();
127  ::new (&m_qr) QRType(svd.cols(), svd.rows());
128  }
129  m_adjoint.resize(svd.cols(), svd.rows());
130  if (svd.m_computeFullV) m_workspace.resize(svd.cols());
131  }
132 
133  bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
134  {
135  if(matrix.cols() > matrix.rows())
136  {
137  m_adjoint = matrix.adjoint();
138  m_qr.compute(m_adjoint);
139  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
140  if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
141  if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
142  return true;
143  }
144  else return false;
145  }
146 private:
147  typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
148  QRType m_qr;
149  TransposeTypeWithSameStorageOrder m_adjoint;
150  typename internal::plain_row_type<MatrixType>::type m_workspace;
151 };
152 
153 /*** preconditioner using ColPivHouseholderQR ***/
154 
155 template<typename MatrixType>
156 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
157 {
158 public:
159  typedef typename MatrixType::Index Index;
160 
161  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
162  {
163  if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
164  {
165  m_qr.~QRType();
166  ::new (&m_qr) QRType(svd.rows(), svd.cols());
167  }
168  if (svd.m_computeFullU) m_workspace.resize(svd.rows());
169  else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
170  }
171 
172  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
173  {
174  if(matrix.rows() > matrix.cols())
175  {
176  m_qr.compute(matrix);
177  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
178  if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
179  else if(svd.m_computeThinU)
180  {
181  svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
182  m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
183  }
184  if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
185  return true;
186  }
187  return false;
188  }
189 
190 private:
191  typedef ColPivHouseholderQR<MatrixType> QRType;
192  QRType m_qr;
193  typename internal::plain_col_type<MatrixType>::type m_workspace;
194 };
195 
196 template<typename MatrixType>
197 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
198 {
199 public:
200  typedef typename MatrixType::Index Index;
201  typedef typename MatrixType::Scalar Scalar;
202  enum
203  {
204  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
205  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
206  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
207  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
208  Options = MatrixType::Options
209  };
210 
211  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
212  TransposeTypeWithSameStorageOrder;
213 
214  void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
215  {
216  if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
217  {
218  m_qr.~QRType();
219  ::new (&m_qr) QRType(svd.cols(), svd.rows());
220  }
221  if (svd.m_computeFullV) m_workspace.resize(svd.cols());
222  else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
223  m_adjoint.resize(svd.cols(), svd.rows());
224  }
225 
226  bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
227  {
228  if(matrix.cols() > matrix.rows())
229  {
230  m_adjoint = matrix.adjoint();
231  m_qr.compute(m_adjoint);
232 
233  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
234  if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
235  else if(svd.m_computeThinV)
236  {
237  svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
238  m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
239  }
240  if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
241  return true;
242  }
243  else return false;
244  }
245 
246 private:
247  typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
248  QRType m_qr;
249  TransposeTypeWithSameStorageOrder m_adjoint;
250  typename internal::plain_row_type<MatrixType>::type m_workspace;
251 };
252 
253 /*** preconditioner using HouseholderQR ***/
254 
255 template<typename MatrixType>
256 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
257 {
258 public:
259  typedef typename MatrixType::Index Index;
260 
261  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
262  {
263  if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
264  {
265  m_qr.~QRType();
266  ::new (&m_qr) QRType(svd.rows(), svd.cols());
267  }
268  if (svd.m_computeFullU) m_workspace.resize(svd.rows());
269  else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
270  }
271 
272  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
273  {
274  if(matrix.rows() > matrix.cols())
275  {
276  m_qr.compute(matrix);
277  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
278  if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
279  else if(svd.m_computeThinU)
280  {
281  svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
282  m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
283  }
284  if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
285  return true;
286  }
287  return false;
288  }
289 private:
290  typedef HouseholderQR<MatrixType> QRType;
291  QRType m_qr;
292  typename internal::plain_col_type<MatrixType>::type m_workspace;
293 };
294 
295 template<typename MatrixType>
296 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
297 {
298 public:
299  typedef typename MatrixType::Index Index;
300  typedef typename MatrixType::Scalar Scalar;
301  enum
302  {
303  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
304  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
305  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
306  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
307  Options = MatrixType::Options
308  };
309 
310  typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
311  TransposeTypeWithSameStorageOrder;
312 
313  void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
314  {
315  if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
316  {
317  m_qr.~QRType();
318  ::new (&m_qr) QRType(svd.cols(), svd.rows());
319  }
320  if (svd.m_computeFullV) m_workspace.resize(svd.cols());
321  else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
322  m_adjoint.resize(svd.cols(), svd.rows());
323  }
324 
325  bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
326  {
327  if(matrix.cols() > matrix.rows())
328  {
329  m_adjoint = matrix.adjoint();
330  m_qr.compute(m_adjoint);
331 
332  svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
333  if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
334  else if(svd.m_computeThinV)
335  {
336  svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
337  m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
338  }
339  if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
340  return true;
341  }
342  else return false;
343  }
344 
345 private:
346  typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
347  QRType m_qr;
348  TransposeTypeWithSameStorageOrder m_adjoint;
349  typename internal::plain_row_type<MatrixType>::type m_workspace;
350 };
351 
352 /*** 2x2 SVD implementation
353  ***
354  *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
355  ***/
356 
357 template<typename MatrixType, int QRPreconditioner>
358 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
359 {
360  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
361  typedef typename SVD::Index Index;
362  static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
363 };
364 
365 template<typename MatrixType, int QRPreconditioner>
366 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
367 {
368  typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
369  typedef typename MatrixType::Scalar Scalar;
370  typedef typename MatrixType::RealScalar RealScalar;
371  typedef typename SVD::Index Index;
372  static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
373  {
374  using std::sqrt;
375  Scalar z;
376  JacobiRotation<Scalar> rot;
377  RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
378  if(n==0)
379  {
380  z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
381  work_matrix.row(p) *= z;
382  if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
383  z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
384  work_matrix.row(q) *= z;
385  if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
386  }
387  else
388  {
389  rot.c() = conj(work_matrix.coeff(p,p)) / n;
390  rot.s() = work_matrix.coeff(q,p) / n;
391  work_matrix.applyOnTheLeft(p,q,rot);
392  if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
393  if(work_matrix.coeff(p,q) != Scalar(0))
394  {
395  Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
396  work_matrix.col(q) *= z;
397  if(svd.computeV()) svd.m_matrixV.col(q) *= z;
398  }
399  if(work_matrix.coeff(q,q) != Scalar(0))
400  {
401  z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
402  work_matrix.row(q) *= z;
403  if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
404  }
405  }
406  }
407 };
408 
409 template<typename MatrixType, typename RealScalar, typename Index>
410 void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
411  JacobiRotation<RealScalar> *j_left,
412  JacobiRotation<RealScalar> *j_right)
413 {
414  using std::sqrt;
415  Matrix<RealScalar,2,2> m;
416  m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
417  numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
418  JacobiRotation<RealScalar> rot1;
419  RealScalar t = m.coeff(0,0) + m.coeff(1,1);
420  RealScalar d = m.coeff(1,0) - m.coeff(0,1);
421  if(t == RealScalar(0))
422  {
423  rot1.c() = RealScalar(0);
424  rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
425  }
426  else
427  {
428  RealScalar u = d / t;
429  rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
430  rot1.s() = rot1.c() * u;
431  }
432  m.applyOnTheLeft(0,1,rot1);
433  j_right->makeJacobi(m,0,1);
434  *j_left = rot1 * j_right->transpose();
435 }
436 
437 } // end namespace internal
438 
492 template<typename _MatrixType, int QRPreconditioner>
493 class JacobiSVD : public SVDBase<_MatrixType>
494 {
495  public:
496 
497  typedef _MatrixType MatrixType;
498  typedef typename MatrixType::Scalar Scalar;
499  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
500  typedef typename MatrixType::Index Index;
501  enum {
502  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
503  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
504  DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
505  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
506  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
507  MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
508  MatrixOptions = MatrixType::Options
509  };
510 
511  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
512  MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
513  MatrixUType;
514  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
515  MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
516  MatrixVType;
517  typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
518  typedef typename internal::plain_row_type<MatrixType>::type RowType;
519  typedef typename internal::plain_col_type<MatrixType>::type ColType;
520  typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
521  MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
522  WorkMatrixType;
523 
530  : SVDBase<_MatrixType>::SVDBase()
531  {}
532 
533 
540  JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
541  : SVDBase<_MatrixType>::SVDBase()
542  {
543  allocate(rows, cols, computationOptions);
544  }
545 
556  JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
557  : SVDBase<_MatrixType>::SVDBase()
558  {
559  compute(matrix, computationOptions);
560  }
561 
572  SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
573 
580  SVDBase<MatrixType>& compute(const MatrixType& matrix)
581  {
582  return compute(matrix, this->m_computationOptions);
583  }
584 
594  template<typename Rhs>
595  inline const internal::solve_retval<JacobiSVD, Rhs>
596  solve(const MatrixBase<Rhs>& b) const
597  {
598  eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
599  eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
600  return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
601  }
602 
603 
604 
605  private:
606  void allocate(Index rows, Index cols, unsigned int computationOptions);
607 
608  protected:
609  WorkMatrixType m_workMatrix;
610 
611  template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
612  friend struct internal::svd_precondition_2x2_block_to_be_real;
613  template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
614  friend struct internal::qr_preconditioner_impl;
615 
616  internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
617  internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
618 };
619 
620 template<typename MatrixType, int QRPreconditioner>
621 void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
622 {
623  if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
624 
625  if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
626  {
627  eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
628  "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
629  "Use the ColPivHouseholderQR preconditioner instead.");
630  }
631 
632  m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
633 
634  if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
635  if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
636 }
637 
638 template<typename MatrixType, int QRPreconditioner>
639 SVDBase<MatrixType>&
640 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
641 {
642  using std::abs;
643  allocate(matrix.rows(), matrix.cols(), computationOptions);
644 
645  // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
646  // only worsening the precision of U and V as we accumulate more rotations
647  const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
648 
649  // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
650  const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
651 
652  /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
653 
654  if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
655  {
656  m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
657  if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
658  if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
659  if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
660  if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
661  }
662 
663  /*** step 2. The main Jacobi SVD iteration. ***/
664 
665  bool finished = false;
666  while(!finished)
667  {
668  finished = true;
669 
670  // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
671 
672  for(Index p = 1; p < this->m_diagSize; ++p)
673  {
674  for(Index q = 0; q < p; ++q)
675  {
676  // if this 2x2 sub-matrix is not diagonal already...
677  // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
678  // keep us iterating forever. Similarly, small denormal numbers are considered zero.
679  using std::max;
680  RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
681  abs(m_workMatrix.coeff(q,q))));
682  if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
683  {
684  finished = false;
685 
686  // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
687  internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
688  JacobiRotation<RealScalar> j_left, j_right;
689  internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
690 
691  // accumulate resulting Jacobi rotations
692  m_workMatrix.applyOnTheLeft(p,q,j_left);
693  if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
694 
695  m_workMatrix.applyOnTheRight(p,q,j_right);
696  if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
697  }
698  }
699  }
700  }
701 
702  /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
703 
704  for(Index i = 0; i < this->m_diagSize; ++i)
705  {
706  RealScalar a = abs(m_workMatrix.coeff(i,i));
707  this->m_singularValues.coeffRef(i) = a;
708  if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
709  }
710 
711  /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
712 
713  this->m_nonzeroSingularValues = this->m_diagSize;
714  for(Index i = 0; i < this->m_diagSize; i++)
715  {
716  Index pos;
717  RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
718  if(maxRemainingSingularValue == RealScalar(0))
719  {
720  this->m_nonzeroSingularValues = i;
721  break;
722  }
723  if(pos)
724  {
725  pos += i;
726  std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
727  if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
728  if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
729  }
730  }
731 
732  this->m_isInitialized = true;
733  return *this;
734 }
735 
736 namespace internal {
737 template<typename _MatrixType, int QRPreconditioner, typename Rhs>
738 struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
739  : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
740 {
741  typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
742  EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
743 
744  template<typename Dest> void evalTo(Dest& dst) const
745  {
746  eigen_assert(rhs().rows() == dec().rows());
747 
748  // A = U S V^*
749  // So A^{-1} = V S^{-1} U^*
750 
751  Index diagSize = (std::min)(dec().rows(), dec().cols());
752  typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
753 
754  Index nonzeroSingVals = dec().nonzeroSingularValues();
755  invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
756  invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
757 
758  dst = dec().matrixV().leftCols(diagSize)
759  * invertedSingVals.asDiagonal()
760  * dec().matrixU().leftCols(diagSize).adjoint()
761  * rhs();
762  }
763 };
764 } // end namespace internal
765 
773 template<typename Derived>
774 JacobiSVD<typename MatrixBase<Derived>::PlainObject>
775 MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
776 {
777  return JacobiSVD<PlainObject>(*this, computationOptions);
778 }
779 
780 } // end namespace Eigen
781 
782 #endif // EIGEN_JACOBISVD_H
const internal::solve_retval< JacobiSVD, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition: JacobiSVD.h:596
SVDBase< MatrixType > & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: JacobiSVD.h:580
SVDBase< MatrixType > & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: JacobiSVD.h:640
JacobiSVD()
Default Constructor.
Definition: JacobiSVD.h:529
Mother class of SVD classes algorithms.
Definition: SVDBase.h:46
JacobiSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: JacobiSVD.h:540
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: JacobiSVD.h:493
JacobiSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: JacobiSVD.h:556